1
|
Pavelec CM, Young AP, Luviano HL, Orrell EE, Szagdaj A, Poudel N, Wolpe AG, Thomas SH, Yeudall S, Upchurch CM, Okusa MD, Isakson BE, Wolf MJ, Leitinger N. Cardiomyocyte PANX1 Controls Glycolysis and Neutrophil Recruitment in Hypertrophy. Circ Res 2024; 135:503-517. [PMID: 38957990 PMCID: PMC11293983 DOI: 10.1161/circresaha.124.324650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND PANX1 (pannexin 1), a ubiquitously expressed ATP release membrane channel, has been shown to play a role in inflammation, blood pressure regulation, and myocardial infarction. However, the possible role of PANX1 in cardiomyocytes in the progression of heart failure has not yet been investigated. METHOD We generated a novel mouse line with constitutive deletion of PANX1 in cardiomyocytes (Panx1MyHC6). RESULTS PANX1 deletion in cardiomyocytes had no effect on unstressed heart function but increased the glycolytic metabolism and resulting glycolytic ATP production, with a concurrent decrease in oxidative phosphorylation, both in vivo and in vitro. In vitro, treatment of H9c2 (H9c2 rat myoblast cell line) cardiomyocytes with isoproterenol led to PANX1-dependent release of ATP and Yo-Pro-1 uptake, as assessed by pharmacological blockade with spironolactone and siRNA-mediated knockdown of PANX1. To investigate nonischemic heart failure and the preceding cardiac hypertrophy, we administered isoproterenol, and we demonstrated that Panx1MyHC6 mice were protected from systolic and diastolic left ventricle volume increases as a result of cardiomyocyte hypertrophy. Moreover, we found that Panx1MyHC6 mice showed decreased isoproterenol-induced recruitment of immune cells (CD45+), particularly neutrophils (CD11b+ [integrin subunit alpha M], Ly6g+ [lymphocyte antigen 6 family member G]), to the myocardium. CONCLUSIONS Together, these data demonstrate that PANX1 deficiency in cardiomyocytes increases glycolytic metabolism and protects against cardiac hypertrophy in nonischemic heart failure at least in part by reducing immune cell recruitment. Our study implies PANX1 channel inhibition as a therapeutic approach to ameliorate cardiac dysfunction in patients with heart failure.
Collapse
Affiliation(s)
- Caitlin M Pavelec
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
- Robert M. Berne Cardiovascular Research Center (C.M.P., A.P.Y., B.E.I., M.J.W., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Alexander P Young
- Cardiovascular Medicine, Department of Medicine (A.P.Y., M.J.W.), University of Virginia School of Medicine, Charlottesville
- Robert M. Berne Cardiovascular Research Center (C.M.P., A.P.Y., B.E.I., M.J.W., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Hannah L Luviano
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Emily E Orrell
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Anna Szagdaj
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Nabin Poudel
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine (N.P., M.D.O.), University of Virginia School of Medicine, Charlottesville
| | - Abigail G Wolpe
- Department of Cell Biology (A.G.W.), University of Virginia School of Medicine, Charlottesville
| | - Samantha H Thomas
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Scott Yeudall
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Clint M Upchurch
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine (N.P., M.D.O.), University of Virginia School of Medicine, Charlottesville
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center (C.M.P., A.P.Y., B.E.I., M.J.W., N.L.), University of Virginia School of Medicine, Charlottesville
- Department of Molecular Physiology and Biological Physics (B.E.I.), University of Virginia School of Medicine, Charlottesville
| | - Matthew J Wolf
- Cardiovascular Medicine, Department of Medicine (A.P.Y., M.J.W.), University of Virginia School of Medicine, Charlottesville
- Robert M. Berne Cardiovascular Research Center (C.M.P., A.P.Y., B.E.I., M.J.W., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Norbert Leitinger
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
- Robert M. Berne Cardiovascular Research Center (C.M.P., A.P.Y., B.E.I., M.J.W., N.L.), University of Virginia School of Medicine, Charlottesville
| |
Collapse
|
2
|
Feng YH, Tang RJ, Zhang YY, Lin J, Liu YJ, Li YK, Li CJ, Zhou C, Liu F, Shen JF. Contribution of inwardly rectifying potassium channel 4.1 in orofacial neuropathic pain: Regulation of pannexin 3 via the reactive oxygen species-activated P38 MAPK signal pathway. Eur J Neurosci 2024; 60:4569-4585. [PMID: 38992988 DOI: 10.1111/ejn.16458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 05/17/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024]
Abstract
The involvement of inwardly rectifying potassium channel 4.1 (Kir4.1) in neuropathic pain has been established. However, there is limited understanding of the downstream mechanism through which Kir4.1 contributes to orofacial neuropathic pain. The objective of this study was to examine the regulation of Kir4.1 on the expression of pannexin 3 (Panx3) in the trigeminal ganglion (TG) and the underlying mechanism in the context of orofacial neuropathic pain caused by chronic constriction injury of the infraorbital nerve (CCI-ION). The study observed a significant increase in Panx3 expression in the TG of mice with CCI-ION. Inhibition of Panx3 in the TG of CCI-ION mice resulted in alleviation of orofacial mechanical allodynia. Furthermore, conditional knockdown (CKD) of Kir4.1 in the TG of both male and female mice led to mechanical allodynia and upregulation of Panx3 expression. Conversely, overexpression of Kir4.1 decreased Panx3 levels in the TG and relieved mechanical allodynia in CCI-ION mice. In addition, silencing Kir4.1 in satellite glial cells (SGCs) decreased Panx3 expression and increased the phosphorylation of P38 MAPK. Moreover, silencing Kir4.1 in SGCs increased the levels of reactive oxygen species (ROS). The elevated phosphorylation of P38 MAPK resulting from Kir4.1 silencing was inhibited by using a superoxide scavenger known as the tempol. Silencing Panx3 in the TG in vivo attenuated the mechanical allodynia caused by Kir4.1 CKD. In conclusion, these findings suggest that the reduction of Kir4.1 promotes the expression of Panx3 by activating the ROS-P38 MAPK signalling pathway, thus contributing to the development of orofacial neuropathic pain.
Collapse
Affiliation(s)
- Yu-Heng Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ren-Jie Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiu Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Jing Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi-Ke Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chun-Jie Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Pavelec CM, Young AP, Luviano HL, Orrell EE, Szagdaj A, Poudel N, Wolpe AG, Thomas SH, Yeudall S, Upchurch CM, Okusa MD, Isakson BE, Wolf MJ, Leitinger N. Pannexin 1 Channels Control Cardiomyocyte Metabolism and Neutrophil Recruitment During Non-Ischemic Heart Failure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.29.573679. [PMID: 38234768 PMCID: PMC10793433 DOI: 10.1101/2023.12.29.573679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Pannexin 1 (PANX1), a ubiquitously expressed ATP release membrane channel, has been shown to play a role in inflammation, blood pressure regulation, and myocardial infarction. However, a possible role of PANX1 in cardiomyocytes in the progression of heart failure has not yet been investigated. We generated a novel mouse line with constitutive deletion of PANX1 in cardiomyocytes (Panx1 MyHC6 ). PANX1 deletion in cardiomyocytes had no effect on unstressed heart function but increased the glycolytic metabolism both in vivo and in vitro . In vitro , treatment of H9c2 cardiomyocytes with isoproterenol led to PANX1-dependent release of ATP and Yo-Pro-1 uptake, as assessed by pharmacological blockade with spironolactone and siRNA-mediated knock-down of PANX1. To investigate non-ischemic heart failure and the preceding cardiac hypertrophy we administered isoproterenol, and we demonstrate that Panx1 MyHC6 mice were protected from systolic and diastolic left ventricle volume increases and cardiomyocyte hypertrophy. Moreover, we found that Panx1 MyHC6 mice showed decreased isoproterenol-induced recruitment of immune cells (CD45 + ), particularly neutrophils (CD11b + , Ly6g + ), to the myocardium. Together these data demonstrate that PANX1 deficiency in cardiomyocytes impacts glycolytic metabolism and protects against cardiac hypertrophy in non-ischemic heart failure at least in part by reducing immune cell recruitment. Our study implies PANX1 channel inhibition as a therapeutic approach to ameliorate cardiac dysfunction in heart failure patients.
Collapse
|
4
|
Zhang X, Zeng Z, Liu Y, Liu D. Emerging Relevance of Ghrelin in Programmed Cell Death and Its Application in Diseases. Int J Mol Sci 2023; 24:17254. [PMID: 38139082 PMCID: PMC10743592 DOI: 10.3390/ijms242417254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Ghrelin, comprising 28 amino acids, was initially discovered as a hormone that promotes growth hormones. The original focus was on the effects of ghrelin on controlling hunger and satiation. As the research further develops, the research scope of ghrelin has expanded to a wide range of systems and diseases. Nevertheless, the specific mechanisms remain incompletely understood. In recent years, substantial studies have demonstrated that ghrelin has anti-inflammatory, antioxidant, antiapoptotic, and other effects, which could affect the signaling pathways of various kinds of programmed cell death (PCD) in treating diseases. However, the regulatory mechanisms underlying the function of ghrelin in different kinds of PCD have not been thoroughly illuminated. This review describes the relationship between ghrelin and four kinds of PCD (apoptosis, necroptosis, autophagy, and pyroptosis) and then introduces the clinical applications based on the different features of ghrelin.
Collapse
Affiliation(s)
- Xue Zhang
- Queen Mary College, Nanchang University, Xuefu Road, Nanchang 330001, China; (X.Z.); (Z.Z.); (Y.L.)
| | - Zihan Zeng
- Queen Mary College, Nanchang University, Xuefu Road, Nanchang 330001, China; (X.Z.); (Z.Z.); (Y.L.)
| | - Yaning Liu
- Queen Mary College, Nanchang University, Xuefu Road, Nanchang 330001, China; (X.Z.); (Z.Z.); (Y.L.)
| | - Dan Liu
- School of Pharmacy, Nanchang University, Nanchang 330006, China
| |
Collapse
|
5
|
Onódi Z, Koch S, Rubinstein J, Ferdinandy P, Varga ZV. Drug repurposing for cardiovascular diseases: New targets and indications for probenecid. Br J Pharmacol 2023; 180:685-700. [PMID: 36484549 DOI: 10.1111/bph.16001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/12/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
The available pharmacological options in the management of cardiovascular diseases such as ischaemic heart disease and subsequent heart failure are effective in slowing the progression of this condition. However, the long-term prognosis is still poor, raising the demand for new therapeutic strategies. Drug repurposing is a time- and cost-effective drug development strategy that offers approved and abandoned drugs a new chance for new indications. Recently, drugs used for the management of gout-related inflammation such as canakinumab or colchicine have been considered for drug repurposing in cardiovascular indications. The old uricosuric drug, probenecid, has been identified as a novel therapeutic option in the management of specific cardiac diseases as well. Probenecid can modulate myocardial contractility and vascular tone and exerts anti-inflammatory properties. The mechanisms behind these beneficial effects might be related inhibition of inflammasomes, and to modulation purinergic-pannexin-1 signalling and TRPV2 channels, which are recently identified molecular targets of probenecid. In this review, we provide an overview on repurposing probenecid for ischaemic heart disease and subsequent heart failure by summarizing the related experimental and clinical data and propose its potential repurposing to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Zsófia Onódi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary.,MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, Budapest, Hungary
| | - Sheryl Koch
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, College of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Jack Rubinstein
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, College of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary.,MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Mizdrak I, Mizdrak M, Racetin A, Bošković B, Benzon B, Durdov MG, Vukojević K, Filipović N. Expression of Connexins 37, 40 and 45, Pannexin 1 and Vimentin in Laryngeal Squamous Cell Carcinomas. Genes (Basel) 2023; 14:446. [PMID: 36833374 PMCID: PMC9956287 DOI: 10.3390/genes14020446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Approximately 60% of patients with squamous cell carcinoma (LSCC) have regional occult metastatic disease/distant metastases at the time of diagnosis, putting them at higher risk for disease progression. Therefore, biomarkers are needed for early prognostic purpose. The aim of this study was to analyze the expression pattern of connexins (Cx) 37, 40 and 45, pannexin1 (Panx1) and vimentin in LSCC and correlate with tumor grade (G) and outcome. METHODS Thirty-four patients who underwent (hemi-)laryngectomy and regional lymphadenectomy due to LSCC from 2017 to 2018 in University Hospital Split, Croatia, were studied. Samples of tumor tissue and adjacent normal mucosa embedded in paraffin blocks were stained using the immunofluorescence method and were semi-quantitatively analyzed. RESULTS The expression of Cx37, Cx40, and Panx1 differed between cancer and adjacent normal mucosa and between histological grades, being the highest in well-differentiated (G1) cancer and low/absent in poorly differentiated (G3) cancer (all p < 0.05). The expression of vimentin was the highest in G3 cancer. Expression of Cx45 was generally weak/absent, with no significant difference between cancer and the controls or between grades. Lower Panx1 and higher vimentin expression were found to be prognostic factors for regional metastatic disease. Lower Cx37 and 40 expressions were present in patients with disease recurrence after the three-year follow-up period. CONCLUSION Cx37 and Cx40, Panx1, and vimentin have the potential to be used as prognostic biomarkers for LSCC.
Collapse
Affiliation(s)
- Ivan Mizdrak
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia
| | - Maja Mizdrak
- Department of Nephrology and Hemodialysis, University Hospital of Split, Šoltanska 1, 21000 Split, Croatia
| | - Anita Racetin
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Braco Bošković
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia
| | - Benjamin Benzon
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Merica Glavina Durdov
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, University of Split School of Medicine, Spinčićeva 1, 21000 Split, Croatia
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| |
Collapse
|
7
|
Suwara J, Radzikowska-Cieciura E, Chworos A, Pawlowska R. The ATP-dependent Pathways and Human Diseases. Curr Med Chem 2023; 30:1232-1255. [PMID: 35319356 DOI: 10.2174/0929867329666220322104552] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022]
Abstract
Adenosine triphosphate (ATP) is one of the most important molecules of life, present both inside the cells and extracellularly. It is an essential building block for nucleic acids biosynthesis and crucial intracellular energy storage. However, one of the most interesting functions of ATP is the role of a signaling molecule. Numerous studies indicate the involvement of ATP-dependent pathways in maintaining the proper functioning of individual tissues and organs. Herein, the latest data indicating the ATP function in the network of intra- and extracellular signaling pathways including purinergic signaling, MAP kinase pathway, mTOR and calcium signaling are collected. The main ATP-dependent processes maintaining the proper functioning of the nervous, cardiovascular and immune systems, as well as skin and bones, are summarized. The disturbances in the ATP amount, its cellular localization, or interaction with target elements may induce pathological changes in signaling pathways leading to the development of serious diseases. The impact of an ATP imbalance on the development of dangerous health dysfunctions such as neurodegeneration diseases, cardiovascular diseases (CVDs), diabetes mellitus, obesity, cancers and immune pathogenesis are discussed here.
Collapse
Affiliation(s)
- Justyna Suwara
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Ewa Radzikowska-Cieciura
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Arkadiusz Chworos
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Roza Pawlowska
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| |
Collapse
|
8
|
Khera AV, Wang M, Chaffin M, Emdin CA, Samani NJ, Schunkert H, Watkins H, McPherson R, Elosua R, Boerwinkle E, Ardissino D, Butterworth AS, Di Angelantonio E, Naheed A, Danesh J, Chowdhury R, Krumholz HM, Sheu WHH, Rich SS, Rotter JI, Chen YDI, Gabriel S, Lander ES, Saleheen D, Kathiresan S. Gene Sequencing Identifies Perturbation in Nitric Oxide Signaling as a Nonlipid Molecular Subtype of Coronary Artery Disease. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003598. [PMID: 36215124 PMCID: PMC9771961 DOI: 10.1161/circgen.121.003598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 06/24/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND A key goal of precision medicine is to disaggregate common, complex diseases into discrete molecular subtypes. Rare coding variants in the low-density lipoprotein receptor gene (LDLR) are identified in 1% to 2% of coronary artery disease (CAD) patients, defining a molecular subtype with risk driven by hypercholesterolemia. METHODS To search for additional subtypes, we compared the frequency of rare, predicted loss-of-function and damaging missense variants aggregated within a given gene in 41 081 CAD cases versus 217 115 controls. RESULTS Rare variants in LDLR were most strongly associated with CAD, present in 1% of cases and associated with 4.4-fold increased CAD risk. A second subtype was characterized by variants in endothelial nitric oxide synthase gene (NOS3), a key enzyme regulating vascular tone, endothelial function, and platelet aggregation. A rare predicted loss-of-function or damaging missense variants in NOS3 was present in 0.6% of cases and associated with 2.42-fold increased risk of CAD (95% CI, 1.80-3.26; P=5.50×10-9). These variants were associated with higher systolic blood pressure (+3.25 mm Hg; [95% CI, 1.86-4.65]; P=5.00×10-6) and increased risk of hypertension (adjusted odds ratio 1.31; [95% CI, 1.14-1.51]; P=2.00×10-4) but not circulating cholesterol concentrations, suggesting that, beyond lipid pathways, nitric oxide synthesis is a key nonlipid driver of CAD risk. CONCLUSIONS Beyond LDLR, we identified an additional nonlipid molecular subtype of CAD characterized by rare variants in the NOS3 gene.
Collapse
Affiliation(s)
- Amit V. Khera
- Program in Medical & Population Genetics, Broad Inst of MIT & Harvard, Cambridge, MA
- Ctr for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Dept of Medicine, Harvard Medical School, Boston, MA
- Cardiology Division, Dept of Medicine, Massachusetts General Hospital, Boston, MA
| | - Minxian Wang
- Ctr for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Program in Medical & Population Genetics, Broad Inst of MIT & Harvard, Cambridge, MA
- CAS Key Laboratory of Genome Sciences & Information, Beijing Inst of Genomics, Chinese Academy of Sciences & China National Ctr for Bioinformation, Beijing, China
| | - Mark Chaffin
- Program in Medical & Population Genetics, Broad Inst of MIT & Harvard, Cambridge, MA
| | - Connor A. Emdin
- Ctr for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Dept of Medicine, Harvard Medical School, Boston, MA
- Program in Medical & Population Genetics, Broad Inst of MIT & Harvard, Cambridge, MA
| | - Nilesh J. Samani
- Dept of Cardiovascular Sciences, Univ of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Ctr, Glenfield Hospital, Leicester, UK
| | - Heribert Schunkert
- Dept of Cardiology, German Heart Ctr Munich, Technical Univ of Munich, Munich, Germany
- DZHK (German Ctr for Cardiovascular Research), Partner site Munich, Munich Heart Alliance, Munich, Germany
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Dept of Medicine, Univ of Oxford, Headington, UK
- Wellcome Trust Ctr for Human Genetics, Univ of Oxford, Oxford, UK
| | - Ruth McPherson
- Inst for Cardiogenetics, Univ of Lübeck, Lübeck, Schleswig-Holstein, Germany
- German Research Ctr for Cardiovascular Research, Partner Site Hamburg/Lübeck/Kiel & Univ Heart Center Lübeck (J.E.), Berlin, Brandenburg, Germany
- Depts of Medicine & Biochemistry, Univ of Ottawa Heart Inst, Ottawa, ON, Canada
| | - Roberto Elosua
- Cardiovascular Epidemiology & Genetics, Hospital del Mar Research Inst, Barcelona, Spain
- CIBER Enfermedades Cardiovasculares, Barcelona, Spain
- Facultat de Medicina, Universitat de Vic-Central de Cataluña, Barcelona, Spain
| | - Eric Boerwinkle
- Ctr for Human Genetics & Dept. of Epidemiology, Univ of Texas Health Science Ctr School of Public Health, Houston, TX
| | - Diego Ardissino
- Cardiology, Azienda Ospedaliero-Universitaria di Parma, Univ of Parma, Parma, Italy
- Associazione per lo Studio Della Trombosi in Cardiologia, Pavia, Italy
| | - Adam S. Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Dept of Public Health & Primary Care, Univ of Cambridge, Cambridge, UK
- National Inst for Health Research Blood & Transplant Research Unit in Donor Health & Genomics, Univ of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus & Univ of Cambridge, Cambridge, UK
| | - Emanuele Di Angelantonio
- British Heart Foundation Cardiovascular Epidemiology Unit, Dept of Public Health & Primary Care, Univ of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus & Univ of Cambridge, Cambridge, UK
- NIHR Blood & Transplant Research Unit in Donor Health & Genomics, Univ of Cambridge, Cambridge, UK
- BHF Ctr of Research Excellence, School of Clinical Medicine, Addenbrooke’s Hospital, Univ of Cambridge, Cambridge, UK
- Health Data Science Research Ctr, Human Technopole, Milan, Italy
| | - Aliya Naheed
- Initiative for Noncommunicable Bangladesh, Diseases, Health Systems & Population Studies Division, International Ctr for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Dept of Public Health & Primary Care, Univ of Cambridge, Cambridge, UK
- National Inst for Health Research Blood & Transplant Research Unit in Donor Health & Genomics, Univ of Cambridge, Cambridge, UK
- British Heart Foundation Ctr of Research Excellence, Univ of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus & Univ of Cambridge, Cambridge, UK
- Dept of Human Genetics, Wellcome Sanger Inst, Hinxton, UK
| | - Rajiv Chowdhury
- British Heart Foundation Cardiovascular Epidemiology Unit, Dept of Public Health & Primary Care, Univ of Cambridge, Cambridge, UK
- Centre for Non-Communicable Disease Research, Dhaka, Bangladesh
| | - Harlan M. Krumholz
- Section of Cardiovascular Medicine, Dept of Medicine, Yale Univ, New Haven, CT
- Ctr for Outcomes Research & Evaluation, Yale-New Haven Hospital, New Haven, CT
| | - Wayne H-H Sheu
- Cardiovascular Research Ctr, Dept of Medicine, National Yang Ming Univ School of Medicine, Taipei, Taiwan
| | - Stephen S. Rich
- Ctr for Public Health Genomics, Univ of Virginia, Charlottesville, VA
| | - Jerome I. Rotter
- The Inst for Translational Genomics & Population Sciences, Dept of Pediatrics, The Lundquist Inst for Biomedical Innovation at Harbor-UCLA Medical Ctr, Torrance, CA
| | - Yii-der Ida Chen
- The Inst for Translational Genomics & Population Sciences, Dept of Pediatrics, The Lundquist Inst for Biomedical Innovation at Harbor-UCLA Medical Ctr, Torrance, CA
| | - Stacey Gabriel
- Program in Medical & Population Genetics, Broad Inst of MIT & Harvard, Cambridge, MA
| | - Eric S. Lander
- Program in Medical & Population Genetics, Broad Inst of MIT & Harvard, Cambridge, MA
- Dept of Biology, MIT, Cambridge, MA
- Dept of Systems Biology, Harvard Medical School, Boston, MA
| | - Danish Saleheen
- Dept of Medicine, Columbia Univ, New York, NY
- Ctr for Non-Communicable Diseases, Karachi, Sindh, Pakistan
| | - Sekar Kathiresan
- Ctr for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Dept of Medicine, Harvard Medical School, Boston, MA
- Cardiology Division, Dept of Medicine, Massachusetts General Hospital, Boston, MA
- Verve Therapeutics, Cambridge, MA
| |
Collapse
|
9
|
Roterman I, Stapor K, Fabian P, Konieczny L. Connexins and Pannexins—Similarities and Differences According to the FOD-M Model. Biomedicines 2022; 10:biomedicines10071504. [PMID: 35884807 PMCID: PMC9313468 DOI: 10.3390/biomedicines10071504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022] Open
Abstract
Connexins and pannexins are the transmembrane proteins of highly distinguished biological activity in the form of transport of molecules and electrical signals. Their common role is to connect the external environment with the cytoplasm of the cell, while connexin is also able to link two cells together allowing the transport from one to another. The analysis presented here aims to identify the similarities and differences between connexin and pannexin. As a comparative criterion, the hydrophobicity distribution in the structure of the discussed proteins was used. The comparative analysis is carried out with the use of a mathematical model, the FOD-M model (fuzzy oil drop model in its Modified version) expressing the specificity of the membrane’s external field, which in the case of the discussed proteins is significantly different from the external field for globular proteins in the polar environment of water. The characteristics of the external force field influence the structure of protein allowing the activity in a different environment.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University—Medical College, Medyczna 7, 30-688 Kraków, Poland
- Correspondence:
| | - Katarzyna Stapor
- Department of Applied Informatics, Faculty of Automatic, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland;
| | - Piotr Fabian
- Department of Algorithmics and Software, Faculty of Automatic, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland;
| | - Leszek Konieczny
- Chair of Medical Biochemistry—Jagiellonian University—Medical College, Kopernika 7, 31-034 Kraków, Poland;
| |
Collapse
|
10
|
Novel insights into the SLC7A11-mediated ferroptosis signaling pathways in preeclampsia patients: identifying pannexin 1 and toll-like receptor 4 as innovative prospective diagnostic biomarkers. J Assist Reprod Genet 2022; 39:1115-1124. [PMID: 35325354 PMCID: PMC9107567 DOI: 10.1007/s10815-022-02443-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/21/2022] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Ferroptosis is associated with oxidative stress (OS) and is caused by iron-dependent lipid-peroxidative damage, but its role in PE is unclear. The aim of this study is to determine whether pannexin 1 (Panx1) and toll-like receptor 4 (TLR4) are key regulators of ferroptosis in PE. METHODS The study included 65 patients with PE and 25 healthy pregnant women. In normal and PE placental tissues, OS and ferroptosis markers, including Fe2+, malondialdehyde (MDA), reduced glutathione (GSH) levels, heme oxygenase-1 (HO-1) and glutathione peroxidase 4 (Gpx4) activity, were estimated. Panx1 and solute carrier family 7 member 11 (SLC7A11) mRNA expression levels were relatively quantified in placental tissues using real-time polymerase chain reaction (RT-PCR), while serum Panx1, serum TLR4, and placental activating transcription factor 3 (ATF3) levels were measured by ELISA. RESULTS In placental tissues, Panx1 and TLR4 expression levels were significantly increased in patients with PE compared to controls and were positively correlated with pro-ferroptosis mediators such as placental Fe2+ and MDA levels and negatively correlated with anti-ferroptosis regulators such as placental GSH level, HO-1, and Gpx4 activity. Additionally, Panx1 and TLR4 had a positive correlation with ATF3 and a negative correlation with SLC7A11. Serum Panx1 and TLR4 levels were positively correlated with their placental tissue expression and showed good diagnostic capabilities for ferroptosis in PE. CONCLUSION Therefore, Panx1 and TLR4 are suggested to induce ferroptosis in PE via SLC7A11-mediated signaling pathways, offering a novel perspective on PE pathogenesis and novel diagnostic tools for PE.
Collapse
|
11
|
Filiberto AC, Spinosa MD, Elder CT, Su G, Leroy V, Ladd Z, Lu G, Mehaffey JH, Salmon MD, Hawkins RB, Ravichandran KS, Isakson BE, Upchurch GR, Sharma AK. Endothelial pannexin-1 channels modulate macrophage and smooth muscle cell activation in abdominal aortic aneurysm formation. Nat Commun 2022; 13:1521. [PMID: 35315432 PMCID: PMC8938517 DOI: 10.1038/s41467-022-29233-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/07/2022] [Indexed: 01/17/2023] Open
Abstract
Pannexin-1 (Panx1) channels have been shown to regulate leukocyte trafficking and tissue inflammation but the mechanism of Panx1 in chronic vascular diseases like abdominal aortic aneurysms (AAA) is unknown. Here we demonstrate that Panx1 on endothelial cells, but not smooth muscle cells, orchestrate a cascade of signaling events to mediate vascular inflammation and remodeling. Mechanistically, Panx1 on endothelial cells acts as a conduit for ATP release that stimulates macrophage activation via P2X7 receptors and mitochondrial DNA release to increase IL-1β and HMGB1 secretion. Secondly, Panx1 signaling regulates smooth muscle cell-dependent intracellular Ca2+ release and vascular remodeling via P2Y2 receptors. Panx1 blockade using probenecid markedly inhibits leukocyte transmigration, aortic inflammation and remodeling to mitigate AAA formation. Panx1 expression is upregulated in human AAAs and retrospective clinical data demonstrated reduced mortality in aortic aneurysm patients treated with Panx1 inhibitors. Collectively, these data identify Panx1 signaling as a contributory mechanism of AAA formation. Pannexin-1 ion channels on endothelial cells regulate vascular inflammation and remodeling to mediate aortic aneurysm formation. Pharmacological blockade of Pannexin-1 channels may offer translational therapeutic mitigation of aneurysmal pathology.
Collapse
|
12
|
Yang Y, Zhang K, Huang S, Chen W, Mao H, Ouyang X, Chen L, Li L. Apelin‐13/APJ induces cardiomyocyte hypertrophy by activating the Pannexin‐1/P2X7 axis and FAM134B‐dependent reticulophagy. J Cell Physiol 2022; 237:2230-2248. [DOI: 10.1002/jcp.30685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/16/2021] [Accepted: 01/11/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yiyuan Yang
- School of Pharmaceutical Science Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study University of South China Hengyang China
| | - Kai Zhang
- School of Pharmaceutical Science Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study University of South China Hengyang China
| | - Shifang Huang
- School of Pharmaceutical Science Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study University of South China Hengyang China
| | - Wei Chen
- School of Pharmaceutical Science Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study University of South China Hengyang China
| | - Hui Mao
- School of Pharmaceutical Science Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study University of South China Hengyang China
| | - Xueqian Ouyang
- School of Pharmaceutical Science Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study University of South China Hengyang China
| | - Linxi Chen
- School of Pharmaceutical Science Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study University of South China Hengyang China
| | - Lanfang Li
- School of Pharmaceutical Science Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study University of South China Hengyang China
| |
Collapse
|
13
|
Südkamp N, Shchyglo O, Manahan-Vaughan D. Absence of Pannexin 1 Stabilizes Hippocampal Excitability After Intracerebral Treatment With Aβ (1-42) and Prevents LTP Deficits in Middle-Aged Mice. Front Aging Neurosci 2021; 13:591735. [PMID: 33796018 PMCID: PMC8007872 DOI: 10.3389/fnagi.2021.591735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/18/2021] [Indexed: 01/02/2023] Open
Abstract
Beta-amyloid protein [Aβ(1-42)] plays an important role in the disease progress and pathophysiology of Alzheimer's disease (AD). Membrane properties and neuronal excitability are altered in the hippocampus of transgenic AD mouse models that overexpress amyloid precursor protein. Although gap junction hemichannels have been implicated in the early pathogenesis of AD, to what extent Pannexin channels contribute to Aβ(1-42)-mediated brain changes is not yet known. In this study we, therefore, investigated the involvement of Pannexin1 (Panx1) channels in Aβ-mediated changes of neuronal membrane properties and long-term potentiation (LTP) in an animal model of AD. We conducted whole-cell patch-clamp recordings in CA1 pyramidal neurons 1 week after intracerebroventricular treatments of adult wildtype (wt) and Panx1 knockout (Panx1-ko) mice with either oligomeric Aβ(1-42), or control peptide. Panx1-ko hippocampi treated with control peptide exhibited increased neuronal excitability compared to wt. In addition, action potential (AP) firing frequency was higher in control Panx1-ko slices compared to wt. Aβ-treatment reduced AP firing frequency in both cohorts. But in Aβ-treated wt mice, spike frequency adaptation was significantly enhanced, when compared to control wt and to Aβ-treated Panx1-ko mice. Assessment of hippocampal LTP revealed deficits in Aβ-treated wt compared to control wt. By contrast, Panx1-ko exhibited LTP that was equivalent to LTP in control ko hippocampi. Taken together, our data show that in the absence of Pannexin1, hippocampi are more resistant to the debilitating effects of oligomeric Aβ. Both Aβ-mediated impairments in spike frequency adaptation and in LTP that occur in wt animals, are ameliorated in Panx1-ko mice. These results suggest that Panx1 contributes to early changes in hippocampal neuronal and synaptic function that are triggered by oligomeric Aβ.
Collapse
Affiliation(s)
- Nicolina Südkamp
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Olena Shchyglo
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
14
|
Li Q, Wang YQ, Chu YX. The role of connexins and pannexins in orofacial pain. Life Sci 2020; 258:118198. [PMID: 32758624 DOI: 10.1016/j.lfs.2020.118198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/18/2020] [Accepted: 07/31/2020] [Indexed: 10/23/2022]
Abstract
Trigeminal neuralgia is characterized by extensive spreading of pain, referred to as ectopic pain, which describes the phenomenon of the pain passing from the injured regions to uninjured regions. Patients with orofacial pain often show no response to commonly used analgesics, and the exact mechanism of ectopic pain remains unclear, which restricts the development of specific drugs. The present review aims to summarize the contribution of the two families of transmembrane proteins, connexins (Cxs) and pannexins (Panxs), to the induction and spreading of orofacial pain and to provide potential targets for orofacial pain treatment. Cxs and Panxs have recently been shown to play essential roles in intercellular signal propagation in sensory ganglia, and previous studies have provided evidence for the contribution of several subtypes of Cxs and Panxs in various orofacial pain models. Upregulation of the expression of Cxs and Panxs in the trigeminal ganglia is observed in most cases after trigeminal injury, and regulating their expression or activity can improve pain-like behaviors in animals. It is speculated that after trigeminal injury, pain-related signals are transmitted to adjacent neurons and satellite glial cells in the trigeminal ganglia directly through gap junctions and simultaneously through hemichannels and pannexons through both autocrine and paracrine mechanisms. This review highlights recent discoveries in the regulation of Cxs and Panxs in different orofacial pain models and presents a hypothetical mechanism of ectopic pain in trigeminal neuralgia. In addition, the existing problems in current research are discussed.
Collapse
Affiliation(s)
- Qian Li
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
van Opbergen CJM, den Braven L, Delmar M, van Veen TAB. Mitochondrial Dysfunction as Substrate for Arrhythmogenic Cardiomyopathy: A Search for New Disease Mechanisms. Front Physiol 2019; 10:1496. [PMID: 31920701 PMCID: PMC6914828 DOI: 10.3389/fphys.2019.01496] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a familial heart disease, associated with ventricular arrhythmias, fibrofatty replacement of the myocardial mass and an increased risk of sudden cardiac death (SCD). Malignant ventricular arrhythmias and SCD largely occur in the pre-clinical phase of the disease, before overt structural changes occur. To prevent or interfere with ACM disease progression, more insight in mechanisms related to electrical instability are needed. Currently, numerous studies are focused on the link between cardiac arrhythmias and metabolic disease. In line with that, a potential role of mitochondrial dysfunction in ACM pathology is unclear and mitochondrial biology in the ACM heart remains understudied. In this review, we explore mitochondrial dysfunction in relation to arrhythmogenesis, and postulate a link to typical hallmarks of ACM. Mitochondrial dysfunction depletes adenosine triphosphate (ATP) production and increases levels of reactive oxygen species in the heart. Both metabolic changes affect cardiac ion channel gating, electrical conduction, intracellular calcium handling, and fibrosis formation; all well-known aspects of ACM pathophysiology. ATP-mediated structural remodeling, apoptosis, and mitochondria-related alterations have already been shown in models of PKP2 dysfunction. Yet, the limited amount of experimental evidence in ACM models makes it difficult to determine whether mitochondrial dysfunction indeed precedes and/or accompanies ACM pathogenesis. Nevertheless, current experimental ACM models can be very useful in unraveling ACM-related mitochondrial biology and in testing potential therapeutic interventions.
Collapse
Affiliation(s)
- Chantal J M van Opbergen
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lyanne den Braven
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mario Delmar
- Division of Cardiology, NYU School of Medicine, New York, NY, United States
| | - Toon A B van Veen
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
16
|
Sharma AK, Charles EJ, Zhao Y, Narahari AK, Baderdinni PK, Good ME, Lorenz UM, Kron IL, Bayliss DA, Ravichandran KS, Isakson BE, Laubach VE. Pannexin-1 channels on endothelial cells mediate vascular inflammation during lung ischemia-reperfusion injury. Am J Physiol Lung Cell Mol Physiol 2018; 315:L301-L312. [PMID: 29745255 PMCID: PMC6139659 DOI: 10.1152/ajplung.00004.2018] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/17/2018] [Accepted: 05/02/2018] [Indexed: 12/31/2022] Open
Abstract
Ischemia-reperfusion (I/R) injury (IRI), which involves inflammation, vascular permeability, and edema, remains a major challenge after lung transplantation. Pannexin-1 (Panx1) channels modulate cellular ATP release during inflammation. This study tests the hypothesis that endothelial Panx1 is a key mediator of vascular inflammation and edema after I/R and that IRI can be blocked by Panx1 antagonism. A murine hilar ligation model of IRI was used whereby left lungs underwent 1 h of ischemia and 2 h of reperfusion. Treatment of wild-type mice with Panx1 inhibitors (carbenoxolone or probenecid) significantly attenuated I/R-induced pulmonary dysfunction, edema, cytokine production, and neutrophil infiltration versus vehicle-treated mice. In addition, VE-Cad-CreERT2+/Panx1fl/fl mice (tamoxifen-inducible deletion of Panx1 in vascular endothelium) treated with tamoxifen were significantly protected from IRI (reduced dysfunction, endothelial permeability, edema, proinflammatory cytokines, and neutrophil infiltration) versus vehicle-treated mice. Furthermore, extracellular ATP levels in bronchoalveolar lavage fluid is Panx1-mediated after I/R as it was markedly attenuated by Panx1 antagonism in wild-type mice and by endothelial-specific Panx1 deficiency. Panx1 gene expression in lungs after I/R was also significantly elevated compared with sham. In vitro experiments demonstrated that TNF-α and/or hypoxia-reoxygenation induced ATP release from lung microvascular endothelial cells, which was attenuated by Panx1 inhibitors. This study is the first, to our knowledge, to demonstrate that endothelial Panx1 plays a key role in mediating vascular permeability, inflammation, edema, leukocyte infiltration, and lung dysfunction after I/R. Pharmacological antagonism of Panx1 activity may be a novel therapeutic strategy to prevent IRI and primary graft dysfunction after lung transplantation.
Collapse
Affiliation(s)
- Ashish K Sharma
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Eric J Charles
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Yunge Zhao
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Adishesh K Narahari
- Department of Pharmacology, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Pranav K Baderdinni
- Department of Pharmacology, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Miranda E Good
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Ulrike M Lorenz
- Department of Microbiology, Immunology, and Cancer, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Irving L Kron
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, and Cancer, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Victor E Laubach
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, Virginia
| |
Collapse
|
17
|
Hainz N, Beckmann A, Schubert M, Haase A, Martin U, Tschernig T, Meier C. Human stem cells express pannexins. BMC Res Notes 2018; 11:54. [PMID: 29357945 PMCID: PMC5778636 DOI: 10.1186/s13104-018-3125-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/03/2018] [Indexed: 11/23/2022] Open
Abstract
Objective Pannexins are channel proteins important for the release of calcium and adenosine triphosphate, which are among other functions involved in early development. Here, the expression of pannexins was investigated in induced pluripotent stem cells derived from human cord blood endothelial cells (hCBiPS2), in hematopoietic stem cell-derived induced pluripotent stem cells (HSC_F1285_T-iPS2) and in human embryonic stem cells (HES-3). The expression of pannexin (Panx) 1–3 mRNAs was analyzed in all three undifferentiated stem cell lines. Stem cells then underwent undirected differentiation into embryoid bodies and were analyzed regarding expression of germ layer-specific genes. Results Panx1, Panx2, and Panx3 mRNAs were expressed in all undifferentiated stem cell lines investigated. In comparison, Panx1 showed the highest expression among all pannexins. The undirected differentiation resulted in a mixed germ layer genotype in all three stem cell lines. Whereas the expression of Panx1 was not affected by differentiation, the expression of Panx2 was slightly increased in differentiated hCBiPS2 cells, HSC_F1285_T-iPS2 as well as HES3 cells as compared to their undifferentiated counterparts. A slight increase of Panx3 expression was observed in differentiated hCBiPS2 cells only. In conclusion, pluripotent stem cells express all three pannexin genes. Electronic supplementary material The online version of this article (10.1186/s13104-018-3125-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nadine Hainz
- Department of Anatomy and Cell Biology, Saarland University, Kirrberger Straße, Building 61, Saar, 66421, Homburg, Germany
| | - Anja Beckmann
- Department of Anatomy and Cell Biology, Saarland University, Kirrberger Straße, Building 61, Saar, 66421, Homburg, Germany
| | - Madline Schubert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625, Hannover, Germany.,REBIRTH-Cluster of Excellence, Hannover Medical School, 30625, Hannover, Germany
| | - Alexandra Haase
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625, Hannover, Germany.,REBIRTH-Cluster of Excellence, Hannover Medical School, 30625, Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625, Hannover, Germany.,REBIRTH-Cluster of Excellence, Hannover Medical School, 30625, Hannover, Germany
| | - Thomas Tschernig
- Department of Anatomy and Cell Biology, Saarland University, Kirrberger Straße, Building 61, Saar, 66421, Homburg, Germany.
| | - Carola Meier
- Department of Anatomy and Cell Biology, Saarland University, Kirrberger Straße, Building 61, Saar, 66421, Homburg, Germany
| |
Collapse
|
18
|
Feig JL, Mediero A, Corciulo C, Liu H, Zhang J, Perez-Aso M, Picard L, Wilder T, Cronstein B. The antiviral drug tenofovir, an inhibitor of Pannexin-1-mediated ATP release, prevents liver and skin fibrosis by downregulating adenosine levels in the liver and skin. PLoS One 2017; 12:e0188135. [PMID: 29145453 PMCID: PMC5690602 DOI: 10.1371/journal.pone.0188135] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/01/2017] [Indexed: 12/14/2022] Open
Abstract
Background Fibrosing diseases are a leading cause of morbidity and mortality worldwide and, therefore, there is a need for safe and effective antifibrotic therapies. Adenosine, generated extracellularly by the dephosphorylation of adenine nucleotides, ligates specific receptors which play a critical role in development of hepatic and dermal fibrosis. Results of recent clinical trials indicate that tenofovir, a widely used antiviral agent, reverses hepatic fibrosis/cirrhosis in patients with chronic hepatitis B infection. Belonging to the class of acyclic nucleoside phosphonates, tenofovir is an analogue of AMP. We tested the hypothesis that tenofovir has direct antifibrotic effects in vivo by interfering with adenosine pathways of fibrosis using two distinct models of adenosine and A2AR-mediated fibrosis. Methods Thioacetamide (100mg/kg IP)-treated mice were treated with vehicle, or tenofovir (75mg/kg, SubQ) (n = 5–10). Bleomycin (0.25U, SubQ)-treated mice were treated with vehicle or tenofovir (75mg/kg, IP) (n = 5–10). Adenosine levels were determined by HPLC, and ATP release was quantitated as luciferase-dependent bioluminescence. Skin breaking strength was analysed and H&E and picrosirus red-stained slides were imaged. Pannexin-1expression was knocked down following retroviral-mediated expression of of Pannexin-1-specific or scrambled siRNA. Results Treatment of mice with tenofovir diminished adenosine release from the skin of bleomycin-treated mice and the liver of thioacetamide-treated mice, models of diffuse skin fibrosis and hepatic cirrhosis, respectively. More importantly, tenofovir treatment diminished skin and liver fibrosis in these models. Tenofovir diminished extracellular adenosine concentrations by inhibiting, in a dose-dependent fashion, cellular ATP release but not in cells lacking Pannexin-1. Conclusions These studies suggest that tenofovir, a widely used antiviral agent, could be useful in the treatment of fibrosing diseases.
Collapse
Affiliation(s)
- Jessica L. Feig
- Division of Translational Medicine, Department of Medicine, NYU-Langone Medical Center, New York, New York, United States of America
| | - Aranzazu Mediero
- Division of Translational Medicine, Department of Medicine, NYU-Langone Medical Center, New York, New York, United States of America
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Carmen Corciulo
- Division of Translational Medicine, Department of Medicine, NYU-Langone Medical Center, New York, New York, United States of America
| | - Hailing Liu
- Division of Translational Medicine, Department of Medicine, NYU-Langone Medical Center, New York, New York, United States of America
| | - Jin Zhang
- Division of Translational Medicine, Department of Medicine, NYU-Langone Medical Center, New York, New York, United States of America
- Department of Immunology and Rheumatology, LiHuili Hospital, Medical School of Ningbo University, Ningbo, China
| | - Miguel Perez-Aso
- Division of Translational Medicine, Department of Medicine, NYU-Langone Medical Center, New York, New York, United States of America
| | - Laura Picard
- Division of Translational Medicine, Department of Medicine, NYU-Langone Medical Center, New York, New York, United States of America
| | - Tuere Wilder
- Division of Translational Medicine, Department of Medicine, NYU-Langone Medical Center, New York, New York, United States of America
| | - Bruce Cronstein
- Division of Translational Medicine, Department of Medicine, NYU-Langone Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
19
|
Leybaert L, Lampe PD, Dhein S, Kwak BR, Ferdinandy P, Beyer EC, Laird DW, Naus CC, Green CR, Schulz R. Connexins in Cardiovascular and Neurovascular Health and Disease: Pharmacological Implications. Pharmacol Rev 2017; 69:396-478. [PMID: 28931622 PMCID: PMC5612248 DOI: 10.1124/pr.115.012062] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Connexins are ubiquitous channel forming proteins that assemble as plasma membrane hemichannels and as intercellular gap junction channels that directly connect cells. In the heart, gap junction channels electrically connect myocytes and specialized conductive tissues to coordinate the atrial and ventricular contraction/relaxation cycles and pump function. In blood vessels, these channels facilitate long-distance endothelial cell communication, synchronize smooth muscle cell contraction, and support endothelial-smooth muscle cell communication. In the central nervous system they form cellular syncytia and coordinate neural function. Gap junction channels are normally open and hemichannels are normally closed, but pathologic conditions may restrict gap junction communication and promote hemichannel opening, thereby disturbing a delicate cellular communication balance. Until recently, most connexin-targeting agents exhibited little specificity and several off-target effects. Recent work with peptide-based approaches has demonstrated improved specificity and opened avenues for a more rational approach toward independently modulating the function of gap junctions and hemichannels. We here review the role of connexins and their channels in cardiovascular and neurovascular health and disease, focusing on crucial regulatory aspects and identification of potential targets to modify their function. We conclude that peptide-based investigations have raised several new opportunities for interfering with connexins and their channels that may soon allow preservation of gap junction communication, inhibition of hemichannel opening, and mitigation of inflammatory signaling.
Collapse
Affiliation(s)
- Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Paul D Lampe
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Stefan Dhein
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Brenda R Kwak
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Peter Ferdinandy
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Eric C Beyer
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Dale W Laird
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Christian C Naus
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Colin R Green
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| |
Collapse
|
20
|
Xu J, Chen L, Li L. Pannexin hemichannels: A novel promising therapy target for oxidative stress related diseases. J Cell Physiol 2017; 233:2075-2090. [PMID: 28295275 DOI: 10.1002/jcp.25906] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 12/16/2022]
Abstract
Pannexins, which contain three subtypes: pannexin-1, -2, and -3, are vertebrate glycoproteins that form non-junctional plasma membrane intracellular hemichannels via oligomerization. Oxidative stress refers to an imbalance of the generation and elimination of reactive oxygen species (ROS). Studies have shown that elevated ROS levels are pivotal in the development of a variety of diseases. Recent studies indicate that the occurrence of these oxidative stress related diseases is associated with pannexin hemichannels. It is also reported that pannexins regulate the production of ROS which in turn may increase the opening of pannexin hemichannels. In this paper, we review recent researches about the important role of pannexin hemichannels in oxidative stress related diseases. Thus, pannexin hemichannels, novel therapeutic targets, hold promise in managing oxidative stress related diseases such as the tumor, inflammatory bowel diseases (IBD), pulmonary fibrosis, chronic obstructive pulmonary disease (COPD), cardiovascular disease, insulin resistance (IR), and neural degeneration diseases.
Collapse
Affiliation(s)
- Jin Xu
- Learning Key Laboratory for Pharmacoproteomics, Institute of Pharmacy and Pharmacology, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| | - Linxi Chen
- Learning Key Laboratory for Pharmacoproteomics, Institute of Pharmacy and Pharmacology, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| | - Lanfang Li
- Learning Key Laboratory for Pharmacoproteomics, Institute of Pharmacy and Pharmacology, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| |
Collapse
|
21
|
Esseltine JL, Laird DW. Next-Generation Connexin and Pannexin Cell Biology. Trends Cell Biol 2016; 26:944-955. [PMID: 27339936 DOI: 10.1016/j.tcb.2016.06.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 01/17/2023]
Abstract
Connexins and pannexins are two families of large-pore channel forming proteins that are capable of passing small signaling molecules. While connexins serve the seminal task of direct gap junctional intercellular communication, pannexins are far less understood but function primarily as single membrane channels in autocrine and paracrine signaling. Advancements in connexin and pannexin biology in recent years has revealed that in addition to well-described classical functions at the plasma membrane, exciting new evidence suggests that connexins and pannexins participate in alternative pathways involving multiple intracellular compartments. Here we briefly highlight classical functions of connexins and pannexins but focus our attention mostly on the transformative findings that suggest that these channel-forming proteins may serve roles far beyond our current understandings.
Collapse
Affiliation(s)
- Jessica L Esseltine
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Dale W Laird
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada.
| |
Collapse
|
22
|
Wu D, Li L, Chen L. A new perspective of mechanosensitive pannexin-1 channels in cancer metastasis: clues for the treatment of other stress-induced diseases. Acta Biochim Biophys Sin (Shanghai) 2016; 48:487-9. [PMID: 27025600 DOI: 10.1093/abbs/gmw018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Di Wu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| |
Collapse
|
23
|
Ischemia triggered ATP release through Pannexin-1 channel by myocardial cells activates sympathetic fibers. Microvasc Res 2015; 104:32-7. [PMID: 26596404 DOI: 10.1016/j.mvr.2015.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/31/2015] [Accepted: 11/16/2015] [Indexed: 12/14/2022]
Abstract
The cardiovascular system is extensively innervated by the autonomic nervous system, and the autonomic modulation including sympathetic innervation is crucial to the function of heart during normal and ischemic conditions. Severe myocardial ischemia could cause acute myocardial infarction, which is one of the leading diseases in the world. Thus studying the sympathetic modulation during ischemia could reduce the probability of myocardial infarction and further heart failure. The neurotransmitter ATP is released by myocardial cells during ischemia; however, the effect of ATP release remains elusive. We examined whether ATP released during ischemia functions as a neurotransmitter that activates sympathetic nerve in the heart. A novel technique of recording the sympathetic fiber calcium imaging in mouse cardiac tissue slices was used. We have applied the Cre/loxP system to specifically express GCaMP3, a genetically encoded calcium indicator, in the sympathetic nerve. Using this technique, we found that ATP released by myocardial cells through Pannexin-1 channel during ischemia could evoke calcium responses in cardiac sympathetic nerve fibers. Our study provides a new approach to study the cell and nerve interaction in the cardiac system, as well as a new understanding of ATP function during ischemia.
Collapse
|