1
|
Aung HH, Pothipan P, Aswakool J, Santironnarong S, Phatthanakun R, Pinrod V, Jiemsakul T, Chancharoen W, Moonwiriyakit A. Non-invasive measurement of wall shear stress in microfluidic chip for osteoblast cell culture using improved depth estimation of defocus particle tracking method. BIOMICROFLUIDICS 2024; 18:054114. [PMID: 39464242 PMCID: PMC11510738 DOI: 10.1063/5.0226294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
The development of a non-invasive method for measuring the internal fluid behavior and dynamics of microchannels in microfluidics poses critical challenges to biological research, such as understanding the impact of wall shear stress (WSS) in the growth of a bone-forming osteoblast. This study used the General Defocus Particle Tracking (GDPT) technique to develop a non-invasive method for quantifying the fluid velocity profile and calculated the WSS within a microfluidic chip. The GDPT estimates particle motion in a three-dimensional space by analyzing two-dimensional images and video captured using a single camera. However, without a lens to introduce aberration, GDPT is prone to error in estimating the displacement direction for out-of-focus particles, and without knowing the exact refractive indices, the scaling from estimated values to physical units is inaccurate. The proposed approach addresses both challenges by using theoretical knowledge on laminar flow and integrating results obtained from multiple analyses. The proposed approach was validated using computational fluid dynamics (CFD) simulations and experimental video of a microfluidic chip that can generate different WSS levels under steady-state flow conditions. By comparing the CFD and GDPT velocity profiles, it was found that the Mean Pearson Correlation Coefficient is 0.77 (max = 0.90) and the Mean Intraclass Correlation Coefficient is 0.66 (max = 0.82). The densitometry analysis of osteoblast cells cultured on the designed microfluidic chip for four days revealed that the cell proliferation rate correlates positively with the measured WSS values. The proposed analysis can be applied to quantify the laminar flow in microfluidic chip experiments without specialized equipment.
Collapse
Affiliation(s)
- Hein Htet Aung
- Laboratory of Artificial Intelligence and Innovation in Medicine (AIIM), Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, 906 Kampangpetch 6 Rd., Talat Bang Khen, Lak Si, Bangkok 10210, Thailand
| | - Phattarin Pothipan
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Suwannabhumi Canal Rd, Bang Pla, Bang Phli District, Samut Prakan 10540, Thailand
| | - Jirasin Aswakool
- Laboratory of Artificial Intelligence and Innovation in Medicine (AIIM), Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, 906 Kampangpetch 6 Rd., Talat Bang Khen, Lak Si, Bangkok 10210, Thailand
| | - Siraphob Santironnarong
- Defence Technology Institute, Office of the Permanent Secretary of Defence (Chaengwattana) 7th Floor, 47/433 Moo 3, Ban Mai, Pak Kret, Nonthaburi 11120, Thailand
| | - Rungrueang Phatthanakun
- Synchrotron Light Research Institute, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Visarute Pinrod
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand
| | - Thanakorn Jiemsakul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand
| | - Wares Chancharoen
- Laboratory of Artificial Intelligence and Innovation in Medicine (AIIM), Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, 906 Kampangpetch 6 Rd., Talat Bang Khen, Lak Si, Bangkok 10210, Thailand
| | - Aekkacha Moonwiriyakit
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Suwannabhumi Canal Rd, Bang Pla, Bang Phli District, Samut Prakan 10540, Thailand
| |
Collapse
|
2
|
Jing L, Fan S, Yao X, Zhang Y. Effects of compound stimulation of fluid shear stress plus ultrasound on stem cell proliferation and osteogenesis. Regen Biomater 2021; 8:rbab066. [PMID: 34868635 PMCID: PMC8634505 DOI: 10.1093/rb/rbab066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
Bone tissue with strong adaptability is often in a complex dynamical microenvironment in vivo, which is associated with the pathogenesis and treatment of orthopedic diseases. Therefore, it is of great significance to investigate the effects of corresponding compound stimulation on cell behaviors. Herein, a fluid shear stress (FSS) plus ultrasound stimulation platform suitable for cell studies based on a microfluidic chip was constructed and bone marrow mesenchymal stem cell (BMSC) was chosen as a model cell. The proliferation and osteogenesis of BMSCs under the compound stimulation of FSS plus ultrasound in growth medium without any soluble induction factors were firstly investigated. Single FSS stimulation and static culture conditions were also examined. Results illustrated that suitable single FSS stimulation (about 0.06 dyn/cm2) could significantly enhance cell proliferation and osteogenesis simultaneously when compared to the static control, while greater FSS mitigated or even restricted these enhancing effects. Interestingly, ultrasound stimulation combined with this suitable FSS stimulation further accelerated cell proliferation as the intensity of ultrasound increasing. As for the osteogenesis under compound stimulation, it was relatively restricted under lower ultrasound intensity (about 0.075 W/cm2), while promoted when the intensity became higher (about 1.75 W/cm2). This study suggests that both the cell proliferation and osteogenesis are very responsive to the magnitudes of FSS and ultrasound stimulations and can be both significantly enhanced by proper combination strategies. Moreover, these findings will provide valuable references for the construction of effective cell bioreactors and also the treatment of orthopedic diseases.
Collapse
Affiliation(s)
- Lingzhi Jing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China.,Jinan Jinquan Bio-Technology Co. Ltd, Jinan 250101, P.R. China
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China.,Jinan Jinquan Bio-Technology Co. Ltd, Jinan 250101, P.R. China
| |
Collapse
|
3
|
Wang L, Zheng F, Song R, Zhuang L, Yang M, Suo J, Li L. Integrins in the Regulation of Mesenchymal Stem Cell Differentiation by Mechanical Signals. Stem Cell Rev Rep 2021; 18:126-141. [PMID: 34536203 DOI: 10.1007/s12015-021-10260-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
Mesenchymal stem cells (MSCs) can sense and convert mechanical stimuli signals into a chemical response. Integrins are involved in the mechanotransduction from inside to outside and from outside to inside, and ultimately affect the fate of MSCs responding to different mechanical signals. Different integrins participate in different signaling pathways to regulate MSCs multi-differentiation. In this review, we summarize the latest advances in the effects of mechanical signals on the differentiation of MSCs, the importance of integrins in mechanotransduction, the relationship between integrin heterodimers and different mechanical signals, and the interaction among mechanical signals. We put forward our views on the prospect and challenges of developing mechanical biology in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Lei Wang
- Department of Gastrointestinal Surgery, Jilin University First Hospital, Jilin University, 130021, Changchun, People's Republic of China
| | - Fuwen Zheng
- Norman Bethune College of Medicine, Jilin University, 130021, Changchun, People's Republic of China
| | - Ruixue Song
- Norman Bethune College of Medicine, Jilin University, 130021, Changchun, People's Republic of China
| | - Lequan Zhuang
- Norman Bethune College of Medicine, Jilin University, 130021, Changchun, People's Republic of China
| | - Ming Yang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, 130021, Changchun, People's Republic of China.
| | - Jian Suo
- Department of Gastrointestinal Surgery, Jilin University First Hospital, Jilin University, 130021, Changchun, People's Republic of China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 130021, Changchun, People's Republic of China.
| |
Collapse
|
4
|
Gautam S, Sharma C, Purohit SD, Singh H, Dinda AK, Potdar PD, Chou CF, Mishra NC. Gelatin-polycaprolactone-nanohydroxyapatite electrospun nanocomposite scaffold for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111588. [PMID: 33321633 DOI: 10.1016/j.msec.2020.111588] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/28/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022]
Abstract
Bone injuries and fractures generally take a long period to heal itself. To address this problem, bone tissue engineering (BTE) has gained significant research impetus. Among the several techniques used for scaffold fabrication, electrospinning ought to be the most promising technique for the development of the nanostructured scaffolds. The present study was carried out to fabricate an electrospun nanocomposite scaffold for BTE by using gelatin, polycaprolactone (PCL), and nanohydroxyapatite (nHAp). To prepare Gelatin-PCL-nHAp nanocomposite scaffold: Gelatin-PCL blend was electrospun and then treated with nHAp (1 wt%) for different time periods. The fabricated nanocomposite scaffold was analysed by field emission scanning electron microscopy (FESEM) to determine the fiber diameter and evaluate the fiber morphology. The Gelatin-PCL-nHAp nanocomposite scaffold-20 min exhibited the average fiber diameter of 615±269 nm and average pore size 4.7±1.04 μm, and also revealed the presence of nHAp particles over the Gelatin-PCL scaffold surface. Further, X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy and thermogravimetric (TG) analysis also indicated the deposition of nHAp over the Gelatin-PCL scaffold surface. MTT assay and DNA quantification showed good viability and significant proliferation of human osteoblasts on Gelatin-PCL-nHAp nanocomposite scaffold. Moreover, cell-scaffold constructs illustrated efficient cellular attachment and adequately spread cells, and it also depicts characteristic polygonal morphology of osteoblasts over the Gelatin-PCL-nHAp nanocomposite scaffold. Thus, the results of in-vitro analysis of electrospun nanocomposite scaffold suggest that the Gelatin-PCL-nHAp scaffold can be a potential candidate for BTE applications.
Collapse
Affiliation(s)
- Sneh Gautam
- Department of Molecular Biology & Genetic Engineering, CBSH, G. B. Pant University of Agriculture & Technology, Pantnagar, India
| | - Chhavi Sharma
- Avantha Centre for Industrial Research and Development, Paper Mill Campus, Yamuna Nagar, Haryana, India
| | - Shiv Dutt Purohit
- Department of Polymer & Process Engineering, India Institute of Technology, Roorkee, India
| | - Hemant Singh
- Department of Polymer & Process Engineering, India Institute of Technology, Roorkee, India
| | - Amit Kumar Dinda
- Department of Pathology, All India Institute of Medical Science, New Delhi, India
| | - Pravin D Potdar
- Department of Molecular Medicine & Biology, Jaslok Hospital & Research Centre, Mumbai, India
| | - Chia-Fu Chou
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| | - Narayan Chandra Mishra
- Department of Polymer & Process Engineering, India Institute of Technology, Roorkee, India.
| |
Collapse
|
5
|
Sharma C, Bhardwaj NK, Pathak P. Ternary nano-biocomposite films using synergistic combination of bacterial cellulose with chitosan and gelatin for tissue engineering applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:166-188. [PMID: 32905737 DOI: 10.1080/09205063.2020.1822122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ternary nano-biocomposite films of bacterial cellulose-chitosan-gelatin (BC-C-G) were fabricated by immersing the BC pellicles into chitosan and gelatin mixture and subsequently freeze-drying. Scanning electron microscopy (SEM) images of the nano-biocomposite films revealed the presence of interconnected pores, with fibre diameter 20-150 nm. The composite films have a porosity of 95.3%, and showed good hydrophilicity with swelling ratio of 19 ± 1.8 and in vitro degradability. X-ray diffraction, attenuated total reflectance Fourier transform infrared spectroscopy, and thermogravimetric (TG) analysis results showed some interactions among the molecules of BC, gelatin, and chitosan within the film. The composite film offered good matrix for adhesion and proliferation of L929 fibroblasts cells as indicated by the cell attachment study, FE-SEM of cell-film constructs and cytocompatibility assay. Thus, the nano-biocomposite films of BC-C-G could be of paramount importance as tissue engineering scaffold. The "all-natural" ternary polymer composite films of BC-C-G have not been evaluated before for biomedical applications.
Collapse
Affiliation(s)
- Chhavi Sharma
- Avantha Centre for Industrial Research and Development, Paper Mill campus, Yamuna Nagar, Haryana, India
| | - Nishi K Bhardwaj
- Avantha Centre for Industrial Research and Development, Paper Mill campus, Yamuna Nagar, Haryana, India
| | - Puneet Pathak
- Avantha Centre for Industrial Research and Development, Paper Mill campus, Yamuna Nagar, Haryana, India
| |
Collapse
|
6
|
Xue R, Cartmell S. A simple in vitro biomimetic perfusion system for mechanotransduction study. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2020; 21:635-640. [PMID: 33061836 PMCID: PMC7534211 DOI: 10.1080/14686996.2020.1808432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
In mechanotransduction studies, flow-induced shear stress (FSS) is often applied to two-dimensional (2D) cultured cells with a parallel-plate flow chamber (PPFC) due to its simple FSS estimation. However, cells behave differently under FSS inside a 3D scaffold (e.g. 10 mPa FSS was shown to induce osteogenesis of human mesenchymal stem cells (hMSC) in 3D but over 900 mPa was needed for 2D culture). Here, a simple in vitro biomimetic perfusion system using borosilicate glass capillary tubes has been developed to study the cellular behaviour under low-level FSS that mimics 3D culture. It has been shown that, compared to cells in the PPFC, hMSC in the capillary tubes had upregulated Runx-2 expression and osteogenic cytoskeleton actin network under 10 mPa FSS for 24 h. Also, an image analysis method based on Haralick texture measurement has been used to identify osteogenic actin network. The biomimetic perfusion system can be a valuable tool to study mechanotransduction in 3D for more clinical relevant tissue-engineering applications.
Collapse
Affiliation(s)
- Ruikang Xue
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, UK
| | - Sarah Cartmell
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, UK
| |
Collapse
|
7
|
Mizukoshi M, Nozawa A, Oomizo S, Ihara D, Shiota J, Kikuchi K, Kaito M, Ishibashi Y, Ishikawa M, Fukuchi M, Tsuda M, Takasaki I, Tabuchi A. Differential localization and roles of splice variants of rat suppressor of cancer cell invasion (SCAI) in neuronal cells. Biochem Biophys Res Commun 2020; 529:615-621. [PMID: 32736682 DOI: 10.1016/j.bbrc.2020.06.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 12/11/2022]
Abstract
Suppressor of cancer cell invasion (SCAI) is a suppressor of myocardin-related transcription factor (MRTF)-mediated transcription and cancer cell invasion. However, roles of SCAI in the brain and neuronal cells are not fully resolved. In this study, we initially investigated the distribution of Scai mRNA in the developing rat brain and in neurons. We found that, although Scai mRNA levels decreased during brain development, it was highly expressed in several brain regions and in neurons but not astrocytes. Subsequently, in addition to Scai variant 1, we identified novel rat Scai variants 2 and 3 and characterized their functions in Neuro-2a cells. The novel Scai variants 2 and 3 contain unique exons that possess stop codons and therefore encode shorter proteins compared with the full-length Scai variant 1. SCAI variants 2 and 3 possess a nuclear localization signal, but do not have an MRTF-binding site. Immunostaining of green fluorescent protein (GFP)-tagged SCAI variants revealed a nuclear localization of variant 1, whereas localization of variants 2 and 3 was throughout the cytoplasm and nucleus, suggesting that other nuclear localization signals, which act in Neuro-2a cells, exist in SCAI. All three SCAI variants suppressed the neuron-like morphological change of Neuro-2a cells induced by a Rho effector, constitutively active mDia; however, the suppressive effects of variants 2 and 3 were weaker than that of full-length SCAI variant 1, indicating that the SCAI-mediated change toward a neuronal morphology appeared to be consistent with their nuclear localization. These findings indicate that generation of multiple SCAI splice variants fines-tune neuronal morphology.
Collapse
Affiliation(s)
- Miho Mizukoshi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ayaka Nozawa
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Serina Oomizo
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Daisuke Ihara
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan; Laboratory of Molecular Neurobiology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Jun Shiota
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Keietsu Kikuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Maki Kaito
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yuta Ishibashi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Mitsuru Ishikawa
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan; Department of Physiology, Keio University, School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Mamoru Fukuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan; Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan
| | - Masaaki Tsuda
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ichiro Takasaki
- Department of Pharmacology, Graduate School of Science and Engineering, Graduate School of Innovative Life Sciences, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
| | - Akiko Tabuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan; Laboratory of Molecular Neurobiology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
8
|
Xu H, Duan J, Ren L, Yang P, Yang R, Li W, Zhao D, Shang P, Jiang JX. Impact of flow shear stress on morphology of osteoblast-like IDG-SW3 cells. J Bone Miner Metab 2018; 36:529-536. [PMID: 29027016 PMCID: PMC6282752 DOI: 10.1007/s00774-017-0870-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/11/2017] [Indexed: 11/26/2022]
Abstract
This study constructed an in situ cell culture, real-time observation system based originally on a microfluidic channel, and reported the morphological changes of late osteoblast-like IDG-SW3 cells in response to flow shear stress (FSS). The effects of high (1.2 Pa) and low (0.3 Pa) magnitudes of unidirectional FSS and three concentrations of extracellular Type I collagen (0.1, 0.5, and 1 mg/mL) coating on cell morphology were investigated. IDG-SW3 cells were cultured in polydimethylsiloxane microfluidic channels. Cell images were recorded real-time under microscope at intervals of 1 min. Cell morphology was characterized by five parameters: cellular area, cell elongation index, cellular alignment, cellular process length, and number of cellular process per cell. Immunofluorescence assay was used to detect stress fiber distribution and vinculin expression. The results showed that 1.2 Pa, but not 0.3 Pa of FSS induced a significant morphological change in late osteoblast-like IDG-SW3 cells, which may be caused by the alteration of cellular adhesion with matrix in response to FSS. Moreover, the amount of collagen matrix, alignment of fiber stress and expression of vinculin were closely correlated with the morphological changes of IDG-SW3 cells. This study suggests that osteoblasts are very responsive to the magnitudes of FSS, and extracellular collagen matrix and focal adhesion are directly involved in the morphological changes adaptive to FSS.
Collapse
Affiliation(s)
- Huiyun Xu
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
| | - Jing Duan
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Li Ren
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Pengfei Yang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Ruixin Yang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Wenbin Li
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Dongdong Zhao
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Peng Shang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Jean X Jiang
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
9
|
Shuai C, Yang W, Peng S, Gao C, Guo W, Lai Y, Feng P. Physical stimulations and their osteogenesis-inducing mechanisms. Int J Bioprint 2018; 4:138. [PMID: 33102916 PMCID: PMC7581999 DOI: 10.18063/ijb.v4i2.138] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/09/2018] [Indexed: 12/27/2022] Open
Abstract
Physical stimulations such as magnetic, electric and mechanical stimulation could enhance cell activity and promote bone formation in bone repair process via activating signal pathways, modulating ion channels, regulating bonerelated gene expressions, etc. In this paper, bioeffects of physical stimulations on cell activity, tissue growth and bone healing were systematically summarized, which especially focused on their osteogenesis-inducing mechanisms. Detailedly, magnetic stimulation could produce Hall effect which improved the permeability of cell membrane and promoted the migration of ions, especially accelerating the extracellular calcium ions to pass through cell membrane. Electric stimulation could induce inverse piezoelectric effect which generated electric signals, accordingly up-regulating intracellular calcium levels and growth factor synthesis. And mechanical stimulation could produce mechanical signals which were converted into corresponding biochemical signals, thus activating various signaling pathways on cell membrane and inducing a series of gene expressions. Besides, bioeffects of physical stimulations combined with bone scaffolds which fabricated using 3D printing technology on bone cells were discussed. The equipments of physical stimulation system were described. The opportunities and challenges of physical stimulations were also presented from the perspective of bone repair.
Collapse
Affiliation(s)
- Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China.,Jiangxi University of Science and Technology, Ganzhou, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Wenjing Yang
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Shuping Peng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Wang Guo
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Yuxiao Lai
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
| | - Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| |
Collapse
|
10
|
Li Y, Yuan J, Wang Q, Sun L, Sha Y, Li Y, Wang L, Wang Z, Ma Y, Cao H. The collective influence of 1, 25-dihydroxyvitamin D 3 with physiological fluid shear stress on osteoblasts. Steroids 2018; 129:9-16. [PMID: 29155218 DOI: 10.1016/j.steroids.2017.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/23/2017] [Accepted: 11/12/2017] [Indexed: 11/27/2022]
Abstract
1, 25-dihydroxyvitamin D3 (1, 25 (OH)2 D3) and mechanical stimuli in physiological environment contributes greatly to osteoporosis pathogenesis. Wide investigations have been conducted on how 1, 25-dihydroxyvitamin D3 and mechanical stimuli separately impact osteoblasts. This study reports the collective influences of 1, 25-dihydroxyvitamin D3 and flow shear stress (FSS) on biological functions of osteoblasts. 1, 25 (OH)2 D3 were prepared in various kinds of concentrations (0, 1, 10, 100 nmmol/L), while physiological fluid shear stress (12 dynes/cm2) was produced by using a parallel-plate fluid flow system. 1, 25 (OH)2 D3 affects the responses of ROBs to FSS, including the inhibition of NO release and cell proliferation as well as the promotion of PGE2 release and cell differentiation. These findings provide a possible mechanism by which 1, 25(OH)2 D3 influences osteoblasts' responses to FSS, thus most probably providing guidance for the selection of 1, 25(OH)2 D3 concentration and mechanical loading in order to produce functional bone tissues in vitro.
Collapse
Affiliation(s)
- Yan Li
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China.
| | - Jiafeng Yuan
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Qianwen Wang
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Lijie Sun
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Yunying Sha
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Yanxiang Li
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Lizhong Wang
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Zhonghua Wang
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Yonggang Ma
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Hui Cao
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| |
Collapse
|
11
|
Yu L, Wang X, Gao X, Tong J, Zhang J. The calcium transient characteristics induced by fluid shear stress affect the osteoblast proliferation. Exp Cell Res 2018; 362:51-62. [DOI: 10.1016/j.yexcr.2017.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/07/2017] [Accepted: 11/01/2017] [Indexed: 12/11/2022]
|
12
|
Oliveira NM, Reis RL, Mano JF. Open Fluidics: A Cell Culture Flow System Developed Over Wettability Contrast-Based Chips. Adv Healthc Mater 2017; 6. [PMID: 29034587 DOI: 10.1002/adhm.201700638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/21/2017] [Indexed: 12/11/2022]
Abstract
Biological tissues are recurrently exposed to several dynamic mechanical forces that influence cell behavior. On this work, the focus is on the shear stress forces induced by fluid flow. The study of flow-induced effects on cells leads to important advances in cardiovascular, cancer, stem cell, and bone biology understanding. These studies are performed using cell culture flow (CCF) systems, mainly parallel plate flow chambers (PPFC), and microfluidic systems. Here, it is proposed an original CCF system based on the open fluidics concept. The system is developed using a planar superhydrophobic platform with hydrophilic paths. The paths work as channels to drive cell culture medium flows without using walls for liquid confinement. The liquid streams are controlled just based on the wettability contrast. To validate the concept, the effect of the shear stress stimulus in the osteogenic differentiation of C2C12 myoblast cells is studied. Combining bone morphogenic protein (specifically BMP-2) stimulation with this mechanical stimulus, a synergistic effect is found on osteoblast differentiation. This effect is confirmed by the enhancement of alkaline phosphatase activity, a well-known early marker of osteogenic differentiation. The suggested CCF system combines characteristics and advantages of both the PPFC and microfluidic systems.
Collapse
Affiliation(s)
- Nuno M. Oliveira
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, Zona Industrial da Gandra; 4805-017 Barco GMR Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães 4710-057 Portugal
| | - Rui L. Reis
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, Zona Industrial da Gandra; 4805-017 Barco GMR Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães 4710-057 Portugal
| | - João F. Mano
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, Zona Industrial da Gandra; 4805-017 Barco GMR Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães 4710-057 Portugal
| |
Collapse
|
13
|
Yu L, Ma X, Sun J, Tong J, Shi L, Sun L, Zhang J. Fluid shear stress induces osteoblast differentiation and arrests the cell cycle at the G0 phase via the ERK1/2 pathway. Mol Med Rep 2017; 16:8699-8708. [PMID: 28990082 PMCID: PMC5779962 DOI: 10.3892/mmr.2017.7720] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 08/10/2017] [Indexed: 11/05/2022] Open
Abstract
Numerous studies have demonstrated that fluid shear stress (FSS) may promote the proliferation and differentiation of osteoblast cells. However, proliferation and differentiation are mutually exclusive processes and are unlikely to be promoted by FSS simultaneously. Cell proliferation and differentiation induced by FSS has rarely been reported. In order to provide an insight into this process, the present study investigated the effects of FSS on osteoblast‑like MC3T3 cells in the G0/G1 phase, the period during which the fate of a cell is determined. The results of the present study demonstrated that FSS promoted alkaline phosphatase (ALP) activity, and the mRNA expression and protein expression of osteocalcin, collagen type I and runt‑related transcription factor 2 (Runx2), while inhibiting DNA synthesis and arresting the cell cycle at the G0/G1 phase. The increase in Runx2 and ALP activity was accompanied by the activation of calcium/calmodulin‑dependent protein kinase type II (CaMK II) and extracellular signal‑regulated kinases 1/2 (ERK1/2), which was completely abolished by treatment with KN93 and U0126, respectively. In addition, the inhibition of ERK1/2, although not CaMK II, decreased p21Cip/Kip activity, resulting in an increase in cell number and S phase re‑entry. The results of the present study indicated that in the G0/G1 phase, FSS promoted osteoblast differentiation via the CaMK II and ERK1/2 signaling pathways, and blocked the cell cycle at the G0/G1 phase via the ERK1/2 pathway only. The present findings provided an increased understanding of osteoblastic mechanobiology.
Collapse
Affiliation(s)
- Liyin Yu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Xingfeng Ma
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Junqin Sun
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Jie Tong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Liang Shi
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Jianbao Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| |
Collapse
|
14
|
Li Y, Wang J, Xing J, Wang Y, Luo Y. Surface chemistry regulates the sensitivity and tolerability of osteoblasts to various magnitudes of fluid shear stress. J Biomed Mater Res A 2016; 104:2978-2991. [PMID: 27466082 DOI: 10.1002/jbm.a.35848] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 07/09/2016] [Accepted: 07/27/2016] [Indexed: 11/08/2022]
Abstract
Scaffolds provide a physical support for osteoblasts and act as the medium to transfer mechanical stimuli to cells. To verify our hypothesis that the surface chemistry of scaffolds regulates the perception of cells to mechanical stimuli, the sensitivity and tolerability of osteoblasts to fluid shear stress (FSS) of various magnitudes (5, 12, 20 dynes/cm2 ) were investigated on various surface chemistries (-OH, -CH3 , -NH2 ), and their follow-up effects on cell proliferation and differentiation were examined as well. The sensitivity was characterized by the release of adenosine triphosphate (ATP), nitric oxide (NO) and prostaglandin E2 (PGE2 ) while the tolerability was by cellular membrane integrity. The cell proliferation was characterized by S-phase cell fraction and the differentiation by ALP activity and ECM expression (fibronectin and type I collagen). As revealed, osteoblasts demonstrated higher sensitivity and lower tolerability on OH and CH3 surfaces, yet lower sensitivity and higher tolerability on NH2 surfaces. Observations on the focal adhesion formation, F-actin organization and cellular orientation before and after FSS exposure suggest that the potential mechanism lies in the differential control of F-actin organization and focal adhesion formation by surface chemistry, which further divergently mediates the sensitivity and tolerability of ROBs to FSS and the follow-up cell proliferation and differentiation. These findings are essentially valuable for design/selection of desirable surface chemistry to orchestrate with FSS stimuli, inducing appropriate cell responses and promoting bone formation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2978-2991, 2016.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing, 400030, China.,Research Center of Bioinspired Materials Science and Engineering, College of Bioengineering, Chongqing University, Chongqing, 400030, China.,School of Pharmacy, Taizhou Polytechnic College, Taizhou, 225300, China
| | - Jinfeng Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing, 400030, China.,Research Center of Bioinspired Materials Science and Engineering, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Juan Xing
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing, 400030, China.,Research Center of Bioinspired Materials Science and Engineering, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Yuanliang Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing, 400030, China.,Research Center of Bioinspired Materials Science and Engineering, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Yanfeng Luo
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing, 400030, China. .,Research Center of Bioinspired Materials Science and Engineering, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
15
|
Lobo J, See EYS, Biggs M, Pandit A. An insight into morphometric descriptors of cell shape that pertain to regenerative medicine. J Tissue Eng Regen Med 2015; 10:539-53. [DOI: 10.1002/term.1994] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/25/2014] [Accepted: 12/09/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Joana Lobo
- Network of Excellence for Functional Biomaterials (NFB); National University of Ireland; Galway Ireland
| | - Eugene Yong-Shun See
- Network of Excellence for Functional Biomaterials (NFB); National University of Ireland; Galway Ireland
| | - Manus Biggs
- Network of Excellence for Functional Biomaterials (NFB); National University of Ireland; Galway Ireland
| | - Abhay Pandit
- Network of Excellence for Functional Biomaterials (NFB); National University of Ireland; Galway Ireland
| |
Collapse
|
16
|
Zhang C, Han Y, Huang H, Qu L, Shou C. High NR2F2 transcript level is associated with increased survival and its expression inhibits TGF-β-dependent epithelial-mesenchymal transition in breast cancer. Breast Cancer Res Treat 2014; 147:265-81. [DOI: 10.1007/s10549-014-3095-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 08/06/2014] [Indexed: 01/07/2023]
|
17
|
Altmann B, Löchner A, Swain M, Kohal RJ, Giselbrecht S, Gottwald E, Steinberg T, Tomakidi P. Differences in morphogenesis of 3D cultured primary human osteoblasts under static and microfluidic growth conditions. Biomaterials 2014; 35:3208-19. [DOI: 10.1016/j.biomaterials.2013.12.088] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/22/2013] [Indexed: 11/30/2022]
|
18
|
Gong X, Yang W, Wang L, Duncan RL, Pan J. Prostaglandin E2 modulates F-actin stress fiber in FSS-stimulated MC3T3-E1 cells in a PKA-dependent manner. Acta Biochim Biophys Sin (Shanghai) 2014; 46:40-7. [PMID: 24296051 DOI: 10.1093/abbs/gmt126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effect of prostaglandin E2 (PGE2) on bone mass has been well-established in vivo. Previous studies have showed that PGE2 increases differentiation, proliferation, and regulates cell morphology through F-actin stress fiber in statically cultured osteoblasts. However, the effect of PGE2 on osteoblasts in the presence of fluid shear stress (FSS), which could better uncover the anabolic effect of PGE2 in vivo, has yet to be examined. Here, we hypothesized that PGE2 modulates F-actin stress fiber in FSS-stimulated MC3T3-E1 osteoblastic cells through protein kinase A (PKA) pathway. Furthermore, this PGE2-induced F-actin remodeling was associated with the recovery of cellular mechanosensitivity. Our data showed that treatment with 10 nM dmPGE2 for 15 min significantly suppressed the F-actin stress fiber intensity in FSS-stimulated cells in a PKA-dependent manner. In addition, dmPGE2 treatment enhanced the cells' calcium peak magnitude and the percentage of responding cells in the second FSS stimulation, though these effects were abolished and attenuated by co-treatment with phalloidin. Our results demonstrated that 10 nM dmPGE2 was able to accelerate the 'reset' process of F-actin stress fiber to its pre-stimulated level partially through PKA pathway, and thus promoted the recovery of cellular mechanosensitivity. Our finding provided a novel cellular mechanism by which PGE2 increased bone formation as shown in vivo, suggesting that PGE2 could be a potential target for treatments of bone formation-related diseases.
Collapse
Affiliation(s)
- Xiaoyuan Gong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | | | | | | | | |
Collapse
|
19
|
Mojica W, Bassey R, Chen F, Hannahoe B, Sauer P, Hard R, Furlani EP. Conditional prerequisites for microchannel cytologic analysis on wet mount (fluid-based) biopsies. Cancer Cytopathol 2013; 122:59-69. [PMID: 24124022 DOI: 10.1002/cncy.21348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/05/2013] [Accepted: 07/23/2013] [Indexed: 11/12/2022]
Abstract
BACKGROUND Advanced capabilities in genomic sequencing developed in the research sector will soon enter the clinical arena. Issues such as the proportioning of patient specimen material for traditional bright-field microscopic evaluation or dedication for molecular analysis will intensify, particularly in situations of small core biopsies. Microfluidics appears aptly suited as a platform capable of allowing traditional cytologic diagnostics and downstream molecular analysis from the same specimen. However, clarification is needed to determine that forces which act on cells in a fluidic environment do not drastically alter their cytologic features. METHODS Cells were processed for flow-through in a microfluidic channel and evaluated qualitatively and quantitatively for alterations due to fluid-shear stress or anoikis. RESULTS Processing caused separation of cells from cohesive clusters to smaller groups and individual cells, leading to greater variation in parameters associated with the nucleus in nontumor cells but no significant change in tumor cells. These differences were most readily apparent by quantitative measures, and to a lesser extent, qualitative evaluation. Time-dependent processing played a larger role in cytologic alteration than fluid-shear stress for nontumor cells. CONCLUSIONS Passage of cells through a microfluidic channel is a feasible approach that can be integrated into future platforms intent on integrating cytologic assessment of cells with recovery of the same cells for downstream assays.
Collapse
Affiliation(s)
- Wilfrido Mojica
- Department of Pathology and Anatomical Sciences, State University of New York at Buffalo, Buffalo, New York
| | | | | | | | | | | | | |
Collapse
|
20
|
Prodanov L, Semeins C, van Loon J, te Riet J, Jansen J, Klein-Nulend J, Walboomers X. Influence of nanostructural environment and fluid flow on osteoblast-like cell behavior: a model for cell-mechanics studies. Acta Biomater 2013; 9:6653-62. [PMID: 23415750 DOI: 10.1016/j.actbio.2013.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/30/2013] [Accepted: 02/05/2013] [Indexed: 02/08/2023]
Abstract
Introducing nanoroughness on various biomaterials has been shown to profoundly effect cell-material interactions. Similarly, physical forces act on a diverse array of cells and tissues. Particularly in bone, the tissue experiences compressive or tensile forces resulting in fluid shear stress. The current study aimed to develop an experimental setup for bone cell behavior, combining a nanometrically grooved substrate (200 nm wide, 50 nm deep) mimicking the collagen fibrils of the extracellular matrix, with mechanical stimulation by pulsatile fluid flow (PFF). MC3T3-E1 osteoblast-like cells were assessed for morphology, expression of genes involved in cell attachment and osteoblastogenesis and nitric oxide (NO) release. The results showed that both nanotexture and PFF did affect cellular morphology. Cells aligned on nanotexture substrate in a direction parallel to the groove orientation. PFF at a magnitude of 0.7 Pa was sufficient to induce alignment of cells on a smooth surface in a direction perpendicular to the applied flow. When environmental cues texture and flow were interacting, PFF of 1.4 Pa applied parallel to the nanogrooves initiated significant cellular realignment. PFF increased NO synthesis 15-fold in cells attached to both smooth and nanotextured substrates. Increased collagen and alkaline phosphatase mRNA expression was observed on the nanotextured substrate, but not on the smooth substrate. Furthermore, vinculin and bone sialoprotein were up-regulated after 1 h of PFF stimulation. In conclusion, the data show that interstitial fluid forces and structural cues mimicking extracellular matrix contribute to the final bone cell morphology and behavior, which might have potential application in tissue engineering.
Collapse
|
21
|
Vaughan TJ, Haugh MG, McNamara LM. A fluid-structure interaction model to characterize bone cell stimulation in parallel-plate flow chamber systems. J R Soc Interface 2013; 10:20120900. [PMID: 23365189 DOI: 10.1098/rsif.2012.0900] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bone continuously adapts its internal structure to accommodate the functional demands of its mechanical environment and strain-induced flow of interstitial fluid is believed to be the primary mediator of mechanical stimuli to bone cells in vivo. In vitro investigations have shown that bone cells produce important biochemical signals in response to fluid flow applied using parallel-plate flow chamber (PPFC) systems. However, the exact mechanical stimulus experienced by the cells within these systems remains unclear. To fully understand this behaviour represents a most challenging multi-physics problem involving the interaction between deformable cellular structures and adjacent fluid flows. In this study, we use a fluid-structure interaction computational approach to investigate the nature of the mechanical stimulus being applied to a single osteoblast cell under fluid flow within a PPFC system. The analysis decouples the contribution of pressure and shear stress on cellular deformation and for the first time highlights that cell strain under flow is dominated by the pressure in the PPFC system rather than the applied shear stress. Furthermore, it was found that strains imparted on the cell membrane were relatively low whereas significant strain amplification occurred at the cell-substrate interface. These results suggest that strain transfer through focal attachments at the base of the cell are the primary mediators of mechanical signals to the cell under flow in a PPFC system. Such information is vital in order to correctly interpret biological responses of bone cells under in vitro stimulation and elucidate the mechanisms associated with mechanotransduction in vivo.
Collapse
Affiliation(s)
- T J Vaughan
- National Centre for Biomedical Engineering Sciences (NCBES), National University of Ireland, Galway, Ireland
| | | | | |
Collapse
|
22
|
Muthukumaran P, Lim CT, Lee T. Estradiol influences the mechanical properties of human fetal osteoblasts through cytoskeletal changes. Biochem Biophys Res Commun 2012; 423:503-8. [PMID: 22683634 DOI: 10.1016/j.bbrc.2012.05.149] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 05/26/2012] [Indexed: 10/28/2022]
Abstract
Estrogen is known to have a direct effect on bone forming osteoblasts and bone resorbing osteoclasts. The cellular and molecular effects of estrogen on osteoblasts and osteoblasts-like cells have been extensively studied. However, the effect of estrogen on the mechanical property of osteoblasts has not been studied yet. It is important since mechanical property of the mechanosensory osteoblasts could be pivotal to its functionality in bone remodeling. This is the first study aimed to assess the direct effect of estradiol on the apparent elastic modulus (E∗) and corresponding cytoskeletal changes of human fetal osteoblasts (hFOB 1.19). The cells were cultured in either medium alone or medium supplemented with β-estradiol and then subjected to Atomic Force Microscopy indentation (AFM) to determine E∗. The underlying changes in cytoskeleton were studied by staining the cells with TRITC-Phalloidin. Following estradiol treatment, the cells were also tested for proliferation, alkaline phosphatase activity and mineralization. With estradiol treatment, E∗ of osteoblasts significantly decreased by 43-46%. The confocal images showed that the changes in f-actin network observed in estradiol treated cells can give rise to the changes in the stiffness of the cells. Estradiol also increases the inherent alkaline phosphatase activity of the cells. Estradiol induced stiffness changes of osteoblasts were not associated with changes in the synthesized mineralized matrix of the cells. Thus, a decrease in osteoblast stiffness with estrogen treatment was demonstrated in this study, with positive links to cytoskeletal changes. The estradiol associated changes in osteoblast mechanical properties could bear implications for bone remodeling and its mechanical integrity.
Collapse
|
23
|
Wang Y, Zhao L, Wang Y, Xu J, Nie Y, Guo Y, Tong Y, Qin L, Zhang Q. Curculigoside isolated from Curculigo orchioides prevents hydrogen peroxide-induced dysfunction and oxidative damage in calvarial osteoblasts. Acta Biochim Biophys Sin (Shanghai) 2012; 44:431-41. [PMID: 22427460 DOI: 10.1093/abbs/gms014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reactive oxygen species (ROS), including H(2)O(2), play a critical role in the pathophysiology of osteoporosis. Therefore, agents or antioxidants that can inhibit ROS production have a high clinical value in the treatment of osteoporosis. Curculigoside (CUR), one of the main bioactive phenolic compounds isolated from the rhizome of Curculigo orchioides Gaertn., is reported to have potent antioxidant and anti-osteoporotic properties. However, there is no direct evidence to link the antioxidant capacity of CUR with the observed anti-osteoporotic effect, and relevant molecular mechanisms remain unclear. Therefore, we investigated the protective effects of CUR against oxidative stress in calvarial osteoblasts and discussed the related mechanisms. It was found that osteoblast viability decreased significantly after 48-h exposure to 400 μM of H(2)O(2), compared with vehicle-treated cells, and the cytotoxic effect of H(2)O(2) was reversed significantly when pretreated with 0.1-10 μM of CUR (P< 0.05). Pretreatment with 0.1-10 μM of CUR decreased ROS production and lipid peroxidation, and increased the activities of antioxidant enzymes, such as superoxide dismutase and glutathione peroxidase in osteoblasts induced by H(2)O(2). In addition, H(2)O(2)-induced reduction of differentiation markers such as alkaline phosphatase, calcium deposition, and Runx2 level was significantly recovered in the presence of CUR. CUR also reversed H(2)O(2)-induced stimulation of extracellular signal-regulated kinase 1/2, and nuclear factor-κB signaling and the inhibition of p38 mitogen-activated protein kinase activation. These results provide new insights into the osteoblast-protective mechanisms of CUR through reducing the production of ROS, suggesting that CUR may be developed as a bio-safe agent for the prevention and treatment of osteoporosis and other bone-related human diseases.
Collapse
Affiliation(s)
- Ying Wang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Li J, Rose E, Frances D, Sun Y, You L. Effect of oscillating fluid flow stimulation on osteocyte mRNA expression. J Biomech 2011; 45:247-51. [PMID: 22119108 DOI: 10.1016/j.jbiomech.2011.10.037] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 10/27/2011] [Accepted: 10/31/2011] [Indexed: 01/18/2023]
Abstract
Structural adaptation of the bone tissue is mediated by loading-induced interstitial fluid flow within the bone microstructure. Within this framework, osteocytes fulfill the central mechanotransductive role in the bone remodeling process. While osteocytes have been demonstrated to be exquisitely sensitive to various forms of fluid flow stimulus in vitro, the effect of different oscillating fluid flow (OFF) parameters on osteocyte activity has yet to be systematically characterized. In this study, we investigate the effect of three OFF parameters on osteocyte activity in vitro and hypothesize that COX-2, RANKL, and OPG mRNA expression in osteocytes are sensitive to the OFF parameters: peak shear stress amplitude (0.5 Pa, 1 Pa, 2 Pa, and 5 Pa), oscillating frequency (0.5 Hz, 1 Hz, and 2 Hz), and total flow duration (1 h, 2 h, and 4 h). Our findings demonstrate that COX-2 mRNA levels are elevated in osteocytes subjected to higher peak shear stress amplitudes and longer flow durations, while RANKL/OPG mRNA levels decreased to a minimum threshold in response to higher peak shear stress amplitudes, faster oscillating frequencies, and longer flow durations. These findings suggest that dynamic fluid flow with higher peak shear stress amplitudes, faster oscillating frequencies, and longer loading durations provide the best conditions for promoting bone formation.
Collapse
Affiliation(s)
- Jason Li
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
25
|
Porat Z, Yaron I, Katz BZ, Kam Z, Geiger B. Shear flow-induced formation of tubular cell protrusions in multiple myeloma cells. J Cell Physiol 2011; 226:3197-207. [PMID: 21344380 DOI: 10.1002/jcp.22680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Exposure of live cells to shear flow induces major changes in cell shape, adhesion to the extracellular matrix, and migration. In the present study, we show that exposure of cultured multiple myeloma (MM) cells to shear flow of 4-36 dynes/cm(2) triggers the extension of long tubular protrusions (denoted flow-induced protrusions, or FLIPs) in the direction of the flow. These FLIPs were found to be rich in actin, contain few or no microtubules and, apart from endoplasmic reticulum (ER)-like membranal structures, are devoid of organelles. Studying the dynamics of this process revealed that FLIPs elongate at their tips in a shear force-dependent manner, and retract at their bases. Examination of this force dependence revealed considerable heterogeneity in the mechanosensitivity of individual cells, most likely reflecting the diversity of the malignant B cell population. The mechanisms underlying FLIP formation following mechanical perturbation, and their relevance to the cellular trafficking of MM cells, are discussed.
Collapse
Affiliation(s)
- Ziv Porat
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
26
|
A multishear microfluidic device for quantitative analysis of calcium dynamics in osteoblasts. Biochem Biophys Res Commun 2011; 408:350-5. [PMID: 21514277 DOI: 10.1016/j.bbrc.2011.04.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 04/08/2011] [Indexed: 02/02/2023]
Abstract
Microfluidics is a convenient platform to study the influences of fluid shear stress on calcium dynamics. Fluidic shear stress has been proven to affect bone cell functions and remodelling. We have developed a microfluidic system which can generate four shear flows in one device as a means to study cytosolic calcium concentration ([Ca(2+)](c)) dynamics of osteoblasts. Four shear forces were achieved by having four cell culture chambers with different widths while resistance correction channels compensated for the overall resistance to allow equal flow distribution towards the chambers. Computational simulation of the local shear stress distribution highlighted the preferred section in the cell chamber to measure the calcium dynamics. Osteoblasts showed an [Ca(2+)](c) increment proportional to the intensity of the shear stress from 0.03 to 0.30 Pa. A delay in response was observed with an activation threshold between 0.03 and 0.06 Pa. With computational modelling, our microfluidic device can offer controllable multishear stresses and perform quantitative comparisons of shear stress-induced intensity change of calcium in osteoblasts.
Collapse
|
27
|
Luo W, Xiong W, Zhou J, Fang Z, Chen W, Fan Y, Li F. Laminar shear stress delivers cell cycle arrest and anti-apoptosis to mesenchymal stem cells. Acta Biochim Biophys Sin (Shanghai) 2011; 43:210-6. [PMID: 21335336 DOI: 10.1093/abbs/gmr004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Biomechanical forces are emerging as critical regulators of cell function and fluid flow is a potent mechanical stimulus. Although the mechanisms of osteoblasts and osteocytes responding to fluid flow are being elucidated, little is known about how the osteoprogenitors, mesenchymal stem cells (MSCs), respond to fluid flow. Here, we examined the effects of laminar shear stress (LSS) on MSCs in vitro. MSCs from bone marrow of Sprague-Dawley rats were isolated, purified, and subjected to physiological levels of LSS. DNA synthesis and cell cycle were measured through [(3)H]thymidine and by flow cytometry, respectively, to detect the cellular proliferation. Annexin V immunostaining and Bcl-2/Bax mRNA expression were evaluated to determine the effect of LSS on MSCs apoptosis. Results showed that fluid shear stress caused a dose-related reduction of MSCs' proliferation rate with the majority of cells being arrested in the G(0) or G(1) phase. Moreover, it was found that physiological levels of LSS exerted a potent suppression effect on MSC apoptosis. In summary, these data revealed a critical role of LSS in maintaining the quiescence of MSCs.
Collapse
Affiliation(s)
- Wei Luo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|