1
|
Qiu C, Fan H, Tao S, Deng Z, Luo H, Liu F. ST8SIA6-AS1, a novel lncRNA star in liver cancer. Front Cell Dev Biol 2024; 12:1435664. [PMID: 39211393 PMCID: PMC11358109 DOI: 10.3389/fcell.2024.1435664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Liver cancer is one of the most lethal gastrointestinal malignancies. Emerging evidence has underscored the pivotal role of long non-coding RNAs (lncRNAs) in tumorigenesis, with ST8SIA6-AS1 identified as a novel oncogenic lncRNA contributing to liver cancer progression. ST8SIA6-AS1 is consistently upregulated in hepatic cancer tissues and is strongly associated with unfavorable prognosis. Moreover, it demonstrates high diagnostic efficacy in detecting HCC. ST8SIA6-AS1 is involved in various cellular processes including proliferation, migration, and invasion, primarily through its function as a competing endogenous RNA (ceRNA), thereby facilitating hepatocarcinogenesis and disease advancement. This review provides a detailed examination of the molecular functions and regulatory mechanisms of ST8SIA6-AS1 in hepatocellular carcinoma (HCC) and highlights its potential as a promising biomarker for liver cancer, aiming to propel the development of innovative therapeutic strategies for HCC management.
Collapse
Affiliation(s)
- Cheng Qiu
- Department of General Surgery, Pingxiang People’s Hospital, Pingxiang, Jiangxi, China
| | - Haoran Fan
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Siyu Tao
- Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ziqing Deng
- Department of General Surgery, Nanchang Third Hospital, Nanchang, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Fangteng Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Tang H, Huang Z, Wang M, Luan X, Deng Z, Xu J, Fan W, He D, Zhou C, Wang L, Li J, Zeng F, Li D, Zhou J. Research progress of migrasomes: from genesis to formation, physiology to pathology. Front Cell Dev Biol 2024; 12:1420413. [PMID: 39206093 PMCID: PMC11349668 DOI: 10.3389/fcell.2024.1420413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Migrasomes are recently identified organelles that form at the ends or forks of retraction fibers (RFs) behind migrating cells and are expelled from the cell through cell migration. Migrasomes contain signaling molecules which are captured by surrounding cells along with migrasomes or released into the extracellular environment following the rupture of the migrasomes. Finally, through the action of these signaling molecules, migrasomes facilitate the entire process of information conveyance. In addition, migrasomes also serves as a "scavenger" by removing damaged mitochondria from the cell to ensure cellular viability. Thus, migrasomes play a pivotal role in the integration of temporal, spatial, specific chemical information and the clearance of cellular harmful substances, critical for grasping migrasomes' functions. This review delves into the latest advancements in migrasomes research, covering aspects such as migrasomes' discovery, distribution, structure and characteristics, genesis and regulation mechanisms, and their correlation with diseases. Additionally, we scrutinize the present investigational findings on migrasomes within the cancer domain, examining their potential impact on cancer and prospective research avenues.
Collapse
Affiliation(s)
- Hua Tang
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Zhe Huang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Cliniccal Research Center for Neurosurgery, Luzhou, China
- Laboratory of Brain Function, Southwest Medical University, Luzhou, Sichuan, China
| | - Ming Wang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Cliniccal Research Center for Neurosurgery, Luzhou, China
- Laboratory of Brain Function, Southwest Medical University, Luzhou, Sichuan, China
| | - Xingzhao Luan
- Department of Neurosurgery, The Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Zengfu Deng
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Jian Xu
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Wei Fan
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Dongsheng He
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Chong Zhou
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Liangbin Wang
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Jun Li
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Fanfeng Zeng
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Dongbo Li
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Jie Zhou
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Cliniccal Research Center for Neurosurgery, Luzhou, China
- Laboratory of Brain Function, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Tang HY, Lin M, Liang YQ, Wang JH, Yi HG, Yang M. Tspan5 promotes the EMT process to regulate the syncytialization of trophoblast cells by activating Notch signalling. ZYGOTE 2023; 31:498-506. [PMID: 37485669 DOI: 10.1017/s0967199423000369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Placental trophoblastic cells play important roles in placental development and fetal health. However, the mechanism of trophoblastic cell fusion is still not entirely clear. The level of Tspan5 in the embryo culture medium was detected using enzyme-linked immunosorbent assay (ELISA). Fusion of BeWo cells was observed by immunofluorescence. Cell fusion-related factors and EMT-related factors were identified by qRT-PCR and western blotting. Notch protein repressor DAPT was used to verify the role of Tspan5 in BeWo cells. The expression of Tspan5 was significantly increased in embryo culture medium. The fusion of BeWo cells was observed after treatment with forskolin (FSK). Cell fusion-related factors (i.e. β-hCG and syncytin 1/2) and Tspan5 were significantly increased after FSK treatment. In addition, FSK treatment promoted EMT-related protein expression in BeWo cells. Knockdown of Tspan5 inhibited cell fusion and EMT-related protein levels. Notch-1 and Jagged-1 protein levels were significantly upregulated, and the EMT process was activated by overexpression of Tspan5 in FSK-treated BeWo cells. Interestingly, blocking the Notch pathway by the repressor DAPT had the opposite results. These results indicated that Tspan5 could promote the EMT process by activating the Notch pathway, thereby causing cell fusion. These findings contribute to a better understanding of trophoblast cell syncytialization and embryonic development. Tspan5 may be used as a therapeutic target for normal placental development.
Collapse
Affiliation(s)
- Hai-Yu Tang
- Department of Reproductive Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou514000, Guangdong Province, China
| | - Mei Lin
- Department of Reproductive Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou514000, Guangdong Province, China
| | - Yong-Qian Liang
- Department of Reproductive Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou514000, Guangdong Province, China
| | - Jin-Hua Wang
- Department of Reproductive Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou514000, Guangdong Province, China
| | - Hong-Gan Yi
- Department of Reproductive Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou514000, Guangdong Province, China
| | - Man Yang
- Department of Reproductive Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou514000, Guangdong Province, China
| |
Collapse
|
4
|
Li YC, Wu Y, Chen G, Zhu LZ, Luo X, Nie QQ, Zhang L, Zuo CJ. Tetraspanins predict the prognosis and characterize the tumor immune microenvironment of glioblastoma. Sci Rep 2023; 13:13317. [PMID: 37587203 PMCID: PMC10432458 DOI: 10.1038/s41598-023-40425-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive and lethal primary brain tumor. Conventional treatments have not achieved breakthroughs in improving survival. Therefore, novel molecular targets and biomarkers need to be identified. As signal transduction docks on the cell membrane, tetraspanins (TSPANs) are associated with various tumors; however, research on their role in GBM remains extremely scarce. Gene expression and clinicopathological characteristic data were obtained from GEPIA, CGGA, HPA, cBioPortal, and GSCA databases to analyze the mRNA and protein expression levels, prognostic value, clinical relevance, mutation status, and targeted drug sensitivity of TSPANs in GBM. Gene set enrichment analysis (GSEA), Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used for biological process enrichment. Data from TCGA and TCIA were used to construct the tumor immune microenvironment landscape of TSPANs. Different R software algorithms were used to analyze the immune score, immune cell infiltration, and immune checkpoint correlation. Univariate and multivariate analyses were performed for TSPAN4, which had the most significant predictive prognostic value, and a nomogram model was constructed to predict individual outcomes. The expression and function of TSPAN4 were verified in vitro. TSPAN3/4/6/11/12/18/23/24/25/26/27/28/29/30/31expressions were significantly upregulated in GBM, and TSPAN3/4/6/11/18/24/25/26/29/30 were strongly correlated with prognosis. The expression of multiple TSPANs significantly correlated with 1p/19q co-deletion status, IDH mutation status, recurrence, age, and tumor grade. GSEA and GO analyses revealed the potential contribution of TSPANs in cell adhesion and migration. Immune correlation analysis revealed that TSPANs are related to the formation of the GBM tumor microenvironment (TME) and may influence immunotherapy outcomes. TSPAN4 is an independent prognostic factor and TSPAN4 knockdown has been demonstrated to strongly inhibit glioma cell proliferation, invasion, and migration in vitro. We comprehensively elaborated the prognostic value and potential role of differentially expressed TSPANs in GBM, including molecules that scientists have previously overlooked. This study provides a novel and comprehensive perspective on the pathological mechanisms of GBM and the future direction of individualized tumor immunotherapy, which may be a critical link between GBM malignant progression and TME remodeling.
Collapse
Affiliation(s)
- Yu-Chao Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yue Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Li-Zhi Zhu
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiu Luo
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Qian-Qian Nie
- Department of Neurology & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Lu Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China.
| | - Chang-Jing Zuo
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
5
|
Rahim NS, Wu YS, Sim MS, Velaga A, Bonam SR, Gopinath SCB, Subramaniyan V, Choy KW, Teow SY, Fareez IM, Samudi C, Sekaran SD, Sekar M, Guad RM. Three Members of Transmembrane-4-Superfamily, TM4SF1, TM4SF4, and TM4SF5, as Emerging Anticancer Molecular Targets against Cancer Phenotypes and Chemoresistance. Pharmaceuticals (Basel) 2023; 16:ph16010110. [PMID: 36678607 PMCID: PMC9867095 DOI: 10.3390/ph16010110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/15/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
There are six members of the transmembrane 4 superfamily (TM4SF) that have similar topology and sequence homology. Physiologically, they regulate tissue differentiation, signal transduction pathways, cellular activation, proliferation, motility, adhesion, and angiogenesis. Accumulating evidence has demonstrated, among six TM4SF members, the regulatory roles of transmembrane 4 L6 domain family members, particularly TM4SF1, TM4SF4, and TM4SF5, in cancer angiogenesis, progression, and chemoresistance. Hence, targeting derailed TM4SF for cancer therapy has become an emerging research area. As compared to others, this review aimed to present a focused insight and update on the biological roles of TM4SF1, TM4SF4, and TM4SF5 in the progression, metastasis, and chemoresistance of various cancers. Additionally, the mechanistic pathways, diagnostic and prognostic values, and the potential and efficacy of current anti-TM4SF antibody treatment were also deciphered. It also recommended the exploration of other interactive molecules to be implicated in cancer progression and chemoresistance, as well as potential therapeutic agents targeting TM4SF as future perspectives. Generally, these three TM4SF members interact with different integrins and receptors to significantly induce intracellular signaling and regulate the proliferation, migration, and invasion of cancer cells. Intriguingly, gene silencing or anti-TM4SF antibody could reverse their regulatory roles deciphered in different preclinical models. They also have prognostic and diagnostic value as their high expression was detected in clinical tissues and cells of various cancers. Hence, TM4SF1, TM4SF4, and TM4SF5 are promising therapeutic targets for different cancer types preclinically and deserve further investigation.
Collapse
Affiliation(s)
- Nur Syafiqah Rahim
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Perlis Branch, Arau Campus, Arau 02600, Malaysia
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, Bandar Puncak Alam 42300, Malaysia
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia
- Correspondence: (Y.S.W.); (R.M.G.)
| | - Maw Shin Sim
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Appalaraju Velaga
- Department of Medicinal Chemistry, Faculty of Pharmacy, MAHSA University, Jenjarom 42610, Malaysia
| | - Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Subash C. B. Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar 01000, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau 02600, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Pharmacology, School of Medicine, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Malaysia
| | - Ker Woon Choy
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Malaysia
| | - Sin-Yeang Teow
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Quhai, Wenzhou 325060, China
| | - Ismail M. Fareez
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, Bandar Puncak Alam 42300, Malaysia
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Selangor Branch, Shah Alam Campus, 40450 Shah Alam, Malaysia
| | - Chandramathi Samudi
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Shamala Devi Sekaran
- Faculty of Medical and Health Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Malaysia
| | - Rhanye Mac Guad
- Department of Biomedical Science and Therapeutics, Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
- Correspondence: (Y.S.W.); (R.M.G.)
| |
Collapse
|
6
|
Miao X, Hu J, Chai C, Tang H, Zhao Z, Luo W, Zhou W, Xu H. Establishment and characterization of a new intrahepatic cholangiocarcinoma cell line derived from a Chinese patient. Cancer Cell Int 2022; 22:418. [PMID: 36578029 PMCID: PMC9795767 DOI: 10.1186/s12935-022-02840-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Patients with intrahepatic cholangiocarcinoma (ICC) require chemotherapy due to late detection, rapid disease progression, and low surgical resection rate. Tumor cell lines are extremely important in cancer research for drug discovery and development. Here, we established and characterized a new intrahepatic cholangiocarcinoma cell line, ICC-X1. STR testing confirmed the absence of cross-contamination and high similarity to the original tissue. ICC-X1 exhibited typical epithelial morphology and formed tumor spheres in the suspension culture. The population doubling time was approximately 48 h. The cell line had a complex hypotriploid karyotype. The cell line exhibited a strong migration ability in vitro and cell inoculation into BALB/c nude mice led to the formation of xenografts. Additionally, ICC-X1 cells were sensitive to gemcitabine and paclitaxel but resistant to 5-fluorouracil and oxaliplatin. RNA sequencing revealed that the upregulated cancer-related genes were mainly enriched in several signaling pathways, including the TNF signaling pathway, NOD-like receptor signaling pathway, and NF-κB signaling pathway. The downregulated cancer-related genes were mainly enriched in the Rap1 signaling pathway and Hippo signaling pathway among other pathways. In conclusion, we have created a new ICC cell line derived from Chinese patients. This cell line can be used as a preclinical model to study ICC, specifically tumor metastasis and drug resistance mechanisms.
Collapse
Affiliation(s)
- Xin Miao
- grid.410727.70000 0001 0526 1937State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000 China
| | - Jinjing Hu
- grid.412643.60000 0004 1757 2902The Forth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000 Gansu China
| | - Changpeng Chai
- grid.412643.60000 0004 1757 2902The Forth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000 Gansu China
| | - Huan Tang
- grid.412643.60000 0004 1757 2902The Forth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000 Gansu China
| | - Zhenjie Zhao
- grid.412643.60000 0004 1757 2902The Forth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000 Gansu China
| | - Wei Luo
- grid.412643.60000 0004 1757 2902The Forth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000 Gansu China
| | - Wence Zhou
- grid.411294.b0000 0004 1798 9345Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, 730000 China ,grid.32566.340000 0000 8571 0482The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000 China
| | - Hao Xu
- grid.412643.60000 0004 1757 2902The Forth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000 Gansu China
| |
Collapse
|
7
|
LncRNA ST8SIA6-AS1 facilitates hepatocellular carcinoma progression by governing miR-651-5p/TM4SF4 axis. Anticancer Drugs 2022; 33:741-751. [PMID: 35946523 DOI: 10.1097/cad.0000000000001326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The oncogenic role of ST8SIA6-AS1 in different cancers was reported, including hepatocellular carcinoma (HCC). However, the underlying mechanism has not been completely explored. Real time quantitative PCR analysis was conducted to assess the ST8SIA6-AS1, miR-651-5p and TM4SF4 expression in HCC tissues and cells. Cell counting kit-8 and wound-healing migration assays were adopted to evaluate the HCC cell proliferation and migration, respectively. The expression of apoptosis-related proteins (Bax and Bcl-2) in human colorectal cancer cells (HCC) was determined by western blotting. In addition to bioinformatics analysis, RNA immunoprecipitation studies and luciferase reporter assays were undertaken to investigate the direct target relationship among ST8SIA6-AS1 and miR-651-5p or TM4SF4. Highly expressed ST8SIA6-AS1 and TM4SF4 as well as poorly expressed miR-651-5p were detected in HCC tissues and cells. Clinically, miR-651-5p expression in HCC tissues is negatively correlated with ST8SIA6-AS1 or TM4SF4. Cell functional assays demonstrated that ST8SIA6-AS1 silencing resulted in weakened proliferative and migratory capacities in HCC cells in addition to increase Bax expression and reduced Bcl-2 expression. ST8SIA6-AS1 exhibited its oncogenic function by sponging tumor suppressor miR-651-5p, and the anti-oncogenic of miR-651-5p was offset by its TM4SF4. The manipulation of ST8SIA6-AS1/miR-651-5p/TM4SF4 axis-mediated oncogenicity in HCC might shed new light on HCC diagnosis and therapy.
Collapse
|
8
|
hsa-miR-9-5p-Mediated TSPAN9 Downregulation Is Positively Related to Both Poor Hepatocellular Carcinoma Prognosis and the Tumor Immune Infiltration. J Immunol Res 2022; 2022:9051229. [PMID: 35600044 PMCID: PMC9119760 DOI: 10.1155/2022/9051229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/16/2022] [Indexed: 12/24/2022] Open
Abstract
Tetraspanins (TSPANs) play crucial roles in cell adhesion, migration, and metastasis of human cancer. However, there is no study in revealing the aspects of TSPAN9 traits and its functions in hepatocellular carcinoma (HCC) prognosis. Our study is the first to portray the TSPAN9 expression in HCC tissues with immunohistochemistry (IHC) analysis. Subsequently, a series of bioinformatics analyses such as expression estimation, survival assessment, and correlation analysis were implemented to dig out the possible upstream noncoding RNAs (ncRNAs) for TSPAN9 in HCC. In this way, the relevance within TSPAN9 and tumor immunity was then explored. We found that the TSPAN9 was downregulated in HCC tissues and had a correlation with HCC prognosis. Furthermore, we identified that the AL139383.1-hsa-miR-9-5p axis was the upstream ncRNA-related pathway most associated with TSPAN9 in HCC. Besides that, expression of TSPAN9 held a significantly negative correlation with tumor immunocyte infiltration as well as immune checkpoint CTLA4. TSPAN9-related immunomodulators were mainly enriched in T cell activation, leukocyte cell-cell adhesion, regulation of T cell activation, and regulation of leukocyte cell-cell adhesion signaling pathway. In conclusion, our results indicated that hsa-miR-9-5p-mediated downregulation of TSPAN9 was associated with poor HCC prognosis, immune-related signaling pathway, and tumor immune infiltration.
Collapse
|
9
|
Fu F, Yang X, Zheng M, Zhao Q, Zhang K, Li Z, Zhang H, Zhang S. Role of Transmembrane 4 L Six Family 1 in the Development and Progression of Cancer. Front Mol Biosci 2020; 7:202. [PMID: 33015133 PMCID: PMC7461813 DOI: 10.3389/fmolb.2020.00202] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
Transmembrane 4 L six family 1 (TM4SF1) is a protein with four transmembrane domains that belongs to the transmembrane 4 L six family members (TM4SFs). Structurally, TM4SF1 consists of four transmembrane domains (TM1–4), N- and C-terminal intracellular domains, two extracellular domains, a smaller domain between TM1 and TM2, and a larger domain between TM3 and TM4. Within the cell, TM4SF1 is located at the cell surface where it transmits extracellular signals into the cytoplasm. TM4SF1 interacts with tetraspanins, integrin, receptor tyrosine kinases, and other proteins to form tetraspanin-enriched microdomains. This interaction affects the pro-migratory activity of the cells, and thus it plays important roles in the development and progression of cancer. TM4SF1 has been shown to be overexpressed in many malignant tumors, including gliomas; malignant melanomas; and liver, prostate, breast, pancreatic, bladder, colon, lung, gastric, ovarian, and thyroid cancers. TM4SF1 promotes the migration and invasion of cancer cells by inducing epithelial-mesenchymal transition, self-renewal ability, tumor angiogenesis, invadopodia formation, and regulating the related signaling pathway. TM4SF1 is an independent prognostic indicator and biomarker in several cancers. It also promotes drug resistance, which is a major cause of therapeutic failure. These characteristics make TM4SF1 an attractive target for antibody-based immunotherapy. Here, we review the many functions of TM4SF1 in malignant tumors, with the aim to understand the interaction between its expression and the biological behaviors of cancer and to supply a basis for exploring new therapeutic targets.
Collapse
Affiliation(s)
- Fangmei Fu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xudong Yang
- Tianjin Rehabilitation Center, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Qi Zhao
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Kexin Zhang
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Zugui Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
10
|
Siracusano G, Tagliamonte M, Buonaguro L, Lopalco L. Cell Surface Proteins in Hepatocellular Carcinoma: From Bench to Bedside. Vaccines (Basel) 2020; 8:vaccines8010041. [PMID: 31991677 PMCID: PMC7157713 DOI: 10.3390/vaccines8010041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 12/20/2022] Open
Abstract
Cell surface proteins act as the go-between in carrying the information from the extracellular environment to the intracellular signaling proteins. However, these proteins are often deregulated in neoplastic diseases, including hepatocellular carcinoma. This review discusses several recent studies that have investigated the role of cell surface proteins in the occurrence and progression of HCC, highlighting the possibility to use them as biomarkers of the disease and/or targets for vaccines and therapeutics.
Collapse
Affiliation(s)
- Gabriel Siracusano
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy;
- Correspondence: ; Tel.: +39-022643-4957
| | - Maria Tagliamonte
- Cancer Immunoregulation Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, “Fondazione Pascale”, 80131 Naples, Italy; (M.T.); (L.B.)
| | - Luigi Buonaguro
- Cancer Immunoregulation Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, “Fondazione Pascale”, 80131 Naples, Italy; (M.T.); (L.B.)
| | - Lucia Lopalco
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy;
| |
Collapse
|
11
|
Choi SI, Kim SY, Lee JH, Kim JY, Cho EW, Kim IG. Osteopontin production by TM4SF4 signaling drives a positive feedback autocrine loop with the STAT3 pathway to maintain cancer stem cell-like properties in lung cancer cells. Oncotarget 2017; 8:101284-101297. [PMID: 29254164 PMCID: PMC5731874 DOI: 10.18632/oncotarget.21021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/26/2017] [Indexed: 01/16/2023] Open
Abstract
Transmembrane 4 L6 family proteins have been known to promote cancer. In this study, we demonstrated that transmembrane 4 L6 family member 4 (TM4SF4), which is induced by γ-radiation in non-small cell lung cancer (NSCLC) cells, is involved in epithelial-to-mesenchymal transition (EMT) and cancer stem cell (CSC) properties of NSCLC through the regulation of osteopontin (OPN). Forced TM4SF4 overexpression in A549 cells increased the secretion of OPN, which activates CD44 or integrin signaling and thus maintains EMT-associated CSC-like properties. OPN, known as a downstream target of β-catenin/T-cell factor 4 (TCF-4), was induced by up-regulated β-catenin via TM4SF4-driven phosphorylation of glycogen synthase kinase 3b (GSK3β). TCF4 complexed to promoter regions of OPN in TM4SF4-overexpressing A549 cells was also confirmed by chromatin immunoprecipitation. Knockout of either β-catenin or TCF4-suppressed OPN expression, demonstrating that both factors are essential for OPN expression in NSCLC cells. OPN secreted by TM4SF4/GSK3β/β-catenin signaling activated the JAK2/STAT3 or FAK/STAT3 pathway, which also up-regulates OPN expression in an autocrine manner and consequently maintains the self-renewal and metastatic capacity of cancer cells. Neutralizing antibody to OPN blocked the autocrine activation of OPN expression, consequently weakened the metastatic and self-renewal capacity of cancer cells. Collectively, our findings indicate that TM4SF4-triggered OPN expression is involved in the persistent reinforcement of EMT or cancer stemness by creating a positive feedback autocrine loop with JAK2/STAT3 or FAK/STAT3 pathways.
Collapse
Affiliation(s)
- Soo Im Choi
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Yuseong-Gu, Daejeon 34057, Korea
| | - Seo Yoen Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Yuseong-Gu, Daejeon 34057, Korea
| | - Jei Ha Lee
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Yuseong-Gu, Daejeon 34057, Korea.,Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology (UST), Yuseong-Gu, Daejeon 34057, Korea
| | - Jung Yul Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Yuseong-Gu, Daejeon 34057, Korea.,Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology (UST), Yuseong-Gu, Daejeon 34057, Korea
| | - Eun Wie Cho
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-Gu, Daejeon 34141, Korea
| | - In-Gyu Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Yuseong-Gu, Daejeon 34057, Korea.,Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology (UST), Yuseong-Gu, Daejeon 34057, Korea
| |
Collapse
|
12
|
Differential regulation of cellular functions by the C-termini of transmembrane 4 L six family proteins in 2- or 3-dimensional environment. Oncotarget 2017; 8:13277-13292. [PMID: 28129652 PMCID: PMC5355095 DOI: 10.18632/oncotarget.14809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/27/2016] [Indexed: 01/04/2023] Open
Abstract
The transmembrane 4 L six family proteins TM4SF1, TM4SF4, and TM4SF5 share 40-50% overall sequence identity, but their C-terminus identity is limited. It may be likely that the C-termini of the members are important and unique for own regulatory functions. We thus examined how the TM4SF5 C-terminus affected cellular functions differentially from other family members. Using colon cancer cells expressing wildtype (WT), C-terminus-deleted, or chimeric mutants, diverse cellular functions were explored in 2-dimensional (2D) and 3-dimensional (3D) condition. The C-termini of the proteins were relatively comparable with respect to 2D cell proliferation, although each C-terminal-deletion mutant exhibited increased proliferation relative to the WT. Using chimeric constructs, we found that the TM4SF5 C-terminus was critical for regulating the diverse metastatic functions of TM4SF5, and could positively replace the C-termini of other family members. Replacement of the TM4SF1 or TM4SF4 C-terminus with that of TM4SF5 increased spheroids growth, transwell migration, and invasive dissemination from spheroids in 3D collagen gels. TM4SF5-mediated effects required its extracellular loop 2 linked to the C-terminus via the transmembrane domain 4, with causing c-Src activation. Altogether, the C-terminus of TM4SF5 appears to mediate pro-migratory roles, depending on a structural relay from the second extracellular loop to the C-terminus.
Collapse
|
13
|
Choi SI, Kim SY, Lee J, Cho EW, Kim IG. TM4SF4 overexpression in radiation-resistant lung carcinoma cells activates IGF1R via elevation of IGF1. Oncotarget 2015; 5:9823-37. [PMID: 25344917 PMCID: PMC4259440 DOI: 10.18632/oncotarget.2450] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Transmembrane 4 L six family member 4 (TM4SF4) is a member of the tetraspanin L6 domain family. Other members of this family, TM4SF1 (also known as L6-Ag) and TM4SF5, have been shown to be upregulated in multiple tumors and involved in epithelial-to-mesenchymal transition and cell migration. However, unlike its homologs, little is known about TM4SF4. Here, we show that TM4SF4 was highly expressed in radiation-resistant lung adenocarcinoma cells, such as A549 and Calu-3 cells, and its expression activated cell growth, migration, and invasion. Overexpression of TM4SF4 in A549 cells increased the activation of PI3K, AKT, and NF-kappaB and the expression of PTEN. IGF1R was clearly activated by overexpression of TM4SF4, although EGFR was also slightly activated. TM4SF4 expression was correlated with the increased expression of IGF1, consequently resulting in IGF1R activation. Tumorigenic activity of TM4SF4 in lung adenocarcinoma cells was also demonstrated by xenograft assay; however, this activity was almost completely suppressed by treatment with anti-TM4SF4 antibody. Our results suggest that TM4SF4 overexpression in lung carcinoma cells results in resistance to radiotherapy via IGF1-induced IGF1R activation and blocking the activity of TM4SF4 using specific antibody can be a promising therapeutics against TM4SF4-overexpressing lung adenocarcinoma.
Collapse
Affiliation(s)
- Soo-Im Choi
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute (KAERI), Daedeok-daero, Yuseong-gu, Daejeon, South Korea. Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology, Daedeok-daero, Yuseong-gu, Daejeon, South Korea
| | - Seo-Yeon Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute (KAERI), Daedeok-daero, Yuseong-gu, Daejeon, South Korea
| | - Jaeha Lee
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute (KAERI), Daedeok-daero, Yuseong-gu, Daejeon, South Korea. Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology, Daedeok-daero, Yuseong-gu, Daejeon, South Korea
| | - Eun-Wie Cho
- Epigenomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro, Yuseong-gu, Daejeon, South Korea
| | - In-Gyu Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute (KAERI), Daedeok-daero, Yuseong-gu, Daejeon, South Korea. Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology, Daedeok-daero, Yuseong-gu, Daejeon, South Korea
| |
Collapse
|
14
|
Promotion of bone morphogenetic protein signaling by tetraspanins and glycosphingolipids. PLoS Genet 2015; 11:e1005221. [PMID: 25978409 PMCID: PMC4433240 DOI: 10.1371/journal.pgen.1005221] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/14/2015] [Indexed: 02/08/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) belong to the transforming growth factor β (TGFβ) superfamily of secreted molecules. BMPs play essential roles in multiple developmental and homeostatic processes in metazoans. Malfunction of the BMP pathway can cause a variety of diseases in humans, including cancer, skeletal disorders and cardiovascular diseases. Identification of factors that ensure proper spatiotemporal control of BMP signaling is critical for understanding how this pathway is regulated. We have used a unique and sensitive genetic screen to identify the plasma membrane-localized tetraspanin TSP-21 as a key new factor in the C. elegans BMP-like “Sma/Mab” signaling pathway that controls body size and postembryonic M lineage development. We showed that TSP-21 acts in the signal-receiving cells and genetically functions at the ligand-receptor level. We further showed that TSP-21 can associate with itself and with two additional tetraspanins, TSP-12 and TSP-14, which also promote Sma/Mab signaling. TSP-12 and TSP-14 can also associate with SMA-6, the type I receptor of the Sma/Mab pathway. Finally, we found that glycosphingolipids, major components of the tetraspanin-enriched microdomains, are required for Sma/Mab signaling. Our findings suggest that the tetraspanin-enriched membrane microdomains are important for proper BMP signaling. As tetraspanins have emerged as diagnostic and prognostic markers for tumor progression, and TSP-21, TSP-12 and TSP-14 are all conserved in humans, we speculate that abnormal BMP signaling due to altered expression or function of certain tetraspanins may be a contributing factor to cancer development. The bone morphogenetic protein (BMP) signaling pathway is required for multiple developmental processes during metazoan development. Various diseases, including cancer, can result from mis-regulation of the BMP pathway. Thus, it is critical to identify factors that ensure proper regulation of BMP signaling. Using the nematode C. elegans, we have devised a highly specific and sensitive genetic screen to identify new modulators in the BMP pathway. Through this screen, we identified three conserved tetraspanin molecules as novel factors that function to promote BMP signaling in a living organism. We further showed that these three tetraspanins likely form a complex and function together with glycosphingolipids to promote BMP signaling. Recent studies have implicated several tetraspanins in cancer initiation, progression and metastasis in mammals. Our findings suggest that the involvement of tetraspanins in cancer may partially be due to their function in modulating the activity of BMP signaling.
Collapse
|
15
|
Subramanian VS, Nabokina SM, Said HM. Association of TM4SF4 with the human thiamine transporter-2 in intestinal epithelial cells. Dig Dis Sci 2014; 59:583-90. [PMID: 24282057 PMCID: PMC3943980 DOI: 10.1007/s10620-013-2952-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/12/2013] [Indexed: 01/19/2023]
Abstract
BACKGROUND The human thiamine transporter-2 (hTHTR-2) is involved in the intestinal absorption of thiamine. Recent studies with membrane transporters of other nutrients/substrates have shown that they have associated proteins that affect different aspects of their physiology and cell biology. Nothing is known about protein(s) that interact with hTHTR-2 in intestinal epithelial cells and influence its physiological function and/or its cell biology. AIMS The aim of this study was to identify protein partner(s) that interact with hTHTR-2 in human intestinal cells and determine the physiological/biological consequence of that interaction. METHODS The yeast split-ubiquitin two-hybrid approach was used to screen a human intestinal cDNA library. GST-pull-down and cellular co-localization approaches were used to confirm the interaction between hTHTR-2 and the associated protein(s). The effect of such an interaction on hTHTR-2 function was examined by (3)H-thiamine uptake assays. RESULTS Our screening results identified the human TransMembrane 4 SuperFamily 4 (TM4SF4) as a potential interactor with hTHTR-2. This interaction was confirmed by an in vitro GST-pull-down assay, and by live-cell confocal imaging of HuTu-80 cells co-expressing hTHTR-2-GFP and mCherry-TM4SF4 (the latter displayed a significant overlap of these two proteins in intracellular vesicles and at the cell membrane). Co-expression of hTHTR-2 with TM4SF4 in HuTu-80 cells led to a significant induction in thiamine uptake. In contrast, silencing TM4SF4 with gene-specific siRNA led to a significant decrease in thiamine uptake. CONCLUSIONS These results show for the first time that the accessory protein TM4SF4 interacts with hTHTR-2 and influences the physiological function of the thiamine transporter.
Collapse
Affiliation(s)
| | | | - Hamid M. Said
- To whom correspondence may be addressed: , Phone: 562-826-5811; Fax: 562-826-5018
| |
Collapse
|
16
|
Smalling RV, Delker DA, Zhang Y, Nieto N, Mcguiness MS, Liu S, Friedman SL, Hagedorn CH, Wang L. Genome-wide transcriptome analysis identifies novel gene signatures implicated in human chronic liver disease. Am J Physiol Gastrointest Liver Physiol 2013; 305:G364-74. [PMID: 23812039 PMCID: PMC3761248 DOI: 10.1152/ajpgi.00077.2013] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The molecular mechanisms behind human liver disease progression to cirrhosis remain elusive. Nuclear receptor small heterodimer partner (SHP/Nr0b2) is a hepatic tumor suppressor and a critical regulator of liver function. SHP expression is diminished in human cirrhotic livers, suggesting a regulatory role in human liver diseases. The goal of this study was to identify novel SHP-regulated genes that are involved in the development and progression of chronic liver disease. To achieve this, we conducted the first comprehensive RNA sequencing (RNA-seq) analysis of Shp(-/-) mice, compared the results with human hepatitis C cirrhosis RNA-seq and nonalcoholic steatohepatitis (NASH) microarray datasets, and verified novel results in human liver biospecimens. This approach revealed new gene signatures associated with chronic liver disease and regulated by SHP. Several genes were selected for validation of physiological relevance based on their marked upregulation, novelty with regard to liver function, and involvement in gene pathways related to liver disease. These genes include peptidoglycan recognition protein 2, dual specific phosphatase-4, tetraspanin 4, thrombospondin 1, and SPARC-related modular calcium binding protein-2, which were validated by qPCR analysis of 126 human liver specimens, including steatosis, fibrosis, and NASH, alcohol and hepatitis C cirrhosis, and in mouse models of liver inflammation and injury. This RNA-seq analysis identifies new genes that are regulated by the nuclear receptor SHP and implicated in the molecular pathogenesis of human chronic liver diseases. The results provide valuable transcriptome information for characterizing mechanisms of these diseases.
Collapse
Affiliation(s)
- Rana V. Smalling
- 1Department of Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Don A. Delker
- 1Department of Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Yuxia Zhang
- 1Department of Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Natalia Nieto
- 2Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine, New York, New York
| | - Michael S. Mcguiness
- 1Department of Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Shuanghu Liu
- 1Department of Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Scott L. Friedman
- 2Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine, New York, New York
| | - Curt H. Hagedorn
- 1Department of Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Li Wang
- 1Department of Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah; and
| |
Collapse
|
17
|
Wang L, Feng J, Da L, Li Y, Li Z, Zhao M. Adenovirus-mediated delivery of siRNA targeting TM4SF4 attenuated liver cancer cell growth in vitro and in vivo. Acta Biochim Biophys Sin (Shanghai) 2013; 45:213-9. [PMID: 23296076 DOI: 10.1093/abbs/gms115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gene targeting using short interfering RNA (siRNA) has become a common strategy to explore gene function because of its prominent efficacy and specificity. The human transmembrane 4 superfamily member 4 (TM4SF4) was originally identified in intestine and liver as a cell proliferation-related gene. Recently, it showed an increased expression in the hepatocellular carcinoma (HCC) tissues. In this study, we developed an adenoviral vector harboring an effective siRNA targeting TM4SF4 (AdSiTM4SF4) and identified its function in suppression of tumor cell growth. It was confirmed that TM4SF4 was overexpressed in HCC tissues compared with its paired non-tumor tissues by western blot analysis and immunohistochemistry. Remarkably, it was more abundant on the cell surface of HCC cells. The signals of ectopically expressed TM4SF4 in four cell lines dramatically localized in the plasma membrane, slightly in the cytoplasm, and absent in the nucleus, demonstrating that TM4SF4 is a membrane protein. Targeting TM4SF4 by AdSiTM4SF4 successfully exerted a gene knockdown effect. The QGY-7701 and SMMC-7721 HCC cells infected with AdSiTM4SF4 displayed remarkably attenuated growth potential. Moreover, intratumoral injection of AdSiTM4SF4 significantly suppressed tumor growth in a xenograft mouse model using SMMC-7721 hepatoma cells. Our results indicated that targeting TM4SF4 might be a promising modality for inhibition of HCC.
Collapse
Affiliation(s)
- Leiming Wang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | |
Collapse
|