1
|
Son B, Lee W, Kim H, Shin H, Park HH. Targeted therapy of cancer stem cells: inhibition of mTOR in pre-clinical and clinical research. Cell Death Dis 2024; 15:696. [PMID: 39349424 PMCID: PMC11442590 DOI: 10.1038/s41419-024-07077-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024]
Abstract
Cancer stem cells (CSCs) are a type of stem cell that possesses not only the intrinsic abilities of stem cells but also the properties of cancer cells. Therefore, CSCs are known to have self-renewal and outstanding proliferation capacity, along with the potential to differentiate into specific types of tumor cells. Cancers typically originate from CSCs, making them a significant target for tumor treatment. Among the related cascades of the CSCs, mammalian target of rapamycin (mTOR) pathway is regarded as one of the most important signaling pathways because of its association with significant upstream signaling: phosphatidylinositol 3‑kinase/protein kinase B (PI3K/AKT) pathway and mitogen‑activated protein kinase (MAPK) cascade, which influence various activities of stem cells, including CSCs. Recent studies have shown that the mTOR pathway not only affects generation of CSCs but also the maintenance of their pluripotency. Furthermore, the maintenance of pluripotency or differentiation into specific types of cancer cells depends on the regulation of the mTOR signal in CSCs. Consequently, the clinical potential and importance of mTOR in effective cancer therapy are increasing. In this review, we demonstrate the association between the mTOR pathway and cancer, including CSCs. Additionally, we discuss a new concept for anti-cancer drug development aimed at overcoming existing drawbacks, such as drug resistance, by targeting CSCs through mTOR inhibition.
Collapse
Affiliation(s)
- Boram Son
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyeonjeong Kim
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
2
|
Wang X, Wang F, Dong P, Zhou L. The therapeutic effect of ultrasound targeted destruction of schisandrin A contrast microbubbles on liver cancer and its mechanism. Radiol Oncol 2024; 58:221-233. [PMID: 38452391 PMCID: PMC11165982 DOI: 10.2478/raon-2024-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/26/2023] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The aim of the study was to explore the therapeutic effect of ultrasound targeted destruction of schisandrin A contrast microbubbles on liver cancer and its related mechanism. MATERIALS AND METHODS The Span-PEG microbubbles loaded with schisandrin A were prepared using Span60, NaCl, PEG-1500, and schisandrin A. The loading rate of schisandrin A in Span-PEG composite microbubbles was determined by ultraviolet spectrophotometry method. The Walker-256 cell survival rate of schisandrin A was determined by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay. The content of schisandrin A in the cells was determined by high performance liquid chromatography. Ultrasound imaging was used to evaluate the therapeutic effect in situ. Enzyme linked immunosorbent assay (ELISA) was used to measure the content of inflammatory factors in serum. Hematoxylin-eosin (HE) staining was used to observe the pathological changes of experimental animals in each group. Immunohistochemistry was used to detect the expression of hypoxia inducible factor-1α (HIF-1α), vascular endothlial growth factor (VEGF) and vascular endothelial growth factor receptor 2 (VEGFR-2) in tumor tissues, and western blot was used to detect the protein expression of phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway in tumor tissues. RESULTS The composite microbubbles were uniform in size, and the particle size distribution was unimodal and stable, which met the requirements of ultrasound contrast agents. The loading rate of schisandrin A in Span-PEG microbubbles was 8.84 ± 0.14%, the encapsulation efficiency was 82.24±1.21%. The IC50 value of schisandrin A was 2.87 μg/mL. The drug + microbubbles + ultrasound (D+M+U) group had the most obvious inhibitory effect on Walker-256 cancer cells, the highest intracellular drug concentration, the largest reduction in tumor volume, the most obvious reduction in serum inflammatory factors, and the most obvious improvement in pathological results. The results of immunohistochemistry showed that HIF-1α, VEGF and VEGFR-2 protein decreased most significantly in D+M+U group (P < 0.01). WB results showed that D+M+U group inhibited the PI3K/AKT/mTOR signaling pathway most significantly (P < 0.01). CONCLUSIONS Schisandrin A had an anti-tumor effect, and its mechanism might be related to the inhibition of the PI3K/AKT/mTOR signaling pathway. The schisandrin A microbubbles could promote the intake of schisandrin A in tumor cells after being destroyed at the site of tumor under ultrasound irradiation, thus playing the best anti-tumor effect.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Interventional Therapy, First Affiliated Hospital of Dalian Medical University, Dalian Liaoning, China
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Feng Wang
- Department of Interventional Therapy, First Affiliated Hospital of Dalian Medical University, Dalian Liaoning, China
| | - Pengfei Dong
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lin Zhou
- Department of Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Yang S, Xie J, Pan Z, Guan H, Tu Y, Ye Y, Huang S, Fu S, Li K, Huang Z, Li X, Shi Z, Li L, Zhang Y. Advanced glycation end products promote meniscal calcification by activating the mTOR-ATF4 positive feedback loop. Exp Mol Med 2024; 56:630-645. [PMID: 38424194 PMCID: PMC10985079 DOI: 10.1038/s12276-024-01190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/25/2023] [Accepted: 12/19/2023] [Indexed: 03/02/2024] Open
Abstract
The meniscus is vital for maintaining knee homeostasis and function. Meniscal calcification is one of the earliest radiological indicators of knee osteoarthritis (KOA), and meniscal calcification is associated with alterations in biomechanical properties. Meniscal calcification originates from a biochemical process similar to vascular calcification. Advanced glycation end products (AGEs) and their receptors (RAGEs) reportedly play critical roles in vascular calcification. Herein, we investigated whether targeting AGE-RAGE is a potential treatment for meniscal calcification. In our study, we demonstrated that AGE-RAGE promotes the osteogenesis of meniscal cells and exacerbates meniscal calcification. Mechanistically, AGE-RAGE activates mTOR and simultaneously promotes ATF4 accumulation, thereby facilitating the ATF4-mTOR positive feedback loop that enhances the osteogenic capacity of meniscal cells. In this regard, mTOR inhibits ATF4 degradation by reducing its ubiquitination, while ATF4 activates mTOR by increasing arginine uptake. Our findings substantiate the unique role of AGE-RAGE in the meniscus and reveal the role of the ATF4-mTOR positive feedback loop during the osteogenesis of meniscal cells; these results provide potential therapeutic targets for KOA.
Collapse
Affiliation(s)
- Sheng Yang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopedics, 920 Hospital of the Joint Logistic Support Force, Kunming, Yunnan, China
| | - JiaJun Xie
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - ZhiJie Pan
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopaedics, The First People's Hospital of Zhaoqing, Zhaoqing, Guangdong, China
| | - HongMei Guan
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - YueSheng Tu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - YuanJian Ye
- Department of Orthopaedics, Huizhou First Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - ShouBin Huang
- Department of Orthopaedics, Huizhou First Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - ShiQiang Fu
- Huizhou First Maternal and Child Health Care Hospital, Huizhou, Guangdong, China
| | - KangXian Li
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - ZhiWei Huang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - XiaoQi Li
- School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - ZhanJun Shi
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Le Li
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yang Zhang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Lin B, Wan H, Yang J, Yu L, Zhou H, Wan H. Lipid regulation of protocatechualdehyde and hydroxysafflor yellow A via AMPK/SREBP2/PCSK9/LDLR signaling pathway in hyperlipidemic zebrafish. Heliyon 2024; 10:e24908. [PMID: 38333845 PMCID: PMC10850903 DOI: 10.1016/j.heliyon.2024.e24908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
The consumption of a high-cholesterol diet is known to cause hyperlipidemia, which is one of the main risk factors for cardiovascular disease. Protocatechualdehyde (PCA) and hydroxysafflor yellow A (HSYA) are the active components of Salvia miltiorrhiza and safflower, respectively. However, their exact mechanism is still unclear. The aim of this study is to investigate its effects on lipid deposition and liver damage in hyperlipidemic zebrafish and its mechanism of anti-hyperlipidemia. The results showed that the use of PCA and HSYA alone and in combination can improve lipid deposition, slow behavior, abnormal blood flow and liver tissue damage, and the combined use is more effective. Further RT-qPCR results showed that PCA + HSYA can regulate the mRNA levels of PPAR-γ, SREBP2, SREBP1, HMGCR, PCSK9, mTOR, C/EBPα, LDLR, AMPK, HNF-1α and FoxO3a. The PCA + HSYA significantly improves lipid deposition and abnormal liver function in hyperlipidemic zebrafish larvae, which may be related to the AMPK/SREBP2/PCSK9/LDLR signaling pathway.
Collapse
Affiliation(s)
- Bingying Lin
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haofang Wan
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiehong Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Institute of Cardio-Cerebrovascular Diseases, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of TCM Encephalopathy of Zhejiang Province (grant no. 2020E10012), Hangzhou, China
| | - Huifen Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Institute of Cardio-Cerebrovascular Diseases, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of TCM Encephalopathy of Zhejiang Province (grant no. 2020E10012), Hangzhou, China
| | - Haitong Wan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Institute of Cardio-Cerebrovascular Diseases, Zhejiang Chinese Medical University, Hangzhou, China
- First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of TCM Encephalopathy of Zhejiang Province (grant no. 2020E10012), Hangzhou, China
| |
Collapse
|
5
|
Engin AB, Engin A. MicroRNAs as Epigenetic Regulators of Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:595-627. [PMID: 39287866 DOI: 10.1007/978-3-031-63657-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In obesity, the process of adipogenesis largely determines the number of adipocytes in body fat depots. Adipogenesis is regulated by several adipocyte-selective micro-ribonucleic acids (miRNAs) and transcription factors that modulate adipocyte proliferation and differentiation. However, some miRNAs block the expression of master regulators of adipogenesis. Since the specific miRNAs display different expressions during adipogenesis, in mature adipocytes and permanent obesity, their use as biomarkers or therapeutic targets is feasible. Upregulated miRNAs in persistent obesity are downregulated during adipogenesis. Moreover, some of the downregulated miRNAs in obese individuals are upregulated in mature adipocytes. Induction of adipocyte stress and hypertrophy leads to the release of adipocyte-derived exosomes (AdEXs) that contain the cargo molecules, miRNAs. miRNAs are important messengers for intercellular communication involved in metabolic responses and have very specific signatures that direct the metabolic activity of target cells. While each miRNA targets multiple messenger RNAs (mRNAs), which may coordinate or antagonize each other's functions, several miRNAs are dysregulated in other tissues during obesity-related comorbidities. Deletion of the miRNA-processing enzyme DICER in pro-opiomelanocortin-expressing cells results in obesity, which is characterized by hyperphagia, increased adiposity, hyperleptinemia, defective glucose metabolism, and alterations in the pituitary-adrenal axis. In recent years, RNA-based therapeutical approaches have entered clinical trials as novel therapies against overweight and its complications. Development of lipid droplets, macrophage accumulation, macrophage polarization, tumor necrosis factor receptor-associated factor 6 activity, lipolysis, lipotoxicity, and insulin resistance are effectively controlled by miRNAs. Thereby, miRNAs as epigenetic regulators are used to determine the new gene transcripts and therapeutic targets.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
6
|
Ma Z, Shen P, Xu X, Li W, Li Y. Role of alpha smooth muscle actin in odontogenic differentiation of dental pulp stem cells. Eur J Oral Sci 2023; 131:e12956. [PMID: 37849216 DOI: 10.1111/eos.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Pulpotomy is an effective treatment for retaining vital pulp after pulp exposure caused by caries removal and/or trauma. The expression of alpha smooth muscle actin (α-SMA) is increased during the wound-healing process, and α-SMA-positive fibroblasts accelerate tissue repair. However, it remains largely unknown whether α-SMA-positive fibroblasts influence pulpal repair. In this study, we established an experimental rat pulpotomy model and found that the expression of α-SMA was increased in dental pulp after pulpotomy relative to that in normal dental pulp. In vitro results showed that the expression of α-SMA was increased during the induction of odontogenic differentiation in dental pulp stem cells (DPSCs) compared with untreated DPSCs. Moreover, α-SMA overexpression promoted the odontogenic differentiation of DPSCs via increasing mitochondrial function. Mechanistically, α-SMA overexpression activated the mammalian target of rapamycin (mTOR) signaling pathway. Inhibition of the mTOR signaling pathway by rapamycin decreased the mitochondrial function in α-SMA-overexpressing DPSCs and suppressed the odontogenic differentiation of DPSCs. Furthermore, we found that α-SMA overexpression increased the secretion of transforming growth factor beta-1 (TGF-β1). In sum, our present study demonstrates a novel mechanism by which α-SMA promotes odontogenic differentiation of DPSCs by increasing mitochondrial respiratory activity via the mTOR signaling pathway.
Collapse
Affiliation(s)
- Zeyi Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Peiqi Shen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Xiaoqing Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Weiyu Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Yaoyin Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Wang Z, Zhang H, Li Q, Zhang L, Chen L, Wang H, Chen Y. Long non-coding RNA KCNQ1OT1 alleviates postmenopausal osteoporosis by modulating miR-421-3p/mTOR axis. Sci Rep 2023; 13:2333. [PMID: 36759677 PMCID: PMC9911397 DOI: 10.1038/s41598-023-29546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The prevention and treatment of postmenopausal osteoporosis (PMOP) is a significant public health issue, and non-coding RNAs are of vital importance in this process. In this study, we find that the long non-coding RNA potassium voltage-gated channel subfamily Q member 1 overlapping transcript 1 (lncRNA KCNQ1OT1) can alleviate the ovariectomy-induced (OVX) PMOP in vivo. We determined that over-expression of KCNQ1OT1 could enhance functions of MC3T3-E1 cells, whereas an opposite trend was observed when KCNQ1OT1 was knocked down. Subsequently, miR-421-3p targeting KCNQ1OT1 was detected through a database search, and RNA fluorescent in situ hybridization, RNA immunoprecipitation, dual luciferase reporter assays all verified this relationship. Notably, KCNQ1OT1 stifled the miR-421-3p expression. The inhibition of proliferation, migration, and osteogenic differentiation caused by KCNQ1OT1 knock-down were reversed by an miR-421-3p inhibitor, further confirming the above findings. We verified that miR-421-3p specifically targeted the mammalian target of rapamycin (mTOR), and miR-421-3p inhibitor could reverse the negative effects of small interfering RNA of mTOR (si-mTOR) on MC3T3-E1 cells. Finally, osteoblasts isolated and cultured from OVX mice model and control mice also confirmed the observed trend. In combination, results mentioned above reveal that KCNQ1OT1 regulates MC3T3-E1 cell functions by regulating the miR-421-3p/mTOR axis.
Collapse
Affiliation(s)
- Ziyu Wang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China.,Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Hengshuo Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China.,Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Qinghui Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China.,Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Lu Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China.,Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Lu Chen
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Hongliang Wang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Yunzhen Chen
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China. .,Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
| |
Collapse
|
8
|
Fu J, Zhang J, Jiang T, Ao X, Li P, Lian Z, Li C, Zhang X, Liu J, Huang M, Zhang Z, Wang L. mTORC1 coordinates NF-κB signaling pathway to promote chondrogenic differentiation of tendon cells in heterotopic ossification. Bone 2022; 163:116507. [PMID: 35908648 DOI: 10.1016/j.bone.2022.116507] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/02/2022]
Abstract
Heterotopic ossification (HO) is a pathological bone formation based on endochondral ossification distinguished by ossification within muscles, tendons, or other soft tissues. There has been growing studies focusing on the treatment with rapamycin to inhibit HO, but the mechanism of mTORC1 on HO remains unclear. Tendon cells (TDs) are the first cells to form during tendon heterotopic ossification. Here, we used an in vivo model of HO and an in vitro model of chondrogenesis induction to elucidate the effect and underlying mechanism of mTORC1 in HO. The current study highlights the effect of rapamycin on murine Achilles tenotomy-induced HO and the role of mTORC1 signaling pathway on TDs. Our result showed that mTORC1 was activation in the early stage of HO, whereas the mTORC1 maintained low expression in the mature ectopic cartilage tissue and the ectopic bone formation sites. The use of mTORC1-specific inhibitor (rapamycin) immediately after Achilles tendon injury could suppress the formation of HO; once ectopic cartilage and bone had formed, treatment with rapamycin could not significantly inhibit the progression of HO. Mechanistically, mTORC1 stimulation by silencing of TSC1 promoted the expression of the chondrogenic markers in TDs. In TDs, treated with mTORC1 stimulation by silencing of TSC1, mTORC1 increased the activation of the NF-κB signaling pathway. NF-κB selective inhibitor BAY11-7082 significantly suppressed the chondrogenesis of TDs that treated with mTORC1 stimulation by silencing of TSC1. Together, our findings demonstrated that mTORC1 promoted HO by regulating TDs chondrogenesis partly through the NF-κB signaling pathway; and rapamycin could be a viable HO therapeutic regimen.
Collapse
Affiliation(s)
- Jiaming Fu
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jie Zhang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Academy of Orthopaedics, Guangdong Province, Guangzhou 510630, China
| | - Tao Jiang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiang Ao
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Peng Li
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhengnan Lian
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Academy of Orthopaedics, Guangdong Province, Guangzhou 510630, China
| | - Chenglong Li
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xibing Zhang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Academy of Orthopaedics, Guangdong Province, Guangzhou 510630, China
| | - Jie Liu
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Academy of Orthopaedics, Guangdong Province, Guangzhou 510630, China
| | - Minjun Huang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Academy of Orthopaedics, Guangdong Province, Guangzhou 510630, China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Liang Wang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Academy of Orthopaedics, Guangdong Province, Guangzhou 510630, China.
| |
Collapse
|
9
|
Cai H, Wang Z, Tang W, Ke X, Zhao E. Recent advances of the mammalian target of rapamycin signaling in mesenchymal stem cells. Front Genet 2022; 13:970699. [PMID: 36110206 PMCID: PMC9468880 DOI: 10.3389/fgene.2022.970699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022] Open
Abstract
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase involved in a variety of cellular functions, such as cell proliferation, metabolism, autophagy, survival and cytoskeletal organization. Furthermore, mTOR is made up of three multisubunit complexes, mTOR complex 1, mTOR complex 2, and putative mTOR complex 3. In recent years, increasing evidence has suggested that mTOR plays important roles in the differentiation and immune responses of mesenchymal stem cells (MSCs). In addition, mTOR is a vital regulator of pivotal cellular and physiological functions, such as cell metabolism, survival and ageing, where it has emerged as a novel therapeutic target for ageing-related diseases. Therefore, the mTOR signaling may develop a large impact on the treatment of ageing-related diseases with MSCs. In this review, we discuss prospects for future research in this field.
Collapse
Affiliation(s)
- Huarui Cai
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Zhongze Wang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Wenhan Tang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Xiaoxue Ke
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- *Correspondence: Xiaoxue Ke, ; Erhu Zhao,
| | - Erhu Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- *Correspondence: Xiaoxue Ke, ; Erhu Zhao,
| |
Collapse
|
10
|
Puca F, Fedele M, Rasio D, Battista S. Role of Diet in Stem and Cancer Stem Cells. Int J Mol Sci 2022; 23:ijms23158108. [PMID: 35897685 PMCID: PMC9330301 DOI: 10.3390/ijms23158108] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Diet and lifestyle factors greatly affect health and susceptibility to diseases, including cancer. Stem cells’ functions, including their ability to divide asymmetrically, set the rules for tissue homeostasis, contribute to health maintenance, and represent the entry point of cancer occurrence. Stem cell properties result from the complex integration of intrinsic, extrinsic, and systemic factors. In this context, diet-induced metabolic changes can have a profound impact on stem cell fate determination, lineage specification and differentiation. The purpose of this review is to provide a comprehensive description of the multiple “non-metabolic” effects of diet on stem cell functions, including little-known effects such as those on liquid-liquid phase separation and on non-random chromosome segregation (asymmetric division). A deep understanding of the specific dietetic requirements of normal and cancer stem cells may pave the way for the development of nutrition-based targeted therapeutic approaches to improve regenerative and anticancer therapies.
Collapse
Affiliation(s)
- Francesca Puca
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 78705, USA;
- Department of Oncology, IRBM Science Park SpA, 00071 Pomezia, Italy
| | - Monica Fedele
- Institute for Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131 Naples, Italy;
| | - Debora Rasio
- Department of Clinical and Molecular Medicine, La Sapienza University, 00185 Rome, Italy;
| | - Sabrina Battista
- Institute for Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131 Naples, Italy;
- Correspondence:
| |
Collapse
|
11
|
Park SY, Cho HS, Chung KH, Lee BN, Kim SH, Kim WJ, Jung JY. Inactivation of PI3K/Akt promotes the odontoblastic differentiation and suppresses the stemness with autophagic flux in dental pulp cells. J Dent Sci 2022; 17:145-154. [PMID: 35028032 PMCID: PMC8739242 DOI: 10.1016/j.jds.2021.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
Background/purpose Autophagy is involved in controlling differentiation of various cell types. The present study aimed to investigate the mechanism related to autophagy in regulating odontogenic differentiation of dental pulp cells. Materials and methods Human dental pulp cells (HDPCs) were cultured in differentiation inductive medium (DM) and odontoblastic differentiation and mineralization were evaluated by alkaline phosphatase (ALP) staining and Alizarin red S staining, respectively. Tooth cavity preparation was made on the mesial surface of lower first molars in rat. The expression of autophagy-related signal molecules was detected using Western blot analysis and Immunohistochemistry. Results HDPCs cultured in DM showed increased autophagic flux and declined phosphorylation of phosphoinositide 3-kinases (PI3K), protein kinase B (Akt), and mTOR. Dentin matrix protein-1 (DMP-1) and dentin sialoprotein (DSP), markers of odontoblastic differentiation, were upregulated and autophagic activation showing increased LC3-II and decreased p62 levels was observed during odontogenic differentiation of HDPCs. However, PI3K blocker 3-methyladenine (3MA), lentiviral shLC3 and Akt activator SC79 attenuated the expression of LC3II as well as DMP-1, ALP activity and mineralization enhanced in HDPCs under DM condition. In addition, 3MA, shLC3 and SC79 recovered the expression of pluripotency factor CD146, Oct4 and Nanog downregulated in DM condition. In rat tooth cavity preparation model, the expression of LC3B and DMP-1 was elevated near odontoblast-dentin layer during reparative dentin formation, whereas 3MA significantly reduced the expression of LC3B and DMP-1. Conclusion These findings indicated autophagy promotes the odontogenic differentiation of dental pulp cells modulating stemness via PI3K/Akt inactivation and the repair of pulp.
Collapse
Affiliation(s)
- Sam Young Park
- Department of Oral Physiology, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Heui Seung Cho
- Department of Oral Physiology, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Kyung Hwun Chung
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Bin Na Lee
- Department of Operative Dentistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Sun Hun Kim
- Department of Oral Anatomy, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Won Jae Kim
- Department of Oral Physiology, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Ji Yeon Jung
- Department of Oral Physiology, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
12
|
Kapor S, Vukotić M, Subotički T, Đikić D, Mitrović Ajtić O, Radojković M, Čokić VP, Santibanez JF. Hydroxyurea Induces Bone Marrow Mesenchymal Stromal Cells Senescence and Modifies Cell Functionality In Vitro. J Pers Med 2021; 11:jpm11111048. [PMID: 34834400 PMCID: PMC8619969 DOI: 10.3390/jpm11111048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
Hydroxyurea (HU) is an antineoplastic agent that functions as an antimetabolite compound by inhibiting the ribonucleotide reductase. HU acts mainly as a cytostatic drug that through DNA replication stress may trigger a premature senescence-like cell phenotype, though its influence on bone marrow-derived mesenchymal stem/stromal cell (BMMSC) functions has not elucidated yet. Our results indicate that HU inhibits the growth of human BMMSC alongside senescence-like changes in both morphology and replicative potential, provokes cell cycle arrest at the S phase without affecting cellular viability and induces the expression of senescence-associated β-galactosidase and p16INK4. Moreover, HU-induced senescent BMMSC, although they did not change MSC markers expression, exhibited reduced capacity osteogenic and adipogenic differentiation. Conversely, HU treatment increased immunoregulatory functions of BMMSC compared with untreated cells and determined by T-cell proliferation. Interestingly, HU did not influence the capacity of BMMSC to induce monocytic myeloid-derived suppressor cells. Thus, these results suggest that HU improves the BMMSC functions on the T-cell inhibition and preserves their interaction with myeloid cell compartment. Mechanistically, BMMSC under HU treatment displayed a downregulation of mTOR and p38 MAPK signaling that may explain the reduced cell differentiation and increased immunomodulation activities. Together, the results obtained in this investigation suggest that HU by inducing senescence-like phenotype of BMMSC influences their cellular differentiation and immunoregulatory functions.
Collapse
Affiliation(s)
- Sunčica Kapor
- Clinical Hospital Center “Dr Dragiša Mišović-Dedinje”, Department of Hematology, University of Belgrade, 11000 Belgrade, Serbia; (S.K.); (M.R.)
| | - Milica Vukotić
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (M.V.); (T.S.); (D.Đ.); (O.M.A.); (V.P.Č.)
| | - Tijana Subotički
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (M.V.); (T.S.); (D.Đ.); (O.M.A.); (V.P.Č.)
| | - Dragoslava Đikić
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (M.V.); (T.S.); (D.Đ.); (O.M.A.); (V.P.Č.)
| | - Olivera Mitrović Ajtić
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (M.V.); (T.S.); (D.Đ.); (O.M.A.); (V.P.Č.)
| | - Milica Radojković
- Clinical Hospital Center “Dr Dragiša Mišović-Dedinje”, Department of Hematology, University of Belgrade, 11000 Belgrade, Serbia; (S.K.); (M.R.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Vladan P. Čokić
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (M.V.); (T.S.); (D.Đ.); (O.M.A.); (V.P.Č.)
| | - Juan F. Santibanez
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (M.V.); (T.S.); (D.Đ.); (O.M.A.); (V.P.Č.)
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, General Gana 1780, Santiago 8370854, Chile
- Correspondence: ; Tel.: +381-11-2685-788; Fax: +381-11-2643-691
| |
Collapse
|
13
|
Kapor S, Vukotić M, Subotički T, Đikić D, Mitrović Ajtić O, Radojković M, Čokić VP, Santibanez JF. Hydroxyurea Induces Bone Marrow Mesenchymal Stromal Cells Senescence and Modifies Cell Functionality In Vitro. J Pers Med 2021. [PMID: 34834400 DOI: 10.3390/jpm11111048.pmid:34834400;pmcid:pmc8619969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Hydroxyurea (HU) is an antineoplastic agent that functions as an antimetabolite compound by inhibiting the ribonucleotide reductase. HU acts mainly as a cytostatic drug that through DNA replication stress may trigger a premature senescence-like cell phenotype, though its influence on bone marrow-derived mesenchymal stem/stromal cell (BMMSC) functions has not elucidated yet. Our results indicate that HU inhibits the growth of human BMMSC alongside senescence-like changes in both morphology and replicative potential, provokes cell cycle arrest at the S phase without affecting cellular viability and induces the expression of senescence-associated β-galactosidase and p16INK4. Moreover, HU-induced senescent BMMSC, although they did not change MSC markers expression, exhibited reduced capacity osteogenic and adipogenic differentiation. Conversely, HU treatment increased immunoregulatory functions of BMMSC compared with untreated cells and determined by T-cell proliferation. Interestingly, HU did not influence the capacity of BMMSC to induce monocytic myeloid-derived suppressor cells. Thus, these results suggest that HU improves the BMMSC functions on the T-cell inhibition and preserves their interaction with myeloid cell compartment. Mechanistically, BMMSC under HU treatment displayed a downregulation of mTOR and p38 MAPK signaling that may explain the reduced cell differentiation and increased immunomodulation activities. Together, the results obtained in this investigation suggest that HU by inducing senescence-like phenotype of BMMSC influences their cellular differentiation and immunoregulatory functions.
Collapse
Affiliation(s)
- Sunčica Kapor
- Clinical Hospital Center "Dr Dragiša Mišović-Dedinje", Department of Hematology, University of Belgrade, 11000 Belgrade, Serbia
| | - Milica Vukotić
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
| | - Tijana Subotički
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
| | - Dragoslava Đikić
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
| | - Olivera Mitrović Ajtić
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
| | - Milica Radojković
- Clinical Hospital Center "Dr Dragiša Mišović-Dedinje", Department of Hematology, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Vladan P Čokić
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
| | - Juan F Santibanez
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, General Gana 1780, Santiago 8370854, Chile
| |
Collapse
|
14
|
Hu X, Li B, Wu F, Liu X, Liu M, Wang C, Shi Y, Ye L. GPX7 Facilitates BMSCs Osteoblastogenesis via ER Stress and mTOR Pathway. J Cell Mol Med 2021; 25:10454-10465. [PMID: 34626080 PMCID: PMC8581313 DOI: 10.1111/jcmm.16974] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023] Open
Abstract
Emerging evidence indicates extensive oxidative stress is a consequence of obesity which impairs bone formation. Glutathione peroxidase 7 (GPX7) is a conserved endoplasmic reticulum (ER) retention protein, lacking of which causes accumulation of reactive oxygen species (ROS) and promotes adipogenesis. Since the imbalance between osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cell (BMSC) leads to severe bone diseases such as osteoporosis, it is critical to investigate the potential protective role of Gpx7 in osteogenesis. Here, we provide evidence that deficiency of Gpx7 reduces osteogenesis, but increases adipogenesis in both human BMSCs (hBMSCs) and mouse mesenchymal stem cell line. Interestingly, further studies indicate this defect can be alleviated by the ER stress antagonist, but not the ROS inhibitor, unveiling an unexpected finding that, unlike adipogenesis, lacking of Gpx7 inhibits osteogenesis mediating by induced ER stress instead of enhanced ROS. Furthermore, the mTOR signalling pathway is found down‐regulation during osteogenic differentiation in Gpx7‐deficient condition, which can be rescued by relief of ER stress. Taken together, for the first time we identify a novel function of Gpx7 in BMSCs’ osteogenic differentiation and indicate that Gpx7 may protect against osteoporotic deficits in humans through ER stress and mTOR pathway interplay.
Collapse
Affiliation(s)
- Xuchen Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Boer Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanzi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoyu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengyu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Lojk J, Marc J. Roles of Non-Canonical Wnt Signalling Pathways in Bone Biology. Int J Mol Sci 2021; 22:10840. [PMID: 34639180 PMCID: PMC8509327 DOI: 10.3390/ijms221910840] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 01/15/2023] Open
Abstract
The Wnt signalling pathway is one of the central signalling pathways in bone development, homeostasis and regulation of bone mineral density. It consists of numerous Wnt ligands, receptors and co-receptors, which ensure tight spatiotemporal regulation of Wnt signalling pathway activity and thus tight regulation of bone tissue homeostasis. This enables maintenance of optimal mineral density, tissue healing and adaptation to changes in bone loading. While the role of the canonical/β-catenin Wnt signalling pathway in bone homeostasis is relatively well researched, Wnt ligands can also activate several non-canonical, β-catenin independent signalling pathways with important effects on bone tissue. In this review, we will provide a thorough overview of the current knowledge on different non-canonical Wnt signalling pathways involved in bone biology, focusing especially on the pathways that affect bone cell differentiation, maturation and function, processes involved in bone tissue structure regulation. We will describe the role of the two most known non-canonical pathways (Wnt/planar cell polarity pathways and Wnt/Ca2+ pathway), as well as other signalling pathways with a strong role in bone biology that communicate with the Wnt signalling pathway through non-canonical Wnt signalling. Our goal is to bring additional attention to these still not well researched but important pathways in the regulation of bone biology in the hope of prompting additional research in the area of non-canonical Wnt signalling pathways.
Collapse
Affiliation(s)
- Jasna Lojk
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia;
- University Clinical Center Ljubljana, Clinical Department of Clinical Chemistry and Biochemistry, 1000 Ljubljana, Slovenia
| |
Collapse
|
16
|
Meng L, Li Y, Wang Y, Zhang J, Zhang Y, Chen Y, Gong T. The impact of leuprolide acetate-loaded calcium phosphate silicate cement to bone regeneration under osteoporotic conditions. Biomed Mater 2021; 16. [PMID: 34082402 DOI: 10.1088/1748-605x/ac07c0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
Osteoporosis is detrimental to the health of skeletal structure and significantly increases the risks of bone fracture. Moreover, bone regeneration is adversely impaired by increased osteoclastic activities as a result of osteoporosis. In this study, we developed a novel formulation of injectable bone cement based on calcium phosphate silicate cement (CPSC) and leuprolide acetate (LA). Several combinations of LA-CPSC bone cement were characterized and, it is found that LA could increase the setting time and compressive strength of CPSC in a concentration-dependent manner. Moreover, thein vitroresults revealed that LA-CPSC was biocompatible and able to encourage the osteoblast proliferation via the mTOR signalling pathway. Furthermore, the LA-CPSC was implanted in the osteoporotic rats to evaluate its effectiveness to repair bone fractures under the osteoporotic conditions. The biomarker study and micro-CT analyses indicated that LA-CPSC could effectively reduce the osteoclast activities and promote the bone regeneration. In conclusion, our study demonstrated that LA-CPSC injectable bone cement should be a viable solution to repair bone fractures under the osteoporotic conditions.
Collapse
Affiliation(s)
- Lisha Meng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, People's Republic of China
| | - Yajin Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, People's Republic of China
| | - Yu Wang
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| | - Jingshu Zhang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, People's Republic of China
| | - Yubiao Zhang
- Department of Food Science, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Yadong Chen
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, People's Republic of China.,Dr Yadong Chen contributes equally as the corresponding author of this article
| | - Tianxing Gong
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, People's Republic of China
| |
Collapse
|
17
|
Rapamycin and 3-Methyladenine Influence the Apoptosis, Senescence, and Adipogenesis of Human Adipose-Derived Stem Cells by Promoting and Inhibiting Autophagy: An In Vitro and In Vivo Study. Aesthetic Plast Surg 2021; 45:1294-1309. [PMID: 33427891 DOI: 10.1007/s00266-020-02101-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/13/2020] [Indexed: 01/18/2023]
Abstract
OBJECTIVE We aimed to clarify the changes in apoptosis, proliferation, senescence, and adipogenesis after promoting and inhibiting autophagy in adipose-derived stem cells (ADSCs) by rapamycin and 3-methyladenine in vitro and in vivo. METHODS After rapamycin and 3-methyladenine pretreatment, ADSC autophagy was detected by immunofluorescence for LC3, RT-PCR for ATG genes, and western blotting (WB) for the LC3 II/I and p62 proteins. TUNEL staining, PCR of BAX, and WB of Caspase-3 were preformed to assess ADSC apoptosis. The adipogenesis of ADSCs was evaluated by Oil red O staining and PCR of PPAR-γ. CCK8 assays were conducted to detect proliferation. Senescence was tested by Sa-β-gal staining and PCR of the P16/ 19/21 genes. Moreover, the mass and volume retention rate were determined, and perilipin and CD31 staining were performed in vivo. RESULTS Rapamycin and 3-methyladenine pretreatment increased and decreased autophagy of ADSCs, respectively, under normal and oxygen-glucose deprivation conditions. Apoptosis and senescence of ADSCs were decreased, and adipogenesis was increased along with the upregulation of autophagy. However, the proliferation of ADSCs was inhibited after either rapamycin or 3-methyladenine pretreatment. In vivo, the volume and mass retention rate and the angiogenesis of the grafts were also improved after rapamycin pretreatment. CONCLUSIONS Rapamycin pretreatment reduced apoptosis, delayed senescence, and promoted adipogenesis of ADSCs. These effects were inhibited by 3-methyladenine, indicating that the changes may be mediated by autophagy. Moreover, the survival rate and angiogenesis of the grafts were increased after upregulation of ADSC autophagy in vivo, which may help improve the efficiency of clinical fat transplantation. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
18
|
Terrey M, Adamson SI, Chuang JH, Ackerman SL. Defects in translation-dependent quality control pathways lead to convergent molecular and neurodevelopmental pathology. eLife 2021; 10:e66904. [PMID: 33899734 PMCID: PMC8075583 DOI: 10.7554/elife.66904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/05/2021] [Indexed: 12/27/2022] Open
Abstract
Translation-dependent quality control pathways such as no-go decay (NGD), non-stop decay (NSD), and nonsense-mediated decay (NMD) govern protein synthesis and proteostasis by resolving non-translating ribosomes and preventing the production of potentially toxic peptides derived from faulty and aberrant mRNAs. However, how translation is altered and the in vivo defects that arise in the absence of these pathways are poorly understood. Here, we show that the NGD/NSD factors Pelo and Hbs1l are critical in mice for cerebellar neurogenesis but expendable for survival of these neurons after development. Analysis of mutant mouse embryonic fibroblasts revealed translational pauses, alteration of signaling pathways, and translational reprogramming. Similar effects on signaling pathways, including mTOR activation, the translatome and mouse cerebellar development were observed upon deletion of the NMD factor Upf2. Our data reveal that these quality control pathways that function to mitigate errors at distinct steps in translation can evoke similar cellular responses.
Collapse
Affiliation(s)
- Markus Terrey
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, Division of Biological Sciences, University of California San DiegoLa JollaUnited States
- Graduate School of Biomedical Sciences and Engineering, University of MaineOronoUnited States
| | - Scott I Adamson
- The Jackson Laboratory for Genomic MedicineFarmingtonUnited States
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn HealthFarmingtonUnited States
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic MedicineFarmingtonUnited States
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn HealthFarmingtonUnited States
| | - Susan L Ackerman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, Division of Biological Sciences, University of California San DiegoLa JollaUnited States
| |
Collapse
|
19
|
Samad N, Nguyen HH, Scott D, Ebeling PR, Milat F. Musculoskeletal Health in Premature Ovarian Insufficiency. Part One: Muscle. Semin Reprod Med 2021; 38:277-288. [PMID: 33418593 DOI: 10.1055/s-0040-1721797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Accelerated bone loss and muscle decline coexist in women with premature ovarian insufficiency (POI), but there are significant gaps in our understanding of musculoskeletal health in POI. This article is the first of a two-part review which describes estrogen signaling in muscle and its role in musculoskeletal health and disease. Current evidence regarding the utility of available diagnostic tests and therapeutic options is also discussed. A literature review from January 2000 to March 2020 was conducted to identify relevant studies. Women with POI experience significant deterioration in musculoskeletal health due to the loss of protective effects of estrogen. In addition to bone loss, muscle decay and dysfunction is now increasingly recognized. Nevertheless, there is a paucity of validated tools to assess muscle parameters. There is a growing need to acknowledge bone-muscle codependence to design new therapies which target both muscle and bone, resulting in improved physical performance and reduced morbidity and mortality. More high-quality research and international collaborations are needed to address the deficiencies in our understanding and management of musculoskeletal health in women with POI.
Collapse
Affiliation(s)
- Navira Samad
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria, Australia.,Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia
| | - Hanh H Nguyen
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria, Australia.,Department of Endocrinology and Diabetes, Western Health, Victoria, Australia
| | - David Scott
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia.,Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria, Australia
| | - Frances Milat
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria, Australia.,Department of Endocrinology and Diabetes, Western Health, Victoria, Australia
| |
Collapse
|
20
|
Blawat K, Mayr A, Hardt M, Kirschneck C, Nokhbehsaim M, Behl C, Deschner J, Jäger A, Memmert S. Regulation of Autophagic Signaling by Mechanical Loading and Inflammation in Human PDL Fibroblasts. Int J Mol Sci 2020; 21:ijms21249446. [PMID: 33322510 PMCID: PMC7763506 DOI: 10.3390/ijms21249446] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022] Open
Abstract
Autophagy (cellular self-consumption) is a crucial adaptation mechanism during cellular stress conditions. This study aimed to examine how this important process is regulated in human periodontal ligament (PDL) fibroblasts by mechanical and inflammatory stress conditions and whether the mammalian target of rapamycin (mTOR) signaling pathway is involved. Autophagy was quantified by flow cytometry. Qualitative protein phosphorylation profiling of the mTOR pathway was carried out. Effects of mTOR regulation were assessed by quantification of important synthesis product collagen 1, cell proliferation and cell death with real-time PCR and flow cytometry. Autophagy as a response to mechanical or inflammatory treatment in PDL fibroblasts was dose and time dependent. In general, autophagy was induced by stress stimulation. Phosphorylation analysis of mTOR showed regulatory influences of mechanical and inflammatory stimulation on crucial target proteins. Regulation of mTOR was also detectable via changes in protein synthesis and cell proliferation. Physiological pressure had cell-protective effects (p = 0.025), whereas overload increased cell death (p = 0.003), which was also promoted in long-term inflammatory treatment (p < 0.001). Our data provide novel insights about autophagy regulation by mechanical and inflammatory stress conditions in human PDL fibroblasts. Our results suggest some involvement of the mTOR pathway in autophagy and cell fate regulation under the named conditions.
Collapse
Affiliation(s)
- Kim Blawat
- Center of Dento-Maxillo-Facial Medicine, Department of Orthodontics, University of Bonn Medical Center, 53111 Bonn, Germany; (K.B.); (A.M.); (M.H.); (A.J.)
| | - Alexandra Mayr
- Center of Dento-Maxillo-Facial Medicine, Department of Orthodontics, University of Bonn Medical Center, 53111 Bonn, Germany; (K.B.); (A.M.); (M.H.); (A.J.)
| | - Miriam Hardt
- Center of Dento-Maxillo-Facial Medicine, Department of Orthodontics, University of Bonn Medical Center, 53111 Bonn, Germany; (K.B.); (A.M.); (M.H.); (A.J.)
| | - Christian Kirschneck
- Department of Orthodontics, University Hospital Regensburg, 93042 Regensburg, Germany;
| | - Marjan Nokhbehsaim
- Center of Dento-Maxillo-Facial Medicine, Section of Experimental Dento-Maxillo-Facial Medicine, University of Bonn Medical Center, 53111 Bonn, Germany;
| | - Christian Behl
- The Autophagy Lab, Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, 55099 Mainz, Germany;
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Andreas Jäger
- Center of Dento-Maxillo-Facial Medicine, Department of Orthodontics, University of Bonn Medical Center, 53111 Bonn, Germany; (K.B.); (A.M.); (M.H.); (A.J.)
| | - Svenja Memmert
- Center of Dento-Maxillo-Facial Medicine, Department of Orthodontics, University of Bonn Medical Center, 53111 Bonn, Germany; (K.B.); (A.M.); (M.H.); (A.J.)
- Correspondence:
| |
Collapse
|
21
|
Mu E, Wang J, Chen L, Lin S, Chen J, Huang X. Ketogenic diet induces autophagy to alleviate bleomycin-induced pulmonary fibrosis in murine models. Exp Lung Res 2020; 47:26-36. [PMID: 33121292 DOI: 10.1080/01902148.2020.1840667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIM OF THE STUDY Ketogenic diet (KD) has been identified as an effective strategy in treating multiple diseases. KD is capable of inducing autophagy which is an important therapeutic target for pulmonary fibrosis (PF). This study aimed to investigate the effect of KD treatment on PF progression. Materials and Methods: Intratracheal instillation of bleomycin (BLM, 5 mg/kg) to establish PF model in male Kunming mice fed either KD or standard diet. The survival of mice was recorded every day for 3 weeks. The pulmonary tissues were weighed on day 21 and the pulmonary index was calculated. The histopathological changes of pulmonary tissues were analyzed by hematoxylin and eosin staining and Masson staining, and the collagen deposition by hydroxyproline assay. Then the content of proinflammatory factors in pulmonary tissues was measured using enzyme-linked immunosorbent assay, and the expression of profibrogenic cytokines, autophagy markers and PI3K/AKT/mTOR pathway-related proteins in pulmonary tissues using western blotting or immunohistochemistry. Results: KD treatment significantly restored the BLM-induced increase of pulmonary index and had a tendency to increase the survival rate of PF mice. Furthermore, KD treatment restored the BLM-induced damage of alveolar structure, infiltration of inflammatory cells and collagen deposition and decreased hydroxyproline content. In addition, the BLM-induced secretion of tumor necrosis factor-alpha, interleukin-6 and interleukin-1β and expression of transforming growth factor β1, phospho-Smad2/3, connective tissue growth factor, α-smooth muscle actin and collagen type III alpha 1 chain were inhibited by KD. KD treatment also up-regulated the expression of light chain 3 II/I and Beclin1 and down-regulated the expression of p62, phospho-AKT, phospho-mTOR and phospho-p70S6K, suggesting that KD induced autophagy and suppressed the BLM-induced activation of PI3K/AKT/mTOR signaling pathway. Conclusions: These findings indicate that KD can alleviate PF in vivo by regulating autophagy and PI3K/AKT/mTOR signaling pathway, which provides a novel therapeutic strategy for PF.
Collapse
Affiliation(s)
- En Mu
- Department of Critical Care Medicine, Baoan Central Hospital of Shenzhen, The Fifth Affiliated Hospital of Shenzhen University, Shenzhen, People's Republic of China
| | - Jinli Wang
- Department of Critical Care Medicine, Baoan Central Hospital of Shenzhen, The Fifth Affiliated Hospital of Shenzhen University, Shenzhen, People's Republic of China
| | - Liang Chen
- Department of Critical Care Medicine, Baoan Central Hospital of Shenzhen, The Fifth Affiliated Hospital of Shenzhen University, Shenzhen, People's Republic of China
| | - Shuirong Lin
- Department of Critical Care Medicine, Baoan Central Hospital of Shenzhen, The Fifth Affiliated Hospital of Shenzhen University, Shenzhen, People's Republic of China
| | - Jieming Chen
- Department of Critical Care Medicine, Baoan Central Hospital of Shenzhen, The Fifth Affiliated Hospital of Shenzhen University, Shenzhen, People's Republic of China
| | - Xiaoming Huang
- Department of Critical Care Medicine, Baoan Central Hospital of Shenzhen, The Fifth Affiliated Hospital of Shenzhen University, Shenzhen, People's Republic of China
| |
Collapse
|
22
|
Bar-Or D, Thomas G, Rael LT, Frederick E, Hausburg M, Bar-Or R, Brody E. On the Mechanisms of Action of the Low Molecular Weight Fraction of Commercial Human Serum Albumin in Osteoarthritis. Curr Rheumatol Rev 2020; 15:189-200. [PMID: 30451114 PMCID: PMC6791032 DOI: 10.2174/1573397114666181119121519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 01/05/2023]
Abstract
The low molecular weight fraction of commercial human serum albumin (LMWF5A) has been shown to successfully relieve pain and inflammation in severe osteoarthritis of the knee (OAK). LMWF5A contains at least three active components that could account for these antiinflammatory and analgesic effects. We summarize in vitro experiments in bone marrow-derived mesenchymal stem cells, monocytic cell lines, chondrocytes, peripheral blood mononuclear cells, fibroblast-like synoviocytes, and endothelial cells on the biochemistry of anti-inflammatory changes induced by LMWF5A. We then look at four of the major pathways that cut across cell-type considerations to examine which biochemical reactions are affected by mTOR, COX-2, CD36, and AhR pathways. All three components show anti-inflammatory activities in at least some of the cell types. The in vitro experiments show that the effects of LMWF5A in chondrocytes and bone marrow- derived stem cells in particular, coupled with recent data from previous clinical trials of single and multiple injections of LMWF5A into OAK patients demonstrated improvements in pain, function, and Patient Global Assessment (PGA), as well as high responder rates that could be attributed to the multiple mechanism of action (MOA) pathways are summarized here. In vitro and in vivo data are highly suggestive of LMWF5A being a disease-modifying drug for OAK.
Collapse
Affiliation(s)
- David Bar-Or
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States.,Ampio Pharmaceuticals, Inc., 373 Inverness Parkway, #200, Englewood, CO 80112, United States
| | - Gregory Thomas
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States.,Ampio Pharmaceuticals, Inc., 373 Inverness Parkway, #200, Englewood, CO 80112, United States
| | - Leonard T Rael
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States
| | - Elizabeth Frederick
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States.,Ampio Pharmaceuticals, Inc., 373 Inverness Parkway, #200, Englewood, CO 80112, United States
| | - Melissa Hausburg
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States
| | - Raphael Bar-Or
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States.,Ampio Pharmaceuticals, Inc., 373 Inverness Parkway, #200, Englewood, CO 80112, United States
| | - Edward Brody
- SomaLogic, Inc., 2945 Wilderness Place, Boulder, CO 80301, United States
| |
Collapse
|
23
|
Bastounis EE, Yeh YT, Theriot JA. Subendothelial stiffness alters endothelial cell traction force generation while exerting a minimal effect on the transcriptome. Sci Rep 2019; 9:18209. [PMID: 31796790 PMCID: PMC6890669 DOI: 10.1038/s41598-019-54336-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
Endothelial cells respond to changes in subendothelial stiffness by altering their migration and mechanics, but whether those responses are due to transcriptional reprogramming remains largely unknown. We measured traction force generation and also performed gene expression profiling for two endothelial cell types grown in monolayers on soft or stiff matrices: primary human umbilical vein endothelial cells (HUVEC) and immortalized human microvascular endothelial cells (HMEC-1). Both cell types respond to changes in subendothelial stiffness by increasing the traction stresses they exert on stiffer as compared to softer matrices, and exhibit a range of altered protein phosphorylation or protein conformational changes previously implicated in mechanotransduction. However, the transcriptome has only a minimal role in this conserved biomechanical response. Only few genes were differentially expressed in each cell type in a stiffness-dependent manner, and none were shared between them. In contrast, thousands of genes were differentially regulated in HUVEC as compared to HMEC-1. HUVEC (but not HMEC-1) upregulate expression of TGF-β2 on stiffer matrices, and also respond to application of exogenous TGF-β2 by enhancing their endogenous TGF-β2 expression and their cell-matrix traction stresses. Altogether, these findings provide insights into the relationship between subendothelial stiffness, endothelial mechanics and variation of the endothelial cell transcriptome, and reveal that subendothelial stiffness, while critically altering endothelial cells’ mechanical behavior, minimally affects their transcriptome.
Collapse
Affiliation(s)
- Effie E Bastounis
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195-1800, USA
| | - Yi-Ting Yeh
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195-1800, USA.
| |
Collapse
|
24
|
Werner SL, Sharma R, Woodruff K, Horn D, Harris SE, Gorin Y, Lee DY, Hua R, Gu S, Fajardo RJ, Habib SL, Jiang JX. CSF-1 in Osteocytes Inhibits Nox4-mediated Oxidative Stress and Promotes Normal Bone Homeostasis. JBMR Plus 2019; 4:e10080. [PMID: 32666016 DOI: 10.1002/jbm4.10080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022] Open
Abstract
CSF-1 is a key factor in regulating bone remodeling; osteocytes express CSF-1 and its receptor. Viable osteocytes are essential for bone remodeling through cell-cell contact and secretion of factors that regulate osteoblasts and osteoclasts. Increased oxidative stress contributes to osteocyte death and correlates with bone loss during aging. The NADPH oxidase Nox4 is a major source of ROS in bone. CSF-1 decreases Nox4, suggesting that CSF-1 protects against oxidative stress. Here, we show that osteocyte apoptosis previously reported in our global CSF-1KO mice is associated with increased Nox4, as well as 4-HNE expression in osteocytes. Osteocytes isolated from CSF-1KO mice were less viable and showed increased intracellular ROS, elevated NADPH oxidase activity/Nox4 protein, activation of mTOR/S6K, and downstream apoptosis signals compared with WT osteocytes. Nox4 expression was also increased in CSF-1KO osteocytes and colocalized with MitoTracker Red in mitochondria. Notably, CSF-1 inhibited Nox4 expression and apoptosis cascade signals. In additional studies, shNox4 decreased these signals in CSF-1KO osteocytes, whereas overexpression of Nox4 in WT osteocytes activated the apoptosis pathway. To determine the role of CSF-1 in osteocytes, DMP1Cre-CSF-1cKO (CSF-1cKO) mice that lack CSF-1 in osteocytes/late osteoblasts were developed. Osteocyte defects in CSF-1cKO mice overlapped with those in CSF-1KO mice, including increased apoptosis, Nox4, and 4-HNE-expressing osteocytes. CSF-1cKO mice showed unbalanced cancellous bone remodeling with decreased bone formation and resorption. Continued exposure to high Nox4/ROS levels may further compromise bone formation and predispose to bone loss and skeletal fragility. Taken together, our findings suggest a novel link between CSF-1, Nox4-derived ROS, and osteocyte survival/function that is crucial for osteocyte-mediated bone remodeling. Results reveal new mechanisms by which CSF-1/oxidative stress regulate osteocyte homeostasis, which may lead to therapeutic strategies to improve skeletal health in aging. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sherry L Werner
- Department of Pathology University of Texas Health Science Center at San Antonio TX USA
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy University of Texas Health Science Center at San Antonio TX USA
| | - Kathleen Woodruff
- Department of Pathology University of Texas Health Science Center at San Antonio TX USA
| | - Diane Horn
- Department of Pathology University of Texas Health Science Center at San Antonio TX USA
| | - Stephen E Harris
- Department of Periodontics University of Texas Health Science Center at San Antonio TX USA
| | - Yves Gorin
- Department of Medicine/Nephrology University of Texas Health Science Center at San Antonio TX USA
| | - Doug-Yoon Lee
- Department of Medicine/Nephrology University of Texas Health Science Center at San Antonio TX USA
| | - Rui Hua
- Department of Biochemistry and Structural Biology University of Texas Health Science Center at San Antonio TX USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology University of Texas Health Science Center at San Antonio TX USA
| | - Roberto J Fajardo
- Department of Orthopedics University of Texas Health Science Center at San Antonio TX USA
| | - Samy L Habib
- South Texas Veterans Health Care and Department of Cell Systems and Anatomy University of Texas Health Science Center at San Antonio TX USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology University of Texas Health Science Center at San Antonio TX USA
| |
Collapse
|
25
|
Magalhães-Novais S, Bermejo-Millo JC, Loureiro R, Mesquita KA, Domingues MR, Maciel E, Melo T, Baldeiras I, Erickson JR, Holy J, Potes Y, Coto-Montes A, Oliveira PJ, Vega-Naredo I. Cell quality control mechanisms maintain stemness and differentiation potential of P19 embryonic carcinoma cells. Autophagy 2019; 16:313-333. [PMID: 30990357 DOI: 10.1080/15548627.2019.1607694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Given the relatively long life of stem cells (SCs), efficient mechanisms of quality control to balance cell survival and resistance to external and internal stress are required. Our objective was to test the relevance of cell quality control mechanisms for SCs maintenance, differentiation and resistance to cell death. We compared cell quality control in P19 stem cells (P19SCs) before and after differentiation (P19dCs). Differentiation of P19SCs resulted in alterations in parameters involved in cell survival and protein homeostasis, including the redox system, cardiolipin and lipid profiles, unfolded protein response, ubiquitin-proteasome and lysosomal systems, and signaling pathways controlling cell growth. In addition, P19SCs pluripotency was correlated with stronger antioxidant protection, modulation of apoptosis, and activation of macroautophagy, which all contributed to preserve SCs quality by increasing the threshold for cell death activation. Furthermore, our findings identify critical roles for the PI3K-AKT-MTOR pathway, as well as autophagic flux and apoptosis regulation in the maintenance of P19SCs pluripotency and differentiation potential.Abbreviations: 3-MA: 3-methyladenine; AKT/protein kinase B: thymoma viral proto-oncogene; AKT1: thymoma viral proto-oncogene 1; ATG: AuTophaGy-related; ATF6: activating transcription factor 6; BAX: BCL2-associated X protein; BBC3/PUMA: BCL2 binding component 3; BCL2: B cell leukemia/lymphoma 2; BNIP3L: BCL2/adenovirus E1B interacting protein 3-like; CASP3: caspase 3; CASP8: caspase 8; CASP9: caspase 9; CL: cardiolipin; CTSB: cathepsin B; CTSD: cathepsin D; DDIT3/CHOP: DNA-damage inducible transcript 3; DNM1L/DRP1: dynamin 1-like; DRAM1: DNA-damage regulated autophagy modulator 1; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; EIF2S1/eIF2α: eukaryotic translation initiation factor 2, subunit alpha; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; ESCs: embryonic stem cells; KRT8/TROMA-1: cytokeratin 8; LAMP2A: lysosomal-associated membrane protein 2A; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NANOG: Nanog homeobox; NAO: 10-N-nonyl acridine orange; NFE2L2/NRF2: nuclear factor, erythroid derived 2, like 2; OPA1: OPA1, mitochondrial dynamin like GTPase; P19dCs: P19 differentiated cells; P19SCs: P19 stem cells; POU5F1/OCT4: POU domain, class 5, transcription factor 1; PtdIns3K: phosphatidylinositol 3-kinase; RA: retinoic acid; ROS: reactive oxygen species; RPS6KB1/p70S6K: ribosomal protein S6 kinase, polypeptide 1; SCs: stem cells; SOD: superoxide dismutase; SHC1-1/p66SHC: src homology 2 domain-containing transforming protein C1, 66 kDa isoform; SOX2: SRY (sex determining region Y)-box 2; SQSTM1/p62: sequestosome 1; SPTAN1/αII-spectrin: spectrin alpha, non-erythrocytic 1; TOMM20: translocase of outer mitochondrial membrane 20; TRP53/p53: transformation related protein 53; TUBB3/betaIII-tubulin: tubulin, beta 3 class III; UPR: unfolded protein response; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
| | - Juan C Bermejo-Millo
- Department of Morphology and Cell Biology, University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Rute Loureiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - Katia A Mesquita
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Aveiro, Portugal
| | - Elisabete Maciel
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Aveiro, Portugal.,Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Aveiro, Portugal
| | - Inês Baldeiras
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal.,School of Medicine, University of Coimbra, Coimbra, Portugal
| | - Jenna R Erickson
- Department of Biomedical Sciences, University of Minnesota-Duluth, Duluth, MN, USA
| | - Jon Holy
- Department of Biomedical Sciences, University of Minnesota-Duluth, Duluth, MN, USA
| | - Yaiza Potes
- Department of Morphology and Cell Biology, University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Ana Coto-Montes
- Department of Morphology and Cell Biology, University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - Ignacio Vega-Naredo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal.,Department of Morphology and Cell Biology, University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
26
|
Qian Y, Yang T, Zhao X, Yan Y, Li W, Fang C, Hou J, Tao L, Liu Y. Celastrus orbiculatus extracts induce apoptosis in mTOR-overexpressed human hepatocellular carcinoma HepG2 cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:328. [PMID: 30526568 PMCID: PMC6286504 DOI: 10.1186/s12906-018-2397-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/29/2018] [Indexed: 12/14/2022]
Abstract
Background Celastrus orbiculatus (Celastraceae) are used as traditional Chinese medicine to treat inflammation and cancer. This study aims to evaluate the effect of Celastrus orbiculatus extract (COE) on the apoptosis in human hepatic carcinoma HepG2 cells with mTOR overexpression. Methods The stable expression of mTOR in HepG2 cells (HepG2/mTOR+) were established by lipofectin transfection of GV238-mTOR recombinant plasmids and further antibiotic selection. Human hepatic carcinoma HepG2/mTOR+ cells were treated with different concentrations (20, 40, 80, 160, and 320 μg/mL) of COE for 24 h. The cell proliferation upon COE treatment was detected by MTT. Apoptosis was measured by Flow Cytometry. The activity of mTOR signaling pathway was detected by Western Blotting. Results COE significantly inhibited the proliferation of HepG2/mTOR+ cells. The expression levels of Bax and Caspase-3 protein were increased in the HepG2/mTOR+ cells in a dose-dependent manner. The proteins expression of Bcl2, Bcl-2 L12, mTOR, phospho-mTOR, 4EBP1, phospho-4EBP1, P70S6k, and phospho-P70S6k in HepG2/mTOR+ cells were reduced in dose-dependent manners. Furthermore, COE and mTOR inhibitor rapamycin (RAPA) synergistically induced apoptosis in HepG2/mTOR+ cells by regulating apoptosis-related proteins and inhibiting mTOR signaling pathways. Conclusion COE could inhibit the proliferation of HepG2/mTOR+ cells, and induce the cell apoptosis. The mechanisms may be related to the regulation of the expression of Bcl-2, Bcl-2 L12, and mTOR signaling pathways. These data suggest that COE may be a potential treatment for human hepatocellular carcinoma.
Collapse
|
27
|
Ko J, Kim JY, Lee EJ, Yoon JS. Inhibitory Effect of Idelalisib, a Selective Phosphatidylinositol 3-Kinase δ Inhibitor, on Adipogenesis in an In Vitro Model of Graves' Orbitopathy. ACTA ACUST UNITED AC 2018; 59:4477-4485. [DOI: 10.1167/iovs.18-24509] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- JaeSang Ko
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Ji-Young Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jig Lee
- Department of Endocrinology, Severance Hospital, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
28
|
Han Y, Hong Y, Li L, Li T, Zhang Z, Wang J, Xia H, Tang Y, Shi Z, Han X, Chen T, Liu Q, Zhang M, Zhang K, Hong W, Xue Y. A Transcriptome-Level Study Identifies Changing Expression Profiles for Ossification of the Ligamentum Flavum of the Spine. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 12:872-883. [PMID: 30161026 PMCID: PMC6120750 DOI: 10.1016/j.omtn.2018.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/10/2018] [Accepted: 07/31/2018] [Indexed: 01/09/2023]
Abstract
Ossification of the ligamentum flavum (OLF) is a common spinal disorder that causes myelopathy and radiculopathy. Non-coding RNAs (ncRNAs) are involved in numerous pathological processes; however, very few ncRNAs have been identified to be correlated with OLF. Here we compared the expression of lncRNA, mRNA, circRNA, and microRNA in OLF tissues from OLF patients and healthy volunteers through mRNA, lncRNA, and circRNA microarrays and microRNA sequencing. A total of 2,054 mRNAs, 2,567 lncRNAs, 627 circRNAs, and 28 microRNAs (miRNAs) were altered during the process of OLF. qPCR confirmed the differential expression of selected mRNAs and ncRNAs. An lncRNA-mRNA co-expression network, miRNA-mRNA target prediction network, and competing endogenous RNA (ceRNA) network of circRNA-miRNA-mRNA were constructed based on a correlation analysis of the differentially expressed RNA transcripts. Subsequently, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses for the differentially expressed mRNAs and the predicted miRNAs target genes were performed. In addition, a deregulated miRNA-19b-3p-based miRNA-circRNA-lncRNA-mRNA network was confirmed, by gain-of-function and loss-of-function experiments, to function in the process of ossification. Taken together, this study provides a systematic perspective on the potential function of ncRNAs in the pathogenesis of OLF.
Collapse
Affiliation(s)
- Yawei Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuheng Hong
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Liandong Li
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Tengshuai Li
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhen Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jingzhao Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Han Xia
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yutao Tang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhemin Shi
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaohui Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ting Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qi Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mengxia Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Kun Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wei Hong
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Yuan Xue
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
29
|
Tovilovic-Kovacevic G, Krstic-Milosevic D, Vinterhalter B, Toljic M, Perovic V, Trajkovic V, Harhaji-Trajkovic L, Zogovic N. Xanthone-rich extract from Gentiana dinarica transformed roots and its active component norswertianin induce autophagy and ROS-dependent differentiation of human glioblastoma cell line. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 47:151-160. [PMID: 30166100 DOI: 10.1016/j.phymed.2018.03.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/07/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Glioblastoma multiforme (GMB) is the most malignant of all brain tumors with poor prognosis. Anticancer potential of xanthones, bioactive compounds found in Gentiana dinarica, is well-documented. Transformation of G. dinarica roots with Agrobacterium rhizogenes provides higher xanthones accumulation, which enables better exploitation of these anticancer compounds. HYPOTHESIS/PURPOSE The aim of this study was to investigate antiglioma effect of three different G. dinarica extracts: E1-derived from untransformed roots, E2-derived from roots transformed using A. rhizogenes strain A4M70GUS, and E3-derived from roots transformed using A. rhizogenes strain 15834/PI. Further, mechanisms involved in anticancer potential of the most potent extract were examined in detail, and its active component was determined. METHODS The cell viability was assessed using MTT and crystal violet test. Cell cycle analysis, the expression of differentiation markers, the levels of autophagy, and oxidative stress were analyzed by flow cytometry. Autophagy and related signaling pathways were assessed by immunoblotting. RESULTS E3, in contrast to E1 and E2, strongly reduced growth of U251 human glioblastoma cells, triggered cell cycle arrest in G2/M phase, changed cellular morphology, and increased expression of markers of differentiated astrocytes (glial fibrillary acidic protein) and neurons (β-tubulin). E3 stimulated autophagy, as demonstrated by enhanced intracellular acidification, increased microtubule-associated light chain 3B (LC3-I) conversion to autophagosome associated LC3-II, and decreased level of selective autophagy target p62. Induction of autophagy was associated with Akt-dependent inhibition of main autophagy suppressor mammalian target of rapamycin (mTOR). Both genetic and pharmacological inhibition of autophagy suppressed the expression of differentiation markers, but had no effect on cell cycle arrest in E3-treated cells. E3 stimulated oxidative stress, and antioxidants vitamin E and N-acetyl cysteine inhibited autophagy and differentiation of E3-treated U251 cells. The most prevalent compound of E3, xanthone aglycone norswertianin, also arrested glioblastoma cell proliferation in G2/M phase and induced glioblastoma cell differentiation through induction of autophagy and oxidative stress. CONCLUSION These results indicate that E3 and its main active component norswertianin may serve as a potential candidate for differentiation therapy of glioblastoma.
Collapse
Affiliation(s)
- Gordana Tovilovic-Kovacevic
- Department of Biochemistry, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Despot Stefan Blvd 142, 11000 Belgrade, Serbia
| | - Dijana Krstic-Milosevic
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Despot Stefan Blvd 142, 11000 Belgrade, Serbia
| | - Branka Vinterhalter
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Despot Stefan Blvd 142, 11000 Belgrade, Serbia
| | - Mina Toljic
- Genetic Laboratory Department, Obstetrics and Gynecology Clinic "Narodni Front", Street Kraljice Natalije 62, 11000 Belgrade, Serbia
| | - Vladimir Perovic
- Institute for Microbiology and Immunology, School of Medicine, University of Belgrade, Dr Subotic Street 1, 11000 Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute for Microbiology and Immunology, School of Medicine, University of Belgrade, Dr Subotic Street 1, 11000 Belgrade, Serbia
| | - Ljubica Harhaji-Trajkovic
- Department of Neurophysiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Despot Stefan Blvd 142, 11000 Belgrade, Serbia.
| | - Nevena Zogovic
- Department of Neurophysiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Despot Stefan Blvd 142, 11000 Belgrade, Serbia.
| |
Collapse
|
30
|
Elucidating molecular events underlying topography mediated cardiomyogenesis of stem cells on 3D nanofibrous scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 88:104-114. [DOI: 10.1016/j.msec.2018.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/27/2018] [Accepted: 03/14/2018] [Indexed: 12/28/2022]
|
31
|
Ganguly P, El-Jawhari JJ, Giannoudis PV, Burska AN, Ponchel F, Jones EA. Age-related Changes in Bone Marrow Mesenchymal Stromal Cells: A Potential Impact on Osteoporosis and Osteoarthritis Development. Cell Transplant 2018; 26:1520-1529. [PMID: 29113463 PMCID: PMC5680949 DOI: 10.1177/0963689717721201] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aging at the cellular level is a complex process resulting from accumulation of various damages leading to functional impairment and a reduced quality of life at the level of the organism. With a rise in the elderly population, the worldwide incidence of osteoporosis (OP) and osteoarthritis (OA) has increased in the past few decades. A decline in the number and "fitness" of mesenchymal stromal cells (MSCs) in the bone marrow (BM) niche has been suggested as one of the factors contributing to bone abnormalities in OP and OA. It is well recognized that MSCs in vitro acquire culture-induced aging features such as gradual telomere shortening, increased numbers of senescent cells, and reduced resistance to oxidative stress as a result of serial population doublings. In contrast, there is only limited evidence that human BM-MSCs "age" similarly in vivo. This review compares the various aspects of in vitro and in vivo MSC aging and suggests how our current knowledge on rejuvenating cultured MSCs could be applied to develop future strategies to target altered bone formation processes in OP and OA.
Collapse
Affiliation(s)
- Payal Ganguly
- 1 Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Jehan J El-Jawhari
- 1 Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Peter V Giannoudis
- 1 Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,2 Leeds Musculoskeletal Biomedical Research Unit, University of Leeds, Leeds, United Kingdom
| | - Agata N Burska
- 1 Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,2 Leeds Musculoskeletal Biomedical Research Unit, University of Leeds, Leeds, United Kingdom
| | - Frederique Ponchel
- 1 Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,2 Leeds Musculoskeletal Biomedical Research Unit, University of Leeds, Leeds, United Kingdom
| | - Elena A Jones
- 1 Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
32
|
Jakovljevic J, Harrell CR, Fellabaum C, Arsenijevic A, Jovicic N, Volarevic V. Modulation of autophagy as new approach in mesenchymal stem cell-based therapy. Biomed Pharmacother 2018; 104:404-410. [PMID: 29787987 DOI: 10.1016/j.biopha.2018.05.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/08/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023] Open
Abstract
Due to their trophic and immunoregulatory characteristics mesenchymal stem cells (MSCs) have tremendous potential for use in a variety of clinical applications. Challenges in MSCs' clinical applications include low survival of transplanted cells and low grafting efficiency requiring use of a high number of MSCs to achieve therapeutic benefits. Accordingly, new approaches are urgently needed in order to overcome these limitations. Recent evidence indicates that modulation of autophagy in MSCs prior to their transplantation enhances survival and viability of engrafted MSCs and promotes their pro-angiogenic and immunomodulatory characteristics. Here, we review the current literature describing mechanisms by which modulation of autophagy strengthens pro-angiogenic and immunosuppressive characteristics of MSCs in animal models of multiple sclerosis, osteoporosis, diabetic limb ischemia, myocardial infarction, acute graft-versus-host disease, kidney and liver diseases. Obtained results suggest that modulation of autophagy in MSCs may represent a new therapeutic approach that could enhance efficacy of MSCs in the treatment of ischemic and autoimmune diseases.
Collapse
Affiliation(s)
- Jelena Jakovljevic
- University of Kragujevac Serbia, Faculty of Medical Sciences, Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell Research, 69 Svetozar Markovic Street, 34000, Kragujevac, Serbia
| | - C Randall Harrell
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N Palm Harbor, Palm Harbor, Florida, United States
| | - Crissy Fellabaum
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N Palm Harbor, Palm Harbor, Florida, United States
| | - Aleksandar Arsenijevic
- University of Kragujevac Serbia, Faculty of Medical Sciences, Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell Research, 69 Svetozar Markovic Street, 34000, Kragujevac, Serbia
| | - Nemanja Jovicic
- University of Kragujevac Serbia, Faculty of Medical Sciences, Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell Research, 69 Svetozar Markovic Street, 34000, Kragujevac, Serbia
| | - Vladislav Volarevic
- University of Kragujevac Serbia, Faculty of Medical Sciences, Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell Research, 69 Svetozar Markovic Street, 34000, Kragujevac, Serbia.
| |
Collapse
|
33
|
Ferroni L, Gardin C, Dolkart O, Salai M, Barak S, Piattelli A, Amir-Barak H, Zavan B. Pulsed electromagnetic fields increase osteogenetic commitment of MSCs via the mTOR pathway in TNF-α mediated inflammatory conditions: an in-vitro study. Sci Rep 2018; 8:5108. [PMID: 29572540 PMCID: PMC5865106 DOI: 10.1038/s41598-018-23499-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 03/14/2018] [Indexed: 12/31/2022] Open
Abstract
Pulsed electromagnetic fields (PEMFs) have been considered a potential treatment modality for fracture healing, however, the mechanism of their action remains unclear. Mammalian target of rapamycin (mTOR) signaling may affect osteoblast proliferation and differentiation. This study aimed to assess the osteogenic differentiation of mesenchymal stem cells (MSCs) under PEMF stimulation and the potential involvement of mTOR signaling pathway in this process. PEMFs were generated by a novel miniaturized electromagnetic device. Potential changes in the expression of mTOR pathway components, including receptors, ligands and nuclear target genes, and their correlation with osteogenic markers and transcription factors were analyzed. Involvement of the mTOR pathway in osteogenesis was also studied in the presence of proinflammatory mediators. PEMF exposure increased cell proliferation and adhesion and the osteogenic commitment of MSCs even in inflammatory conditions. Osteogenic-related genes were over-expressed following PEMF treatment. Our results confirm that PEMFs contribute to activation of the mTOR pathway via upregulation of the proteins AKT, MAPP kinase, and RRAGA, suggesting that activation of the mTOR pathway is required for PEMF-stimulated osteogenic differentiation. Our findings provide insights into how PEMFs influence osteogenic differentiation in normal and inflammatory environments.
Collapse
Affiliation(s)
- Letizia Ferroni
- Department of Biomedical Sciences, University of Padova, Via G. Colombo 3, 35100, Padova, Italy
| | - Chiara Gardin
- Department of Biomedical Sciences, University of Padova, Via G. Colombo 3, 35100, Padova, Italy
| | - Oleg Dolkart
- Division of Orthopaedic Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv University Sackler Faculty of Medicine, Tel Aviv, Israel.
| | - Moshe Salai
- Division of Orthopaedic Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv University Sackler Faculty of Medicine, Tel Aviv, Israel
| | | | - Adriano Piattelli
- Department of Medical, Oral, and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Hadar Amir-Barak
- Department of Internal Medicine E, Tel Aviv Sourasky Medical Center, Tel Aviv University Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Barbara Zavan
- Department of Biomedical Sciences, University of Padova, Via G. Colombo 3, 35100, Padova, Italy
| |
Collapse
|
34
|
Shi C, Huang F, Gu X, Zhang M, Wen J, Wang X, You L, Cui X, Ji C, Guo X. Adipogenic miRNA and meta-signature miRNAs involved in human adipocyte differentiation and obesity. Oncotarget 2018; 7:40830-40845. [PMID: 27049726 PMCID: PMC5130048 DOI: 10.18632/oncotarget.8518] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/28/2016] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) have been identified as a new class of regulatory molecules that influence many biological functions, including metabolism, adipocyte differentiation. To determine the role of adipogenic miRNAs in the adipocyte differentiation process, we used microarray technology to monitor miRNA levels in human adipose-derived mesenchymal stem cells (hMSCs-Ad), human stromal vascular cells (SVCs) and differentiated adipocytes. 79 miRNAs were found to be differentially expressed, most of which are located in obesity related chromosomal regions but have not been previously linked to adipocyte differentiation process. A systematic search was made for relevant studies in academic data bases, involving the Gene Expression Omnibus (GEO) ArrayExpress, Pubmed and Embase database. Eight studies on human adipocyte differentiation or obesity were included in the final analysis. After combining our microarray data with meta-analysis of published microarray data, we detected 42 differently expressed miRNAs (meta-signature miRNAs) in mature adipocytes compared to SVCs or hMSCs-Ad. Our study shows meta-signature miRNAs specific for adipogenesis, several of which are correlated with key gene targets demonstrating functional relationships to pathways in BMP signaling pathway, Cell differentiation, Wnt signaling, insulin receptor signaling pathway, MAPK signaling, Cell cycle and lipid metabolic process. Our study shows that the first evidence of hsa-let-7 family, hsa-miR-15a-5p, hsa-miR-27a-3p, hsa-miR-106b-5p, hsa-miR-148a-3p and hsa-miR-26b-5p got a great weight in adipogenesis. We concluded that meta-signature miRNAs involved in adipocyte differentiation and provided pathophysiological roles and novel insight into obesity and its related metabolic diseases.
Collapse
Affiliation(s)
- Chunmei Shi
- Department of Children Health Care, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China.,Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Fangyan Huang
- Department of Children Health Care, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China.,Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Xiaohong Gu
- Department of Children Health Care, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China.,Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Min Zhang
- Department of Children Health Care, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Juan Wen
- Department of Children Health Care, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xing Wang
- Department of Children Health Care, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Lianghui You
- Department of Children Health Care, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xianwei Cui
- Department of Children Health Care, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Chenbo Ji
- Department of Children Health Care, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China.,Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Xirong Guo
- Department of Children Health Care, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China.,Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
35
|
Xia P, Wang X, Qu Y, Lin Q, Cheng K, Gao M, Ren S, Zhang T, Li X. TGF-β1-induced chondrogenesis of bone marrow mesenchymal stem cells is promoted by low-intensity pulsed ultrasound through the integrin-mTOR signaling pathway. Stem Cell Res Ther 2017; 8:281. [PMID: 29237506 PMCID: PMC5729425 DOI: 10.1186/s13287-017-0733-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 11/19/2017] [Accepted: 11/23/2017] [Indexed: 02/06/2023] Open
Abstract
Background Low-intensity pulsed ultrasound (LIPUS) is a mechanical stimulus that plays a key role in regulating the differentiation of bone marrow mesenchymal stem cells (BMSCs). However, the way in which it affects the chondrogenic differentiation of BMSCs remains unknown. In this study, we aimed to investigate whether LIPUS is able to influence TGF-β1-induced chondrogenesis of BMSCs through the integrin-mechanistic target of the Rapamycin (mTOR) signaling pathway. Methods BMSCs were isolated from rat bone marrow and cultured in either standard or TGF-β1-treated culture medium. BMSCs were then subjected to LIPUS at a frequency of 3 MHz and a duty cycle of 20%, and integrin and mTOR inhibitors added in order to analyze their influence on cell differentiation. BMSCs were phenotypically analyzed by flow cytometry and the degree of chondrogenesis evaluated through toluidine blue staining, immunofluorescence, and immunocytochemistry. Furthermore, expression of COL2, aggrecan, SOX9, and COL1 was assessed by qRT-PCR and western blot analysis. Results We found that LIPUS promoted TGF-β1-induced chondrogenesis of BMSCs, represented by increased expression of COL2, aggrecan and SOX9 genes, and decreased expression of COL1. Notably, these effects were prevented following addition of integrin and mTOR inhibitors. Conclusions Taken together, these results indicate that mechanical stimulation combined with LIPUS promotes TGF-β1-induced chondrogenesis of BMSCs through the integrin-mTOR signaling pathway.
Collapse
Affiliation(s)
- Peng Xia
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xiaoju Wang
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yanping Qu
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Qiang Lin
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Kai Cheng
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Mingxia Gao
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Shasha Ren
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Tingting Zhang
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xueping Li
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
36
|
Kuninty PR, Bojmar L, Tjomsland V, Larsson M, Storm G, Östman A, Sandström P, Prakash J. MicroRNA-199a and -214 as potential therapeutic targets in pancreatic stellate cells in pancreatic tumor. Oncotarget 2017; 7:16396-408. [PMID: 26918939 PMCID: PMC4941323 DOI: 10.18632/oncotarget.7651] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/29/2016] [Indexed: 12/21/2022] Open
Abstract
Pancreatic stellate cells (PSCs) are the key precursor cells for cancer-associated fibroblasts (CAFs) in pancreatic tumor stroma. In this study, we explored miRNA as therapeutic targets in tumor stroma and found miR-199a-3p and miR-214-3p induced in patient-derived pancreatic CAFs and TGF-β-activated human PSCs (hPSCs). Inhibition of miR-199a/-214 using hairpin inhibitors significantly inhibited TGFβ-induced differentiation markers (e.g. α-SMA, collagen, PDGFβR), migration and proliferation. Furthermore, heterospheroids of Panc-1 and hPSCs attained smaller size with hPSCs transfected with anti-miR-199a/-214 compared to control anti-miR. The conditioned medium obtained from TGFβ-activated hPSCs induced tumor cell growth and endothelial cell tube formation. Interestingly, these inductions were abrogated in hPSCs transfected with anti-miR-199a or miR-214. Moreover, IPA analyses revealed signaling pathways related to miR-199a (TP53, mTOR, Smad1) and miR-214 (PTEN, Bax, ING4). Taken together, this study reveals miR-199a-3p and miR-214-3p as major regulators of PSC activation and PSC-induced pro-tumoral effects, representing them as key therapeutic targets in pancreatic cancer.
Collapse
Affiliation(s)
- Praneeth R Kuninty
- Department of Biomaterials, Science and Technology, Section: Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Twente, Netherlands
| | - Linda Bojmar
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Pediatric Hematology/Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Vegard Tjomsland
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Hepato-pancreato-biliary Surgery, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marie Larsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Gert Storm
- Department of Biomaterials, Science and Technology, Section: Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Twente, Netherlands.,Department of Pharmaceutics, Utrecht University, Utrecht, Netherlands
| | - Arne Östman
- Department of Oncology-Pathology, Cancer Centre Karolinska, Karolinska Institutet, Karolinska, Sweden
| | - Per Sandström
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jai Prakash
- Department of Biomaterials, Science and Technology, Section: Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Twente, Netherlands.,Department of Oncology-Pathology, Cancer Centre Karolinska, Karolinska Institutet, Karolinska, Sweden
| |
Collapse
|
37
|
Zhang Y, Xu S, Li K, Tan K, Liang K, Wang J, Shen J, Zou W, Hu L, Cai D, Ding C, Li M, Xiao G, Liu B, Liu A, Bai X. mTORC1 Inhibits NF-κB/NFATc1 Signaling and Prevents Osteoclast Precursor Differentiation, In Vitro and In Mice. J Bone Miner Res 2017; 32:1829-1840. [PMID: 28520214 DOI: 10.1002/jbmr.3172] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 04/28/2017] [Accepted: 05/17/2017] [Indexed: 02/02/2023]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a critical sensor for bone homeostasis and bone formation; however, the role of mTORC1 in osteoclast development and the underlying mechanisms have not yet been fully established. Here, we found that mTORC1 activity declined during osteoclast precursors differentiation in vitro and in vivo. We further targeted deletion of Raptor (mTORC1 key component) or Tsc1 (mTORC1 negative regulator) to constitutively inhibit or activate mTORC1 in osteoclast precursors (monocytes/macrophages), using LyzM-cre mice. Osteoclastic formation was drastically increased in cultures of Raptor deficient bone marrow monocytes/macrophages (BMMs), and Raptor-deficient mice displayed osteopenia with enhanced osteoclastogenesis. Conversely, BMMs lacking Tsc1 exhibited a severe defect in osteoclast-like differentiation and absorptive function, both of which were restored following rapamycin treatment. Importantly, expression of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), transcription factors that are essential for osteoclast differentiation was negatively regulated by mTORC1 in osteoclast lineages. These results provide evidence that mTORC1 plays as a critical role as an osteoclastic differentiation-limiting signal and suggest a potential drawback in treating bone loss-related diseases with mTOR inhibitors clinically. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yue Zhang
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Song Xu
- Deparment of Arthroplasty, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Li
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Kang Tan
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Kangyan Liang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jian Wang
- Deparment of Arthroplasty, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junhui Shen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenchong Zou
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Le Hu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Daozhang Cai
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Changhai Ding
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Mangmang Li
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guozhi Xiao
- Department of Biology and Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China, Shenzhen, China.,Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Anling Liu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaochun Bai
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
38
|
Involvement of mTOR-autophagy in the selection of primitive mesenchymal stem cells in chitosan film 3-dimensional culture. Sci Rep 2017; 7:10113. [PMID: 28860574 PMCID: PMC5578982 DOI: 10.1038/s41598-017-10708-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 08/15/2017] [Indexed: 11/08/2022] Open
Abstract
Mesenchymal stem cells (MSCs) in conventional monolayer culture are heterogeneous and contain a significant portion of senescent cells. MSCs cultured on chitosan film form 3-dimenional spheres, increase in stemness and differentiation capability; however, the underlying mechanisms remain elusive. We first demonstrate chitosan film culture induces apoptosis at 2 days, with specificity in late senescent cells. Especially in senescent cells, chitosan film culture activates mTOR, which activates S6K/S6/4E-BP1 to enhance fibronection synthesis and peripheral dead cell attachment, and phosphorylates ULK1 at S757 to further inactivate ULK1, LC3A and autophagy, thereby inducing apoptosis. Combination of chitosan film culture with mTOR inhibition prevents peripheral dead cell attachment, thereby further increasing pluripotent gene expression, in vitro osteogenesis and in vivo bone formation. These data successfully figure out the role of mTOR signaling in chitosan film culture and develop a method by combination of rapamycin treatment for promoting stemness and differentiation capability in MSCs.
Collapse
|
39
|
mTOR/Raptor signaling is critical for skeletogenesis in mice through the regulation of Runx2 expression. Cell Death Differ 2017; 24:1886-1899. [PMID: 28686577 PMCID: PMC5635215 DOI: 10.1038/cdd.2017.110] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/08/2017] [Accepted: 05/31/2017] [Indexed: 02/07/2023] Open
Abstract
The mammalian target of rapamycin (mTOR)/regulatory-associated protein of mTOR (Raptor) pathway transmits and integrates different signals including growth factors, nutrients, and energy metabolism. Nearly all these signals have been found to play roles in skeletal biology. However, the contribution of mTOR/Raptor to osteoblast biology in vivo remains to be elucidated as the conclusions of recent studies are controversial. Here we report that mice with a deficiency of either mTOR or Raptor in preosteoblasts exhibited clavicular hypoplasia and delayed fontanelle fusion, similar to those found in human patients with cleidocranial dysplasia (CCD) haploinsufficient for the transcription factor runt-related transcription factor 2 (Runx2) or those identified in Runx2+/− mice. Mechanistic analysis revealed that the mTOR-Raptor-S6K1 axis regulates Runx2 expression through phosphorylation of estrogen receptor α, which binds to Distal-less homeobox 5 (DLX5) and augments the activity of Runx2 enhancer. Moreover, heterozygous mutation of raptor in osteoblasts aggravates the bone defects observed in Runx2+/− mice, indicating a genetic interaction between Raptor and Runx2. Collectively, these findings reveal that mTOR/Raptor signaling is essential for bone formation in vivo through the regulation of Runx2 expression. These results also suggest that a selective mTOR/Raptor antagonist, which has been developed for treatment of many diseases, may have the side effect of causing bone loss.
Collapse
|
40
|
Park HJ, Cha YJ, Kim SH, Kim A, Kim EY, Chang YS. Keratinization of Lung Squamous Cell Carcinoma Is Associated with Poor Clinical Outcome. Tuberc Respir Dis (Seoul) 2017; 80:179-186. [PMID: 28416958 PMCID: PMC5392489 DOI: 10.4046/trd.2017.80.2.179] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/10/2017] [Accepted: 01/16/2017] [Indexed: 01/05/2023] Open
Abstract
Background Although the World Health Organization (WHO) classification of lung squamous cell carcinoma (SCC) was revised in 2015, its clinical implications for lung SCC subsets remain unclear. We investigated whether the morphologic characteristics of lung SCC, including keratinization, were associated with clinical parameters and clinical outcome of patients. Methods A total of 81 patients who underwent curative surgical resection of diagnosed lung SCC, were enrolled in this study. Attributes such as keratinization, tumor budding, single cell invasion, and nuclear size within the tumor, as well as immunohistochemistry of Bcl-xL and pS6 expressions, were evaluated. Results The keratinizing and nonkeratinizing subtypes did not differ with respect to age, sex, TNM stage, and morphologic parameters such as nuclear diameter, tumor budding, and single cell invasion at the tumor edge. Most patients with the keratinizing subtype (98.0%) had a history of smoking, whereas the nonkeratinizing group had a relatively higher proportion of never-smokers relative to the keratinizing group (24.0% vs. 2.0%; p=0.008, chi-square test). Expression of pS6 (a surrogate marker of mammalian target of rapamycin complex 1 [mTORC1] signaling that regulates keratinocyte differentiation), and Bcl-xL (a key anti-apoptotic molecule that may inhibit keratinization), did not correlate significantly with the presence of keratinization. Patients with the keratinizing subtype had a significantly shorter overall survival (85.2 months vs. 135.7 months, p=0.010, log-rank test), and a multivariate analysis showed that keratinization was an independent, poor prognostic factor (hazard ratio, 2.389; 95% confidence interval, 1.090–5.233; p=0.030). Conclusion In lung SCC, keratinization is associated with a poor prognosis, and might be associated with smoking.
Collapse
Affiliation(s)
- Hye Jung Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon-Jin Cha
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Seong Han Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Arum Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Soo Chang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
41
|
Park KH, Cho EH, Bae WJ, Kim HS, Lim HC, Park YD, Lee MO, Cho ES, Kim EC. Role of PIN1 on in vivo periodontal tissue and in vitro cells. J Periodontal Res 2017; 52:617-627. [PMID: 28198538 DOI: 10.1111/jre.12430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Although expression of peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (PIN1) was reported in bone tissue, the precise role of PIN1 in periodontal tissue and cells remain unclear. MATERIAL & METHODS To elucidate the roles of PIN1 in periodontal tissue, its expression in periodontal tissue and cells, and effects on in vitro 4 osteoblast differentiation and the underlying signaling mechanisms were evaluated. RESULTS PIN1 was expressed in mouse periodontal tissues including periodontal ligament cells (PDLCs), cementoblasts and osteoblasts at the developing root formation stage (postnatal, PN14) and functional stage of tooth (PN28). Treatment of PIN1 inhibitor juglone, and gene silencing by RNA interference promoted osteoblast differentiation in PDLCs and cementoblasts, whereas the overexpression of PIN1 inhibited. Moreover, osteogenic medium-induced activation of AMPK, mTOR, Akt, ERK, p38 and NF-jB pathways were enhanced by PIN1 siRNA, but attenuated by PIN1 overexpression. Runx2 expressions were induced by PIN1 siRNA, but downregulated by PIN1 overexpression. CONCLUSION In summary, this study is the first to demonstrate that PIN1 is expressed in developing periodontal tissue, and in vitro PDLCs and cementoblasts. PIN1 inhibition stimulates osteoblast differentiation, and thus may play an important role in periodontal regeneration.
Collapse
Affiliation(s)
- K-H Park
- Department of Orthodontics, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - E-H Cho
- Department of Orthodontics, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - W-J Bae
- Department of Oral and Maxillofacial Pathology, and Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Korea
| | - H-S Kim
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, Korea
| | - H-C Lim
- Department of Periodontology, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Y-D Park
- Department of Preventive and Society Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - M-O Lee
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, Korea
| | - E-S Cho
- Department of Oral Anatomy, Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - E-C Kim
- Department of Oral and Maxillofacial Pathology, and Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Korea
| |
Collapse
|
42
|
Bae WJ, Auh QS, Kim GT, Moon JH, Kim EC. Effects of sodium tri- and hexameta-phosphate in vitro osteoblastic differentiation in Periodontal Ligament and Osteoblasts, and in vivo bone regeneration. Differentiation 2016; 92:257-269. [DOI: 10.1016/j.diff.2016.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/29/2016] [Accepted: 04/21/2016] [Indexed: 01/08/2023]
|
43
|
Li TS, Shi H, Wang L, Yan CZ. Effect of Bone Marrow Mesenchymal Stem Cells on Satellite Cell Proliferation and Apoptosis in Immobilization-Induced Muscle Atrophy in Rats. Med Sci Monit 2016; 22:4651-4660. [PMID: 27898654 PMCID: PMC5132424 DOI: 10.12659/msm.898137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 04/11/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Muscle atrophy due to disuse occurs along with adverse physiological and functional changes, but bone marrow stromal cells (MSCs) may be able to act as muscle satellite cells to restore myofibers. Thus, we investigated whether MSCs could enhance the proliferation of satellite cells and suppress myonuclear apoptosis during immobilization. MATERIAL AND METHODS We isolated, purified, amplified, and identified MSCs. Rats (n=48) were randomized into 3 groups: WB group (n=16), IM-PBS group (n=16), and IM-MSC (n=16). Rat hind limbs were immobilized for 14 d, treated with MSCs or phosphate-buffered saline (PBS), and then studied using immunohistochemistry and Western blot analysis to characterize the proteins involved. Apoptosis was assessed by terminal deoxynucleotidyl transferase (TdT)-mediated deoxy-UTP nick end labeling (TUNEL) method. RESULTS We compared muscle mass, cross-sectional areas, and peak tetanic forces and noted insignificant differences between PBS- and MSC-treated animals, but satellite cell proliferation was significantly greater after MSC treatment (p<0.05). Apoptotic myonuclei were reduced (p<0.05) after MSC treatment as well. Pro-apoptotic Bax was down-regulated and anti-apoptotic Bcl-2 and p-Akt protein were upregulated (p<0.05). CONCLUSIONS MSCs injected during hind limb immobilization can maintain satellite cell activity by suppressing myonuclear apoptosis.
Collapse
Affiliation(s)
- Tie-Shan Li
- Department of Neurology and Neuromuscular Center, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China
- Department of Rehabilitation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Hao Shi
- Shandong Rehabilitation Research Center, Jinan, Shandong, P.R. China
| | - Lin Wang
- Department of Rehabilitation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Chuan-Zhu Yan
- Department of Neurology and Neuromuscular Center, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China
- Brain Science Research Institute, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
44
|
Brenner AK, Andersson Tvedt TH, Bruserud Ø. The Complexity of Targeting PI3K-Akt-mTOR Signalling in Human Acute Myeloid Leukaemia: The Importance of Leukemic Cell Heterogeneity, Neighbouring Mesenchymal Stem Cells and Immunocompetent Cells. Molecules 2016; 21:molecules21111512. [PMID: 27845732 PMCID: PMC6273124 DOI: 10.3390/molecules21111512] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/11/2022] Open
Abstract
Therapeutic targeting of PI3K-Akt-mTOR is considered a possible strategy in human acute myeloid leukaemia (AML); the most important rationale being the proapoptotic and antiproliferative effects of direct PI3K/mTOR inhibition observed in experimental studies of human AML cells. However, AML is a heterogeneous disease and these effects caused by direct pathway inhibition in the leukemic cells are observed only for a subset of patients. Furthermore, the final effect of PI3K-Akt-mTOR inhibition is modulated by indirect effects, i.e., treatment effects on AML-supporting non-leukemic bone marrow cells. In this article we focus on the effects of this treatment on mesenchymal stem cells (MSCs) and monocytes/macrophages; both these cell types are parts of the haematopoietic stem cell niches in the bone marrow. MSCs have unique membrane molecule and constitutive cytokine release profiles, and mediate their support through bidirectional crosstalk involving both cell-cell contact and the local cytokine network. It is not known how various forms of PI3K-Akt-mTOR targeting alter the molecular mechanisms of this crosstalk. The effect on monocytes/macrophages is also difficult to predict and depends on the targeted molecule. Thus, further development of PI3K-Akt-mTOR targeting into a clinical strategy requires detailed molecular studies in well-characterized experimental models combined with careful clinical studies, to identify patient subsets that are likely to respond to this treatment.
Collapse
Affiliation(s)
- Annette K Brenner
- Section for Haematology, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway.
| | - Tor Henrik Andersson Tvedt
- Section for Haematology, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway.
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Øystein Bruserud
- Section for Haematology, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway.
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway.
| |
Collapse
|
45
|
Lu TJ, Chiu FY, Chiu HY, Chang MC, Hung SC. Chondrogenic Differentiation of Mesenchymal Stem Cells in Three-Dimensional Chitosan Film Culture. Cell Transplant 2016; 26:417-427. [PMID: 27737727 DOI: 10.3727/096368916x693464] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Articular cartilage has a very limited capacity for self-repair, and mesenchymal stem cells (MSCs) have the potential to treat cartilage defects and osteoarthritis. However, in-depth mechanistic studies regarding their applications are required. Here we demonstrated the use of chitosan film culture for promoting chondrogenic differentiation of MSCs. We found that MSCs formed spheres 2 days after seeding on dishes coated with chitosan. When MSCs were induced in a chondrogenic induction medium on chitosan films, the size of the spheres continuously increased for up to 21 days. Alcian blue staining and immunohistochemistry demonstrated the expression of chondrogenic proteins, including aggrecan, type II collagen, and type X collagen at 14 and 21 days of differentiation. Importantly, chitosan, with a medium molecular weight (size: 190-310 kDa), was more suitable than other sizes for inducing chondrogenic differentiation of MSCs in terms of sphere size and expression of chondrogenic proteins and endochondral markers. We identified that the mechanistic target of rapamycin (mTOR) signaling and its downstream S6 kinase (S6K)/S6 were activated in chitosan film culture compared to that of monolayer culture. The activation of mTOR/S6K was continuously upregulated from days 2 to 7 of differentiation. Furthermore, we found that mTOR/S6K signaling was required for chondrogenic differentiation of MSCs in chitosan film culture through rapamycin treatment and mTOR knockdown. In conclusion, we showed the suitability of chitosan film culture for promoting chondrogenic differentiation of MSCs and its potential in the development of new strategies in cartilage tissue engineering.
Collapse
|
46
|
The Role of Autophagy in the Maintenance of Stemness and Differentiation of Mesenchymal Stem Cells. Stem Cell Rev Rep 2016; 12:621-633. [DOI: 10.1007/s12015-016-9690-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Hu XK, Yin XH, Zhang HQ, Guo CF, Tang MX. Liraglutide attenuates the osteoblastic differentiation of MC3T3‑E1 cells by modulating AMPK/mTOR signaling. Mol Med Rep 2016; 14:3662-8. [PMID: 27600753 PMCID: PMC5042760 DOI: 10.3892/mmr.2016.5729] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 07/29/2016] [Indexed: 01/13/2023] Open
Abstract
Liraglutide, a synthetic analogue of glucagon-like peptide-1, is utilized in the treatment of type 2 diabetes and obesity. Liraglutide has been previously demonstrated to prevent osteoblastic differentiation of human vascular smooth muscle cells, resulting in the slowing of arterial calcification, however, its effect on bone formation remains unclear. The present study investigated the effect of liraglutide on osteoblastic differentiation using Alizarin Red S staining, and examined the molecular mechanisms underlying the regulatory effect by western blot analysis. The present study demonstrated that protein expression levels of phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK) were downregulated in MC3T3-E1 cells during osteoblastic differentiation in commercial osteogenic differentiation medium, whereas protein expression levels of transforming growth factor-β (TGF-β) and phosphorylated mammalian target of rapamycin (p-mTOR) increased. Liraglutide was subsequently demonstrated to dose-dependently attenuate the osteoblastic differentiation of MC3T3-E1 cells, to upregulate p-AMPK, and downregulate p-mTOR and TGF-β protein expression levels. Treatment with an AMPK-specific inhibitor, Compound C, eradicated the effect of liraglutide on osteoblastic differentiation, and p-mTOR and TGF-β downregulation. An mTOR activator, MHY1485, also abolished the inhibitory effect of liraglutide on osteoblastic differentiation, and resulted in p-mTOR and TGF-β downregulation, but did not attenuate the liraglutide-induced increase in p-AMPK protein expression levels. The results of the present study demonstrate that liraglutide attenuates osteoblastic differentiation of MC3T3-E1 cells via modulation of AMPK/mTOR signaling. The present study revealed a novel function of liraglutide, which contributes to the understanding of its pharmacological and physiological effects in clinical settings.
Collapse
Affiliation(s)
- Xiong-Ke Hu
- Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Xin-Hua Yin
- Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Hong-Qi Zhang
- Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Chao-Feng Guo
- Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Ming-Xing Tang
- Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
48
|
Lauzon MA, Drevelle O, Daviau A, Faucheux N. Effects of BMP-9 and BMP-2 on the PI3K/Akt Pathway in MC3T3-E1 Preosteoblasts. Tissue Eng Part A 2016; 22:1075-85. [PMID: 27477105 DOI: 10.1089/ten.tea.2016.0151] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The bone morphogenetic proteins (BMPs), which are involved in bone formation and repair, play an important role in tissue engineering. For example, BMP-9 and BMP-2, which are members of different BMP subfamilies, are osteoinductive factors. However, several studies have recently shown that BMP-9 is more osteogenic than BMP-2. We have previously shown that fetal bovine serum (FBS) strongly enhances the osteoblast differentiation of murine preosteoblasts (MC3T3-E1) to BMP-9 but not to BMP-2. This effect is mimicked by IGF-2, which primarily activates the PI3K/Akt pathway, but how Akt phosphorylation sites are implicated in such differentiation is unclear. The effects of BMP-9 and BMP-2 with or without FBS or IGF-2 on Akt phosphorylation sites and subsequent osteoblastic differentiation were determined, respectively, by western blot analysis and alkaline phosphatase activity measurements. The involvement of phosphorylated Akt at Thr308 and/or Ser473 on BMP-mediated osteoblast differentiation was further studied using specific inhibitors. In MC3T3-E1 incubated with or without FBS, BMP-9 and BMP-2 activate Akt on Ser473 and Thr308 very differently in a time and dose-dependent manner. Using inhibitors specific to each Akt phosphorylation site, we showed that both Ser473 and Thr308 must be phosphorylated for BMP-9 and/or IGF-2-induced osteoblast differentiation, whereas BMP-2 requires phosphorylation of only Ser473. Furthermore, cells stimulated with BMP-2 in the presence of FBS require the phosphorylation of Akt at Ser473 and the dephosphorylation of Akt at Thr308 to increase the osteoblast differentiation with alkaline phosphatase activity similar to that of BMP-9 plus FBS. These results provide a better understanding into how BMP-9 induces osteoblast differentiation and its synergy with IGF-2 at the signaling level. This knowledge is essential for preparing the serum-free osteogenic media required for bone tissue engineering or developing growth factor delivery systems to improve bone formation.
Collapse
Affiliation(s)
- Marc-Antoine Lauzon
- 1 Department of Chemical and Biotechnological Engineering, Université de Sherbrooke , Sherbrooke, Canada
| | - Olivier Drevelle
- 1 Department of Chemical and Biotechnological Engineering, Université de Sherbrooke , Sherbrooke, Canada .,2 Department of Chemical Engineering, École Polytechnique de Montréal , Montréal, Canada
| | - Alex Daviau
- 1 Department of Chemical and Biotechnological Engineering, Université de Sherbrooke , Sherbrooke, Canada
| | - Nathalie Faucheux
- 1 Department of Chemical and Biotechnological Engineering, Université de Sherbrooke , Sherbrooke, Canada
| |
Collapse
|
49
|
Xiong M, Ferder IC, Ohguchi Y, Wang N. Quantitative analysis of male germline stem cell differentiation reveals a role for the p53-mTORC1 pathway in spermatogonial maintenance. Cell Cycle 2016; 14:2905-13. [PMID: 26177380 DOI: 10.1080/15384101.2015.1069928] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
p53 protects cells from DNA damage by inducing cell-cycle arrest upon encountering genomic stress. Among other pathways, p53 elicits such an effect by inhibiting mammalian target of rapamycin complex 1 (mTORC1), the master regulator of cell proliferation and growth. Although recent studies have indicated roles for both p53 and mTORC1 in stem cell maintenance, it remains unclear whether the p53-mTORC1 pathway is conserved to mediate this process under normal physiological conditions. Spermatogenesis is a classic stem cell-dependent process in which undifferentiated spermatogonia undergo self-renewal and differentiation to maintain the lifelong production of spermatozoa. To better understand this process, we have developed a novel flow cytometry (FACS)-based approach that isolates spermatogonia at consecutive differentiation stages. By using this as a tool, we show that genetic loss of p53 augments mTORC1 activity during early spermatogonial differentiation. Functionally, loss of p53 drives spermatogonia out of the undifferentiated state and causes a consistent expansion of early differentiating spermatogonia until the stage of preleptotene (premeiotic) spermatocyte. The frequency of early meiotic spermatocytes is, however, dramatically decreased. Thus, these data suggest that p53-mTORC1 pathway plays a critical role in maintaining the homeostasis of early spermatogonial differentiation. Moreover, our FACS approach could be a valuable tool in understanding spermatogonial differentiation.
Collapse
Affiliation(s)
- Mulin Xiong
- a Vincent Center for Reproductive Biology; Vincent Department of Obstetrics and Gynecology; Massachusetts General Hospital; Harvard Medical School ; Boston , MA USA
| | - Ianina C Ferder
- a Vincent Center for Reproductive Biology; Vincent Department of Obstetrics and Gynecology; Massachusetts General Hospital; Harvard Medical School ; Boston , MA USA
| | - Yasuyo Ohguchi
- a Vincent Center for Reproductive Biology; Vincent Department of Obstetrics and Gynecology; Massachusetts General Hospital; Harvard Medical School ; Boston , MA USA
| | - Ning Wang
- a Vincent Center for Reproductive Biology; Vincent Department of Obstetrics and Gynecology; Massachusetts General Hospital; Harvard Medical School ; Boston , MA USA
| |
Collapse
|
50
|
Xu S, Zhang Y, Liu B, Li K, Huang B, Yan B, Zhang Z, Liang K, Jia C, Lin J, Zeng C, Cai D, Jin D, Jiang Y, Bai X. Activation of mTORC1 in B Lymphocytes Promotes Osteoclast Formation via Regulation of β-Catenin and RANKL/OPG. J Bone Miner Res 2016; 31:1320-33. [PMID: 26825871 DOI: 10.1002/jbmr.2800] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 01/29/2016] [Indexed: 11/06/2022]
Abstract
The cytokine receptor activator of nuclear factor-κB ligand (RANKL) induces osteoclast formation from monocyte/macrophage lineage cells. However, the mechanisms by which RANKL expression is controlled in cells that support osteoclast differentiation are still unclear. We show that deletion of TSC1 (tuberous sclerosis complex 1) in murine B cells causes constitutive activation of mechanistic target of rapamycin complex 1 (mTORC1) and stimulates RANKL but represses osteoprotegerin (OPG) expression and subsequently promotes osteoclast formation and causes osteoporosis in mice. Furthermore, the regulation of RANKL/OPG and stimulation of osteoclastogenesis by mTORC1 was confirmed in a variety of RANKL-expressing cells and in vivo. Mechanistically, mTORC1 controls RANKL/OPG expression through negative feedback inactivation of Akt, destabilization of β-catenin mRNA, and downregulation of β-catenin. Our findings demonstrate that mTORC1 activation-stimulated RANKL expression in B cells is sufficient to induce bone loss and osteoporosis. The study also established a link between mTORC1 and the RANKL/OPG axis via negative regulation of β-catenin. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Song Xu
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Academy of Orthopedics in Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yue Zhang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Academy of Orthopedics in Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kai Li
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Bin Huang
- Academy of Orthopedics in Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Bo Yan
- Academy of Orthopedics in Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zhongmin Zhang
- Academy of Orthopedics in Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Kangyan Liang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chunhong Jia
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jun Lin
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chun Zeng
- Academy of Orthopedics in Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Daozhang Cai
- Academy of Orthopedics in Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dadi Jin
- Academy of Orthopedics in Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiaochun Bai
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Academy of Orthopedics in Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|