1
|
Morokuma J, Gárriz A, Toribio D, Pagni S, Zoukhri D. Interleukin-1β activates matrix metalloproteinase-2 to alter lacrimal gland myoepithelial cell structure and function. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1415002. [PMID: 38984107 PMCID: PMC11182216 DOI: 10.3389/fopht.2024.1415002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/20/2024] [Indexed: 07/11/2024]
Abstract
The aim of the present study is to investigate the role of c-Jun N-terminal kinase (JNK) and matrix metalloproteinase-2 (MMP-2) in mediating the effects of interleukin-1β (IL-1β) on the function of lacrimal gland myoepithelial cells (MECs). MECs isolated from an α-smooth muscle actin-green fluorescent protein (SMA-GFP) transgenic mouse were treated with IL-1β alone or in the presence of SP600125, a JNK inhibitor, or ARP100, an MMP-2 inhibitor. The GFP intensity and the cell size/area were measured, and on day 7, the SMA, calponin, and pro-MMP-2 protein levels and the MEC contraction were assessed. At baseline, the control and treated cells showed no differences in GFP intensity or cell size. Starting on day 2 and continuing on days 4 and 7, the GFP intensity and cell size were significantly lower in the IL-1β-treated samples, and these effects were alleviated following inhibition of either JNK or MMP-2. Compared with the control, the levels of SMA and calponin were lower in the IL-1β-treated samples, and both the JNK and MMP-2 inhibitors reversed this trend. The pro-MMP-2 protein level was elevated in the IL-1β-treated samples, and this effect was abolished by the JNK inhibitor. Finally, oxytocin-induced MEC contraction was diminished in the IL-1β-treated samples, and both the JNK and MMP-2 inhibitors reversed this effect. Our data suggest that IL-1β uses the JNK/MMP-2 pathways to alter MEC functions, which might account for the diminished tears associated with aqueous-deficient dry eye disease.
Collapse
Affiliation(s)
- Junji Morokuma
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Angela Gárriz
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Danny Toribio
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Sarah Pagni
- Department of Public Health and Community Service, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Driss Zoukhri
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, MA, United States
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
2
|
Jara ZP, Harford T, Singh KD, Desnoyer R, Kumar A, Srinivasan D, Karnik SS. Distinct Mechanisms of β-Arrestin-Biased Agonist and Blocker of AT1R in Preventing Aortic Aneurysm and Associated Mortality. Hypertension 2023; 80:385-402. [PMID: 36440576 PMCID: PMC9852074 DOI: 10.1161/hypertensionaha.122.19232] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Aortic aneurysm (AA) is a "silent killer" human disease with no effective treatment. Although the therapeutic potential of various pharmacological agents have been evaluated, there are no reports of β-arrestin-biased AT1R (angiotensin-II type-1 receptor) agonist (TRV027) used to prevent the progression of AA. METHODS We tested the hypothesis that TRV027 infusion in AngII (angiotensin II)-induced mouse model of AA prevents AA. High-fat-diet-fed ApoE (apolipoprotein E gene)-null mice were infused with AngII to induce AA and co-infused with TRV027 and a clinically used AT1R blocker Olmesartan to prevent AA. Aortas explanted from different ligand infusion groups were compared with assess different grades of AA or lack of AA. RESULTS AngII produced AA in ≈67% male mice with significant mortality associated with AA rupture. We observed ≈13% mortality due to aortic arch dissection without aneurysm in male mice. AngII-induced AA and mortality was prevented by co-infusion of TRV027 or Olmesartan, but through different mechanisms. In TRV027 co-infused mice aortic wall thickness, elastin content, new DNA, and protein synthesis were higher than untreated and Olmesartan co-infused mice. Co-infusion with both TRV027 and Olmesartan prevented endoplasmic reticulum stress, fibrosis, and vasomotor hyper responsiveness. CONCLUSIONS TRV027-engaged AT1R prevented AA and associated mortality by distinct molecular mechanisms compared with the AT1R blocker, Olmesartan. Developing novel β-arrestin-biased AT1R ligands may yield promising drugs to combat AA.
Collapse
Affiliation(s)
- Zaira Palomino Jara
- Cardiovascular and Metabolic Sciences Department, Lerner Research Institute, Cleveland Clinic
| | - Terri Harford
- Cardiovascular and Metabolic Sciences Department, Lerner Research Institute, Cleveland Clinic
| | | | - Russell Desnoyer
- Cardiovascular and Metabolic Sciences Department, Lerner Research Institute, Cleveland Clinic
| | - Avinash Kumar
- Pathobiology Department, Lerner Research Institute, Cleveland Clinic
| | | | - Sadashiva S. Karnik
- Cardiovascular and Metabolic Sciences Department, Lerner Research Institute, Cleveland Clinic
| |
Collapse
|
3
|
Cottrill EJ, Bowen CJ, Pennington ZA, Murray JA, Rajkovic CJ, Dietz HC, Sponseller PD. Tendon Healing in a Mouse Model of Loeys-Dietz Syndrome: Controlled Study Using a Patellar Tendon Transection Model. J Pediatr Orthop 2022; 42:e590-e595. [PMID: 35442932 DOI: 10.1097/bpo.0000000000002131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Loeys-Dietz syndrome (LDS) is a rare autosomal-dominant connective tissue disorder caused by genetic mutations in the transforming growth factor-β (TGFβ) signaling pathway. In addition to vascular malformations, patients with LDS commonly present with bone and tendon abnormalities, including joint laxity. While TGFβ signaling dysregulation has been implicated in many of these clinical manifestations, the degree to which it influences the tendinopathy and tendon healing issues in LDS has not been determined. METHODS Wound healing after patellar tendon transection was compared between wild-type (WT) and Tgfbr2-mutant (LDS) mice (7 mice per group). In all mice, the right patellar tendon was transected at midsubstance, while the left was untouched to serve as a control. Mice were euthanized 6 weeks after surgery. Tendon specimens were harvested for histopathologic grading according to a previously validated scoring metric, and gene expression levels of Mmp2, Tgfb2, and other TGFβ-signaling genes were assayed. Between-group comparisons were made using 1-way analysis of variance with post hoc Tukey honestly significant difference testing. RESULTS Expression levels of assayed genes were similar between LDS and WT tendons at baseline; however, at 6 weeks after patellar tendon transection, LDS tendons showed sustained elevations in Mmp2 and Tgfb2 compared with baseline values; these elevations were not seen in normal tendons undergoing the same treatments. Histologically, untreated LDS tendons had significantly greater cellularity and cell rounding compared with untreated WT tendons, and both WT and LDS tendons had significantly worse histologic scores after surgery. CONCLUSION We present the first mechanistic insight into the effect of LDS on tendons and tendon healing. The morphologic differences between LDS and WT tendons at baseline may help explain the increased risk of tendon/ligament dysfunction in patients with LDS, and the differential healing response to injury in LDS may account for the delayed healing and weaker repair tissue. LEVEL OF EVIDENCE Level V.
Collapse
Affiliation(s)
| | - Caitlin J Bowen
- Genetic Medicine
- Howard Hughes Medical Institute, Bethesda, MD
| | | | - Jason A Murray
- Pathology, The Johns Hopkins University School of Medicine
| | | | - Harry C Dietz
- Genetic Medicine
- Howard Hughes Medical Institute, Bethesda, MD
| | | |
Collapse
|
4
|
Wang X, Parasaram V, Dhital S, Nosoudi N, Hasanain S, Lane BA, Lessner SM, Eberth JF, Vyavahare NR. Systemic delivery of targeted nanotherapeutic reverses angiotensin II-induced abdominal aortic aneurysms in mice. Sci Rep 2021; 11:8584. [PMID: 33883612 PMCID: PMC8060294 DOI: 10.1038/s41598-021-88017-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/25/2021] [Indexed: 01/04/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) disease causes dilation of the aorta, leading to aortic rupture and death if not treated early. It is the 14th leading cause of death in the U.S. and 10th leading cause of death in men over age 55, affecting thousands of patients. Despite the prevalence of AAA, no safe and efficient pharmacotherapies exist for patients. The deterioration of the elastic lamina in the aneurysmal wall is a consistent feature of AAAs, making it an ideal target for delivering drugs to the AAA site. In this research, we conjugated nanoparticles with an elastin antibody that only targets degraded elastin while sparing healthy elastin. After induction of aneurysm by 4-week infusion of angiotensin II (Ang II), two biweekly intravenous injections of pentagalloyl glucose (PGG)-loaded nanoparticles conjugated with elastin antibody delivered the drug to the aneurysm site. We show that targeted delivery of PGG could reverse the aortic dilation, ameliorate the inflammation, restore the elastic lamina, and improve the mechanical properties of the aorta at the AAA site. Therefore, simple iv therapy of PGG loaded nanoparticles can be an effective treatment option for early to middle stage aneurysms to reverse disease progression and return the aorta to normal homeostasis.
Collapse
Affiliation(s)
- Xiaoying Wang
- Department of Bioengineering, Clemson University, 501 Rhodes Engineering Research Center, Clemson, SC, 29634, USA
| | - Vaideesh Parasaram
- Department of Bioengineering, Clemson University, 501 Rhodes Engineering Research Center, Clemson, SC, 29634, USA
| | - Saphala Dhital
- Department of Bioengineering, Clemson University, 501 Rhodes Engineering Research Center, Clemson, SC, 29634, USA
| | - Nasim Nosoudi
- Department of Bioengineering, Clemson University, 501 Rhodes Engineering Research Center, Clemson, SC, 29634, USA.,Biomedical Engineering, College of Engineering & Computer Sciences, Marshall University, Huntington, WV, USA
| | - Shahd Hasanain
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, USA
| | - Brooks A Lane
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, USA
| | - Susan M Lessner
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, USA
| | - John F Eberth
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, USA
| | - Naren R Vyavahare
- Department of Bioengineering, Clemson University, 501 Rhodes Engineering Research Center, Clemson, SC, 29634, USA.
| |
Collapse
|
5
|
Non-alcoholic fatty liver disease: a metabolic burden promoting atherosclerosis. Clin Sci (Lond) 2021; 134:1775-1799. [PMID: 32677680 DOI: 10.1042/cs20200446] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/06/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the fastest growing chronic liver disease, with a prevalence of up to 25% worldwide. Individuals with NAFLD have a high risk of disease progression to cirrhosis, hepatocellular carcinoma (HCC), and liver failure. With the exception of intrahepatic burden, cardiovascular disease (CVD) and especially atherosclerosis (AS) are common complications of NAFLD. Furthermore, CVD is a major cause of death in NAFLD patients. Additionally, AS is a metabolic disorder highly associated with NAFLD, and individual NAFLD pathologies can greatly increase the risk of AS. It is increasingly clear that AS-associated endothelial cell damage, inflammatory cell activation, and smooth muscle cell proliferation are extensively impacted by NAFLD-induced systematic dyslipidemia, inflammation, oxidative stress, the production of hepatokines, and coagulations. In clinical trials, drug candidates for NAFLD management have displayed promising effects for the treatment of AS. In this review, we summarize the key molecular events and cellular factors contributing to the metabolic burden induced by NAFLD on AS, and discuss therapeutic strategies for the improvement of AS in individuals with NAFLD.
Collapse
|
6
|
The protective effect of puerarin on angiotensin II-induced aortic aneurysm formation by the inhibition of NADPH oxidase activation and oxidative stress-triggered AP-1 signaling pathways. Oncol Lett 2018; 16:3327-3332. [PMID: 30127931 DOI: 10.3892/ol.2018.9021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 04/05/2018] [Indexed: 01/02/2023] Open
Abstract
Puerarin, an active ingredient of Pueraria lobata, has a range of pharmacological effects and excellent pharmacodynamic properties. In the present study, the effect of puerarin on angiotensin II-induced aortic aneurysm formation and the potential underlying molecular mechanisms were examined. The results revealed that puerarin significantly suppressed the viability, and induced the apoptosis, of aneurysm-inducing cells in a time- and dose-dependent manner. Furthermore, treatment with puerarin significantly suppressed the production of reactive oxygen species (ROS) and the expression of matrix metalloproteinase-2 (MMP-2) protein in aneurysm cells. Puerarin treatment significantly increased caspase-9 and -3 activity, induced the protein expression of phosphorylated (p)-Jun and inhibited the protein expression of activator protein 1 (AP-1) in aneurysm cells. It was also demonstrated that Puerarin significantly suppressed the reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase activity in aneurysm cells. Therefore, it was demonstrated that puerarin on suppressed the cell growth of angiotensin II-induced aortic aneurysm formation by affecting the rate of apoptosis, the generation of ROS, MMP-2, AP-1 and p-Jun protein expression and NADPH oxidase.
Collapse
|
7
|
Effect of Angiotensin II on Matrix Metalloproteinase-2 Secretion in Human Umbilical Vein Endothelial Cells. J Cardiovasc Pharmacol 2018; 71:233-239. [DOI: 10.1097/fjc.0000000000000564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Li J, Bao X, Li Y, Wang Y, Zhao Z, Jin X. Study of the functional mechanisms of osteopontin and chemokine-like factor 1 in the development and progression of abdominal aortic aneurysms in rats. Exp Ther Med 2016; 12:4007-4011. [PMID: 28101179 PMCID: PMC5228271 DOI: 10.3892/etm.2016.3891] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/04/2016] [Indexed: 12/16/2022] Open
Abstract
The aim of the study was to investigate the functional mechanisms of osteopontin (Opn) and chemokine-like factor 1 (Cklf1) during the development and progression of abdominal aortic aneurysms (AAA) in rats. Healthy adult Sprague-Dawley rats (n=30) were randomly divided into the AAA, control and sham groups (10 rats/group) and experimental rat models of AAA were generated by enzyme perfusion in abdominal aorta for 30 min. The AAA formation was assessed by measuring the aortal diameter and hematoxylin and eosin staining as well as specific staining to detect the structural changes of the aorta and inflammatory cell infiltration. Immunohistochemistry, western blot analysis and statistical analysis were also performed to examine the expression levels of Opn, Cklf1 and matrix metalloproteinase (MMP)-2 in the arterial tissue. Rat models of AAA were successfully established by protease perfusion. After perfusion, the diameter expansion rate of abdominal aorta was significantly higher (P<0.01) compared to controls, elastin present at the middle layer was significantly reduced and inflammatory cell infiltration was significantly higher in AAA rats. The expression of Opn, Cklf1 and MMP-2 in the AAA group was significantly increased compared to the control group (P<0.05) as revealed by immunohistochemical staining. The western blot analysis revealed that, the expression levels of Opn, Cklf1 and MMP-2 in the AAA group were significantly higher than the sham and control groups (P<0.01). We also found that the expression of Opn and MMP-2 was positively correlated. In conclusion, in rat models of AAA, Opn and Cklf1 function synergistically to upregulate the expression of MMP-2, causing accelerated degradation of extracellular matrix and eventually leading to the development and progression of AAA.
Collapse
Affiliation(s)
- Jun Li
- Department of Vascular Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China; Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xia Bao
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yongxin Li
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yuewei Wang
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Zonggang Zhao
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xing Jin
- Department of Vascular Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
9
|
Salameh A, Dhein S. Strategies for Pharmacological Organoprotection during Extracorporeal Circulation Targeting Ischemia-Reperfusion Injury. Front Pharmacol 2015; 6:296. [PMID: 26733868 PMCID: PMC4686733 DOI: 10.3389/fphar.2015.00296] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/02/2015] [Indexed: 01/28/2023] Open
Abstract
Surgical correction of congenital cardiac malformations or aortocoronary bypass surgery in many cases implies the use of cardiopulmonary-bypass (CPB). However, a possible negative impact of CPB on internal organs such as brain, kidney, lung and liver cannot be neglected. In general, CPB initiates a systemic inflammatory response (SIRS) which is presumably caused by contact of blood components with the surface of CPB tubing. Moreover, during CPB the heart typically undergoes a period of cold ischemia, and the other peripheral organs a global low flow hypoperfusion. As a result, a plethora of pro-inflammatory mediators and cytokines is released activating different biochemical pathways, which finally may result in the occurrence of microthrombosis, microemboli, in depletion of coagulation factors and haemorrhagic diathesis besides typical ischemia-reperfusion injuries. In our review we will focus on possible pharmacological interventions in patients to decrease negative effects of CPB and to improve post-operative outcome with regard to heart and other organs like brain, kidney, or lung.
Collapse
Affiliation(s)
- Aida Salameh
- Clinic for Pediatric Cardiology, Heart Centre University of Leipzig Leipzig, Germany
| | - Stefan Dhein
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig Leipzig, Germany
| |
Collapse
|
10
|
Differential regulation of matrix metalloproteinases in varicella zoster virus-infected human brain vascular adventitial fibroblasts. J Neurol Sci 2015; 358:444-6. [PMID: 26443282 DOI: 10.1016/j.jns.2015.09.349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/18/2015] [Accepted: 09/13/2015] [Indexed: 11/22/2022]
Abstract
Upon reactivation, varicella zoster virus (VZV) spreads transaxonally, infects cerebral arteries and causes ischemic or hemorrhagic stroke, as well as aneurysms. The mechanism(s) of VZV-induced aneurysm formation is unknown. However, matrix metalloproteinases (MMPs), which digest extracellular structural proteins in the artery wall, play a role in cerebral and aortic artery aneurysm formation and rupture. Here, we examined the effect of VZV infection on expression of MMP-1, -2, -3, and -9 in primary human brain vascular adventitial fibroblasts (BRAFS). At 6 days post-infection, VZV- and mock-infected BRAFs were analyzed for mRNA levels of MMP-1, -2, -3 and -9 by RT-PCR and for corresponding total intra- and extracellular protein levels by multiplex ELISA. The activity of MMP-1 was also measured in a substrate cleavage assay. Compared to mock-infected BRAFs, MMP-1, MMP-3 and MMP-9 transcripts, cell lysate protein and conditioned supernatant protein were all increased in VZV-infected BRAFs, whereas MMP-2 transcripts, cell lysate protein and conditioned supernatant protein were decreased. MMP-1 from the conditioned supernatant of VZV-infected BRAFs showed increased cleavage activity on an MMP-1-specific substrate compared to mock-infected BRAFs. Differential regulation of MMPs in VZV-infected BRAFs may contribute to aneurysm formation in VZV vasculopathy.
Collapse
|