1
|
Nuermaimaiti A, Chang L, Yan Y, Sun H, Xiao Y, Song S, Feng K, Lu Z, Ji H, Wang L. The role of sex hormones and receptors in HBV infection and development of HBV-related HCC. J Med Virol 2023; 95:e29298. [PMID: 38087447 DOI: 10.1002/jmv.29298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/02/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023]
Abstract
Gender disparity in hepatitis B virus (HBV)-related diseases has been extensively documented. Epidemiological studies consistently reported that males have a higher prevalence of HBV infection and incidence of hepatocellular carcinoma (HCC). Further investigations have revealed that sex hormone-related signal transductions play a significant role in gender disparity. Sex hormone axes showed significantly different responses to virus entry and replication. The sex hormones axes change the HBV-specific immune responses and antitumor immunity. Additionally, Sex hormone axes showed different effects on the development of HBV-related disease. But the role of sex hormones remains controversial, and researchers have not reached a consensus on the role of sex hormones and the use of hormone therapies in HCC treatment. In this review, we aim to summarize the experimental findings on sex hormones and provide a comprehensive understanding of their roles in the development of HCC and their implications for hormone-related HCC treatment.
Collapse
Affiliation(s)
- Abudulimutailipu Nuermaimaiti
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Le Chang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Ying Yan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Huizhen Sun
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yingzi Xiao
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shi Song
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kaihao Feng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhuoqun Lu
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Huimin Ji
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Lunan Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Zhou L, Li J, Liu X, Tang Y, Li T, Deng H, Chen J, Yin X, Hu K, Ouyang W. Dexmedetomidine promotes apoptosis and suppresses proliferation of hepatocellular carcinoma cells via microRNA-130a/EGR1 axis. Cell Death Dis 2022; 8:31. [PMID: 35046398 PMCID: PMC8770558 DOI: 10.1038/s41420-021-00805-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/03/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022]
Abstract
Accumulating evidence has revealed the role of microRNAs (miRs) in hepatocellular carcinoma (HCC). Dexmedetomidine, a highly selective α2-adrenergic agonist, is widely used in perioperative settings for analgesia and sedation. Herein, we aimed to determine whether dexmedetomidine might directly regulate miR-130a/early growth response 1 (EGR1) axis in HCC and explore the related mechanisms. miR-130a and EGR1 expression were determined in HCC tissues and their correlation was evaluated. Human HCC cell line HCCLM3 was selected. Upon the determination of the optimal concentration of dexmedetomidine, HCCLM3 cells were treated with dexmedetomidine, miR-130a- or EGR1-related oligonucleotides or plasmids were transfected into cells to explore their functions in cell biological behaviors. miR-130a and EGR1 levels in cells were tested. The targeting relationship between miR-130a and EGR1 was verified. miR-130a was inhibited while EGR1 was elevated in HCC tissues and they were negatively correlated. EGR1 was targeted by miR-130a. With the increase of dexmedetomidine concentration, HCCLM3 cell viability was correspondingly inhibited, miR-130a expression was elevated and EGR1 expression was decreased. Dexmedetomidine, upregulating miR-130a or downregulating EGR1 inhibited proliferation, invasion and migration, and promoted apoptosis of HCCLM3 cells. MiR-130a upregulation/downregulation enhanced/impaired the effect of dexmedetomidine on cell biological behaviors. Our study provides evidence that raising miR-130a enhances the inhibitory effects of dexmedetomidine on HCC cellular growth via inhibiting EGR1. Thus, miR-130a may be a potential candidate for the treatment of HCC.
Collapse
|
3
|
Blood and lung microRNAs as biomarkers of pulmonary tumorigenesis in cigarette smoke-exposed mice. Oncotarget 2018; 7:84758-84774. [PMID: 27713172 PMCID: PMC5341294 DOI: 10.18632/oncotarget.12475] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/22/2016] [Indexed: 12/28/2022] Open
Abstract
Cigarette smoke (CS) is known to dysregulate microRNA expression profiles in the lungs of mice, rats, and humans, thereby modulating several pathways involved in lung carcinogenesis and other CS-related diseases. We designed a study aimed at evaluating (a) the expression of 1135 microRNAs in the lung of Swiss H mice exposed to mainstream CS during the first 4 months of life and thereafter kept in filtered air for an additional 3.5 months, (b) the relationship between lung microRNA profiles and histopathological alterations in the lung, (c) intergender differences in microRNA expression, and (d) the comparison with microRNA profiles in blood serum. CS caused multiple histopathological alterations in the lung, which were almost absent in sham-exposed mice. An extensive microRNA dysregulation was detected in the lung of CS-exposed mice. Modulation of microRNA profiles was specifically related to the histopathological picture, no effect being detected in lung fragments with non-neoplastic lung diseases (emphysema or alveolar epithelial hyperplasia), whereas a close association occurred with the presence and multiplicity of preneoplastic lesions (microadenomas) and benign lung tumors (adenomas). Three microRNAs regulating estrogen and HER2-dependent mechanisms were modulated in the lung of adenoma-bearing female mice. Blood microRNAs were also modulated in mice affected by early neoplastic lesions. However, there was a poor association between lung microRNAs and circulating microRNAs, which can be ascribed to an impaired release of mature microRNAs from the damaged lung. Studies in progress are evaluating the feasibility of analyzing blood microRNAs as a molecular tool for lung cancer secondary prevention.
Collapse
|
4
|
Shen M, Cao J, Shi H. Effects of Estrogen and Estrogen Receptors on Transcriptomes of HepG2 Cells: A Preliminary Study Using RNA Sequencing. Int J Endocrinol 2018; 2018:5789127. [PMID: 30510575 PMCID: PMC6230429 DOI: 10.1155/2018/5789127] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/12/2018] [Indexed: 12/23/2022] Open
Abstract
Men have a much higher incidence of hepatocellular carcinoma (HCC), the predominant form of liver cancer, than women, suggesting that estrogens play a protective role in liver cancer development and progression. To begin to understand the potential mechanisms of estrogens' inhibitory effects on HCC development, RNA sequencing was used to generate comprehensive global transcriptome profiles of the human HCC-derived HepG2 cell line following treatment of vehicle (control), estradiol (E2), estrogen receptor alpha- (ERα-) specific agonist 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT), or ERβ-specific agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) using a small set of cells. Gene ontology (GO) analysis identified increased expression of genes involved in the biological process (BP) of response to different stimuli and metabolic processes by E2 and ER agonists, which enhanced molecular function (MF) in various enzyme activities and chemical bindings. Kyoto Encyclopedia of Genes and Genomes (KEGG) functional pathway analysis indicated enhanced pathways associated with carbohydrate metabolism, complement and coagulation cascades, and HIF-1 signaling pathway by E2 and ER agonists. GO analysis also identified decreased expression of genes by E2, PPT, and DPN involved in BP related to the cell cycle and cell division, which reduced MF in activity of multiple enzymes and microtubule activity. KEGG analysis indicated that E2, PPT, and DPN suppressed pathways associated with the cell cycle; E2 and PPT suppressed pathways associated with chemical carcinogenesis and drug metabolism, and DPN suppressed DNA replication, recombination, and repair. Collectively, these differentially expressed genes across HepG2 cell transcriptome involving cellular and metabolic processes by E2 and ER agonists provided mechanistic insight into protective effects of estrogens in HCC development.
Collapse
Affiliation(s)
- Minqian Shen
- Department of Biology, Miami University, 700 E. High St., Oxford, OH, USA
| | - Jingyi Cao
- Department of Biology, Miami University, 700 E. High St., Oxford, OH, USA
| | - Haifei Shi
- Department of Biology, Miami University, 700 E. High St., Oxford, OH, USA
| |
Collapse
|
5
|
Li MP, Hu YD, Hu XL, Zhang YJ, Yang YL, Jiang C, Tang J, Chen XP. MiRNAs and miRNA Polymorphisms Modify Drug Response. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13111096. [PMID: 27834829 PMCID: PMC5129306 DOI: 10.3390/ijerph13111096] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/17/2016] [Accepted: 10/31/2016] [Indexed: 12/13/2022]
Abstract
Differences in expression of drug response-related genes contribute to inter-individual variation in drugs’ biological effects. MicroRNAs (miRNAs) are small noncoding RNAs emerging as new players in epigenetic regulation of gene expression at post-transcriptional level. MiRNAs regulate the expression of genes involved in drug metabolism, drug transportation, drug targets and downstream signal molecules directly or indirectly. MiRNA polymorphisms, the genetic variations affecting miRNA expression and/or miRNA-mRNA interaction, provide a new insight into the understanding of inter-individual difference in drug response. Here, we provide an overview of the recent progress in miRNAs mediated regulation of biotransformation enzymes, drug transporters, and nuclear receptors. We also describe the implications of miRNA polymorphisms in cancer chemotherapy response.
Collapse
Affiliation(s)
- Mu-Peng Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Yao-Dong Hu
- Department of Cardiology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi 046000, China.
| | - Xiao-Lei Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Yan-Jiao Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Yong-Long Yang
- Haikou People's Hospital and Affiliated Haikou Hospital of Xiangya Medical School, Central South University, Haikou 570311, China.
| | - Chun Jiang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Jie Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| |
Collapse
|
6
|
Liu Y, Li Y, Wang R, Qin S, Liu J, Su F, Yang Y, Zhao F, Wang Z, Wu Q. MiR-130a-3p regulates cell migration and invasion via inhibition of Smad4 in gemcitabine resistant hepatoma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:19. [PMID: 26817584 PMCID: PMC4729098 DOI: 10.1186/s13046-016-0296-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/21/2016] [Indexed: 01/07/2023]
Abstract
Background Emerging evidence demonstrates that microRNAs (miRNAs) play an important role in regulation of cell growth, invasion and metastasis through inhibiting the expression of their targets. It has been reported that miR-130a-3p controls cell growth, migration and invasion in a variety of cancer cells. However, it is unclear whether miR-130a-3p regulates epithelial-mesenchymal transition (EMT) in drug resistant cancer cells. Therefore, in the current study, we explore the role and molecular mechanisms of miR-130a-3p in gemcitabine resistant (GR) hepatocellular carcinoma (HCC) cells. Methods The real-time RT-PCR was used to measure the miR-130a-3p expression in GR HCC cells compared with their parental cells. The wound healing assay was conducted to determine the cell migratory activity in GR HCC cells treated with miR-130a-3p mimics. The migration and invasion assays were also performed to explore the role of miR-130a-3p in GR HCC cells. Western blotting analysis was used to measure the expression of Smad4, E-cadherin, Vimentin, and MMP-2 in GR HCC cells after depletion of Smad4. The luciferase assay was conducted to validate whether Smad4 is a target of miR-130a-3p. The student t-test was used to analyze our data. Results We found the down-regulation of miR-130a-3p in GR HCC cells. Moreover, we validate the Smad4 as a potential target of miR-130a-3p. Furthermore, overexpression of miR-130a-3p suppressed Smad4 expression, whereas inhibition of miR-130a-3p increased Smad4 expression. Consistently, overexpression of miR-130a-3p or down-regulation of Smad4 suppressed the cell detachment, attachment, migration, and invasion in GR HCC cells. Conclusions Our findings provide a molecular insight on understanding drug resistance in HCC cells. Therefore, activation of miR-130a-3p or inactivation of Smad4 could be a novel approach for the treatment of HCC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yumei Li
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Rui Wang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Shukui Qin
- Department of Medical Oncology, PLA Cancer Center, Nanjing Bayi Hospital, Nanjing, Jiangsu, China
| | - Jing Liu
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Fang Su
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yan Yang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Fuyou Zhao
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Zishu Wang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Qiong Wu
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China.
| |
Collapse
|
7
|
Jiang P, Cao J, Bai WH. Lentivirus-Mediated siRNA Targeting ER-α Inhibits Tumorigenesis and Induces Apoptosis in Hepatocarcinoma Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:490681. [PMID: 26413526 PMCID: PMC4564599 DOI: 10.1155/2015/490681] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/01/2015] [Accepted: 01/03/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND OBJECTIVES Estrogen receptor-α (ER-α) plays important roles in hepatocarcinogenesis. Recent studies have shown that ER-α could lead to cell cycle progression or inhibition of apoptosis. To better understand the role of ER-α, RNA interference (RNAi) was used to inhibit ER-α expression in the human hepatocellular carcinoma (HCC) cells. METHODS Lentivirus-mediated ER-α small interfering RNA (siRNA) was transfected into HCC cells Hep3B. ER-α expression was monitored by real-time polymerase chain reaction (PCR) and western blot. Cell proliferation, apoptosis, and invasion were examined by methyl thiazol tetrazolium (MTT), flow cytometry (FCM), and invasion assay, respectively. RESULTS ER-α siRNA efficiently downregulated the expression of ER-α in Hep3B cells at both mRNA and protein levels in a time-dependent manner. ER-α siRNA also inhibited cell proliferation and reduced cell invasion (compared with other groups, P < 0.05, resp.). Furthermore, knockdown of ER-α slowed down the cell population at S phase and increased the rate of apoptosis (P < 0.05, resp.). CONCLUSION ER-α knockdown suppressed the growth of HCC cells. Thus, ER-α may play a very important role in carcinogenesis of HCC and its knockdown may offer a new potential gene therapy approach for human liver cancer in the future.
Collapse
Affiliation(s)
- Ping Jiang
- Department of General Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei 430071, China
| | - Jun Cao
- Department of General Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei 430071, China
| | - Wen-Hui Bai
- Department of General Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei 430071, China
| |
Collapse
|
8
|
He Y, Chevillet JR, Liu G, Kim TK, Wang K. The effects of microRNA on the absorption, distribution, metabolism and excretion of drugs. Br J Pharmacol 2015; 172:2733-47. [PMID: 25296724 PMCID: PMC4439871 DOI: 10.1111/bph.12968] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/18/2014] [Accepted: 09/26/2014] [Indexed: 12/17/2022] Open
Abstract
The importance of genetic factors (e.g. sequence variation) in the absorption, distribution, metabolism, excretion (ADME) and overall efficacy of therapeutic agents is well established. Our ability to identify, interpret and utilize these factors is the subject of much clinical investigation and therapeutic development. However, drug ADME and efficacy are also heavily influenced by epigenetic factors such as DNA/histone methylation and non-coding RNAs [especially microRNAs (miRNAs)]. Results from studies using tools, such as in silico miRNA target prediction, in vitro functional assays, nucleic acid profiling/sequencing and high-throughput proteomics, are rapidly expanding our knowledge of these factors and their effects on drug metabolism. Although these studies reveal a complex regulation of drug ADME, an increased understanding of the molecular interplay between the genome, epigenome and transcriptome has the potential to provide practically useful strategies to facilitate drug development, optimize therapeutic efficacy, circumvent adverse effects, yield novel diagnostics and ultimately become an integral component of personalized medicine.
Collapse
Affiliation(s)
- Y He
- Institute of Medical Systems Biology, Guangdong Medical CollegeDongguan, Guangdong, China
| | | | - G Liu
- Department of Chemistry and Biochemistry, North Dakota State UniversityFargo, ND, USA
| | - T K Kim
- Institute for Systems BiologySeattle, WA, USA
| | - K Wang
- Institute for Systems BiologySeattle, WA, USA
| |
Collapse
|
9
|
Vrtačnik P, Ostanek B, Mencej-Bedrač S, Marc J. The many faces of estrogen signaling. Biochem Med (Zagreb) 2014; 24:329-42. [PMID: 25351351 PMCID: PMC4210253 DOI: 10.11613/bm.2014.035] [Citation(s) in RCA: 262] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/14/2014] [Indexed: 12/21/2022] Open
Abstract
Estrogens have long been known as important regulators of the female reproductive functions; however, our understanding of the role estrogens play in the human body has changed significantly over the past years. It is now commonly accepted that estrogens and androgens have important functions in both female and male physiology and pathology. This is in part due to the local synthesis and action of estrogens that broadens the role of estrogen signaling beyond that of the endocrine system. Furthermore, there are several different mechanisms through which the three estrogen receptors (ERs), ERα, ERβ and G protein-coupled estrogen receptor 1 (GPER1) are able to regulate target gene transcription. ERα and ERβ are mostly associated with the direct and indirect genomic signaling pathways that result in target gene expression. Membrane-bound GPER1 is on the other hand responsible for the rapid non-genomic actions of estrogens that activate various protein-kinase cascades. Estrogen signaling is also tightly connected with another important regulatory entity, i.e. epigenetic mechanisms. Posttranslational histone modifications, microRNAs (miRNAs) and DNA methylation have been shown to influence gene expression of ERs as well as being regulated by estrogen signaling. Moreover, several coregulators of estrogen signaling also exhibit chromatin-modifying activities further underlining the importance of epigenetic mechanisms in estrogen signaling. This review wishes to highlight the newer aspects of estrogen signaling that exceed its classical endocrine regulatory role, especially emphasizing its tight intertwinement with epigenetic mechanisms.
Collapse
Affiliation(s)
- Peter Vrtačnik
- University of Ljubljana, Faculty of Pharmacy, Department of Clinical Biochemistry, Ljubljana, Slovenia
| | - Barbara Ostanek
- University of Ljubljana, Faculty of Pharmacy, Department of Clinical Biochemistry, Ljubljana, Slovenia
| | - Simona Mencej-Bedrač
- University of Ljubljana, Faculty of Pharmacy, Department of Clinical Biochemistry, Ljubljana, Slovenia
| | - Janja Marc
- University of Ljubljana, Faculty of Pharmacy, Department of Clinical Biochemistry, Ljubljana, Slovenia
| |
Collapse
|
10
|
Dai B, Geng L, Yu Y, Sui C, Xie F, Shen W, Zheng T, Yang J. Methylation patterns of estrogen receptor α promoter correlate with estrogen receptor α expression and clinicopathological factors in hepatocellular carcinoma. Exp Biol Med (Maywood) 2014; 239:883-890. [PMID: 24939822 DOI: 10.1177/1535370214536651] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the seventh most common type of cancer; notably, the incidence of HCC is four to eight times higher in men than women. Previous studies reported that the estrogen receptor (ER) signaling pathway is involved in the pathogenesis of HCC, although the extent of its involvement is unclear due to several conflicting reports. In the present study, tumor and paired adjacent non-cancerous tissues from 157 HCC patients were collected. Transcriptome sequencing and real-time quantitative polymerase chain reaction were used to quantify the ER α (ESR1) expression levels, and the Sequenom EpiTYPER assay was used to delineate the methylation patterns in the ESR1 promoter. We found that ESR1 expression was significantly reduced in tumor tissues (P < 0.001) compared to adjacent non-cancerous tissues. The CpG sites around the transcription start site were significantly hypermethylated in the tumor (P < 0.0001). This methylation pattern also correlated with the gene expression (P < 0.0001). Additionally, we found that the hypermethylation of ESR1 was associated with the presence of fibrous capsules (P = 1.2 × 10-4), the absence of microvascular invasions (P = 8.0 × 10-4), thin trabecular pattern (P = 0.025), and lower histologic gradings (P = 5.2 × 10-3). Thus, ESR1 expression is a candidate tumor suppressor gene in HCC. Further, promoter hypermethylation may be a mechanism by which expression of ESR1 is repressed, and the extent of hypermethylation of ESR1 may be a marker for HCC status and progression.
Collapse
Affiliation(s)
- Binghua Dai
- The Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Li Geng
- The Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Yong Yu
- The Department of Biliary Tract Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Chengjun Sui
- The Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Feng Xie
- The Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Weifeng Shen
- The Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Tao Zheng
- The Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Jiamei Yang
- The Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| |
Collapse
|
11
|
Downregulation of connexin43 by microRNA-130a in cardiomyocytes results in cardiac arrhythmias. J Mol Cell Cardiol 2014; 74:53-63. [PMID: 24819345 DOI: 10.1016/j.yjmcc.2014.04.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/23/2014] [Accepted: 04/25/2014] [Indexed: 01/17/2023]
Abstract
MicroRNAs (miRNAs) are now recognized as critical regulators of diverse physiological and pathological processes; however, studies of miRNAs and arrhythmogenesis remain sparse. Connexin43 (Cx43), a major cardiac gap junction protein, has elicited great interest in its role in arrhythmias. Additionally, Cx43 was a potential target for miR-130a as predicted by several computational algorithms. This study investigates the effect of miR-130a overexpression in the adult heart and its effect on cardiac rhythm. Using a cardiac-specific inducible system, transgenic mice demonstrated both atrial and ventricular arrhythmias. We performed ventricular-programmed electrical stimulation and found that the αMHC-miR130a mice developed sustained ventricular tachycardia beginning 6weeks after overexpression. Western blot analysis demonstrated a steady decline in Cx43 after 2weeks of overexpression with over a 90% reduction in Cx43 levels by 10weeks. Immunofluorescent staining confirmed a near complete loss of Cx43 throughout the heart. To validate Cx43 as a direct target of miR-130a, we performed in vitro target assays in 3T3 fibroblasts and HL-1 cardiomyocytes, both known to endogenously express miR-130a. Using a luciferase reporter fused to the 3'UTR of Cx43, we found a 52.9% reduction in luciferase activity in 3T3 cells (p<0.0001) and a 47.6% reduction in HL-1 cells (p=0.0056) compared to controls. Addition of an antisense miR-130a inhibitor resulted in a loss of inhibitory activity of the Cx43 3'UTR reporter. We have identified an unappreciated role for miR-130a as a direct regulator of Cx43. Overexpression of miR-130a may contribute importantly to gap junction remodeling and to the pathogenesis of atrial and ventricular arrhythmias.
Collapse
|
12
|
MiR‐365b‐3p, down‐regulated in retinoblastoma, regulates cell cycle progression and apoptosis of human retinoblastoma cells by targeting PAX6. FEBS Lett 2013; 587:1779-86. [PMID: 23660406 DOI: 10.1016/j.febslet.2013.04.029] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/11/2013] [Accepted: 04/18/2013] [Indexed: 12/24/2022]
|
13
|
Abstract
There are considerable interindividual variations in drug absorption, distribution, metabolism and excretion (ADME) in humans, which may lead to undesired drug effects in pharmacotherapy. Some of the mechanistic causes are known, e.g., genetic polymorphism, inhibition and induction of ADME enzymes and transporters, while others such as posttranscriptional regulation of ADME genes are under active study. MicroRNAs (miRNAs) are a large group of small, noncoding RNAs that control posttranscriptional expression of target genes. More than 1000 miRNAs have been identified in the human genome, which may regulate thousands of protein-coding genes. Some miRNAs directly or indirectly control the expression of xenobiotic-metabolizing cytochrome P450 enzymes, ATP-binding cassette or solute carrier transporters and/or nuclear receptors. Consequently, intervention of miRNA epigenetic signaling may alter ADME gene expression, change the capacity of drug metabolism and transport, and influence the sensitivity of cells to xenobiotics. In addition, the expression of some ADME regulatory miRNAs is significantly changed in cells following the exposure to a given drug, and the consequent changes in ADME gene expression might result in distinct ADME properties and drug response. In this review, we summarized recent findings on the role of noncoding miRNAs in epigenetic regulation of ADME genes and discussed the potential impact on pharmacokinetics and pharmacodynamics.
Collapse
Affiliation(s)
- Ai-Ming Yu
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260-1200, USA
| | - Yu-Zhuo Pan
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260-1200, USA
| |
Collapse
|