1
|
Şekerci K, Higashitani N, Ozgur R, Higashitani A, Turkan I, Uzilday B. Gene expression and mucilage adaptations to salinity in germination of extreme halophyte Schrenkiella parvula seeds. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109517. [PMID: 39832394 DOI: 10.1016/j.plaphy.2025.109517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/03/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Salinization is a significant global issue causes irreversible damage to plants by reducing osmotic potential, inhibiting seed germination, and impeding water uptake. Seed germination, a crucial step towards the seedling stage is regulated by several hormones and genes, with the balance between abscisic acid and gibberellin being the key mechanism that either promotes or inhibits this process. Additionally, mucilage, a gelatinous substance, is known to provide protection against drought, herbivory, soil adhesion, and seed sinking. However, limited information is available on the structure and thickness of seed mucilage in halophytes under different salinity conditions. In this study, the mucilage structure of the extreme halophyte Schrenkiella parvula was compared with the glycophyte Arabidopsis thaliana in response to salinity. We found differences in the expression levels of genes such as ABI5, RGL2, DOG1, ENO2, and DHAR2, which are involved in seed germination and antioxidant activity, as well as in the mucilage structure of seeds of S. parvula and A. thaliana seeds at different salt concentrations. The responses of seed germination of S. parvula to salinity indicate that it is more salt-tolerant than A. thaliana. Additionally, it was found that S. parvula mucilage decreased under salt conditions but not under mannitol conditions, whereas in A. thaliana mucilage did not change under both conditions, which is one of the adaptation strategies of S. parvula to salt conditions. We believe that these fundamental analyzes will provide a foundation for future molecular and biochemical studies comparing the responses of crops and halophytes to salinity stress.
Collapse
Affiliation(s)
- Keriman Şekerci
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan; Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| | - Nahoko Higashitani
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Rengin Ozgur
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| | - Atsushi Higashitani
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Ismail Turkan
- Department of Soil Science and Plant Nutrition, Faculty of Agricultural Sciences and Technologies, Yasar University, 35100, Bornova, Izmir, Türkiye
| | - Baris Uzilday
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye.
| |
Collapse
|
2
|
Chand M, Chopra R, Talwar B, Homroy S, Singh PK, Dhiman A, Payyunni AW. Unveiling the potential of linseed mucilage, its health benefits, and applications in food packaging. Front Nutr 2024; 11:1334247. [PMID: 38385008 PMCID: PMC10879465 DOI: 10.3389/fnut.2024.1334247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/04/2024] [Indexed: 02/23/2024] Open
Abstract
Industrial waste products derived from the oil industry often contain valuable substances and elements with great potential. These by-products can be used for various purposes, including as nutrients, bioactive compounds, fuels, and polymers. Linseed mucilage (LM) is one such example of a beneficial by-product obtained from linseed. It possesses favorable chemical and functional properties, depending on its method of extraction. Different pretreatments, such as enzymatic extraction, microwave-assisted extraction, pulse electric field, and ultrasound-assisted extraction, have been explored by various researchers to enhance both the yield and quality of mucilage. Furthermore, LM has exhibited therapeutic effects in the treatment of obesity, diabetes, constipation, hyperlipidemia, cancer, and other lifestyle diseases. Additionally, it demonstrates favorable functional characteristics that make it suitable to be used in bioplastic production. These properties preserve food quality, prolong shelf life, and confer antimicrobial activity. It also has the potential to be used as a packaging material, especially considering the increasing demand for sustainable and biodegradable alternatives to plastics because of their detrimental impact on environmental health. This review primarily focuses on different extraction techniques used for linseed mucilage, its mechanism of action in terms of health benefits, and potential applications in food packaging.
Collapse
Affiliation(s)
- Monika Chand
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Rajni Chopra
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Binanshu Talwar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Snigdha Homroy
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Priyanka Kumari Singh
- Department of Food and Nutrition and Food Technology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Aishwarya Dhiman
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Abdul Wahid Payyunni
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| |
Collapse
|
3
|
Tsai AYL, McGee R, Dean GH, Haughn GW, Sawa S. Seed Mucilage: Biological Functions and Potential Applications in Biotechnology. PLANT & CELL PHYSIOLOGY 2021; 62:1847-1857. [PMID: 34195842 DOI: 10.1093/pcp/pcab099] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/16/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
In plants, the diaspore (seed dispersal unit) may include a seed coat and/or pericarp to protect the embryo and assist in dispersion. In many species, the seed coat and/or pericarp secrete a gelatinous mixture of cell wall polysaccharides known as mucilage. In several species, mucilage synthesis, secretion and modification have been studied extensively as model systems for the investigation of plant cell wall structure and function. Despite this, efforts toward understanding the role of mucilage have received less attention. Mucilage has been hypothesized to impact seed dispersal through interaction with soil, protecting the seed in the gut following ingestion by animals or affecting the ability of seeds to sink or float in water. Mucilage has been found to influence seed germination and seedling establishment, most often during abiotic stress, probably by maintaining seed hydration when water is scarce. Finally, mucilage has been documented to mediate interactions with various organisms. Advances in transgenic technology should enable the genetic modification of mucilage structure and function in crop plants. Cells synthesizing mucilage may also be a suitable platform for creating custom polysaccharides or proteins with industrial applications. Thus, in the near future, it is likely that research on seed mucilage will expand well beyond the current focus. Here we summarize our understanding of the biological functions of mucilage and provide an outlook on the future of mucilage research.
Collapse
Affiliation(s)
- Allen Yi-Lun Tsai
- International Research Center for Agricultural & Environmental Biology, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo Ward, Kumamoto 860-8555, Japan
| | - Robert McGee
- L'Institut National de la Recherche Scientifique Centre Armand-Frappier Santé Biotechnologie (INRS-CAFSB), 531 des Prairies Blvd, Laval, QC H7V 1B7, Canada
| | - Gillian H Dean
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada
| | - George W Haughn
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada
| | - Shinichiro Sawa
- International Research Center for Agricultural & Environmental Biology, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo Ward, Kumamoto 860-8555, Japan
| |
Collapse
|
4
|
Dybka-Stępień K, Otlewska A, Góźdź P, Piotrowska M. The Renaissance of Plant Mucilage in Health Promotion and Industrial Applications: A Review. Nutrients 2021; 13:nu13103354. [PMID: 34684354 PMCID: PMC8539170 DOI: 10.3390/nu13103354] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Plant mucilage is a renewable and cost-effective source of plant-based compounds that are biologically active, biodegradable, biocompatible, nontoxic, and environmentally friendly. Until recently, plant mucilage has been of interest mostly for technological purposes. This review examined both its traditional uses and potential modern applications in a new generation of health-promoting foods, as well as in cosmetics and biomaterials. We explored the nutritional, phytochemical, and pharmacological richness of plant mucilage, with a particular focus on its biological activity. We also highlighted areas where more research is needed in order to understand the full commercial potential of plant mucilage.
Collapse
|
5
|
Pan VS, McMunn M, Karban R, Goidell J, Weber MG, LoPresti EF. Mucilage binding to ground protects seeds of many plants from harvester ants: A functional investigation. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vincent S. Pan
- Department of Plant Biology, Ecology, and Evolution Oklahoma State University Stillwater OK USA
| | - Marshall McMunn
- Department of Entomology and Nematology University of California‐Davis Davis CA USA
| | - Richard Karban
- Department of Entomology and Nematology University of California‐Davis Davis CA USA
| | - Jake Goidell
- Department of Entomology and Nematology University of California‐Davis Davis CA USA
| | - Marjorie G. Weber
- Department of Plant Biology Program in Ecology, Evolution, and Behavior Michigan State University East Lansing MI USA
| | - Eric F. LoPresti
- Department of Plant Biology, Ecology, and Evolution Oklahoma State University Stillwater OK USA
| |
Collapse
|
6
|
Rahimi G, Hedayati S, Mazloomi SM. Studies on functional properties of wheat starch in the presence of Lepidium perfoliatum and Alyssum homolocarpum seed gums. J Food Sci 2021; 86:699-704. [PMID: 33527382 DOI: 10.1111/1750-3841.15608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/27/2020] [Accepted: 12/22/2020] [Indexed: 11/30/2022]
Abstract
This study was performed to investigate the influence of Lepidium perfoliatum seed gum (LPSG) and Alyssum homolocarpum seed gum (AHSG) on functional properties of wheat starch. Various concentrations of gums (0.25%, 0.5%, 0.75%, and 1% dry starch weight basis) were added to wheat starch, and their influences on water absorption, pasting properties, gel strength, freeze-thaw stability and color parameters were investigated. The results showed that both gums improved water absorption, freeze-thaw stability, pasting parameters, gel hardness, gumminess, and chewiness whereas springiness was not affected and cohesiveness was decreased by the incorporation of gums and LPSG more effective than AHSG. Color parameters were also affected by the concentration of gums. The L value decreased whereas a value and b value increased in the presence of both gums. However, the changes were more obvious in samples containing LPSG. PRACTICAL APPLICATION: Starch is one of the most important carbohydrate materials in the food industry. However, native starch has shortcomings, such as sensitivity to shear or syneresis that limit its applications in food processing. Incorporation of hydrocolloids is an effective strategy to improve functional properties of starch. LPSG and AHSG are two novel sources of hydrocolloids which can be used to modify the properties of starch in food products.
Collapse
Affiliation(s)
- Ghazale Rahimi
- Department of Food Science and Technology, Sarvestan Branch, Islamic Azad University, Sarvestan, Iran
| | - Sara Hedayati
- Nutrition Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Mazloomi
- Nutrition Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Zhou Q, Zeng WJ, Wang JL, Wang YZ, Chen Y, Yusupul K, Zhao HX. The complete chloroplast genome sequence of Lepidium perfoliatum L. Mitochondrial DNA B Resour 2021; 6:656-657. [PMID: 33763539 PMCID: PMC7928052 DOI: 10.1080/23802359.2021.1872437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This study was based on the collection of the complete genome of Lepidium perfoliatum chloroplast (cp). The full cp genome is 154,264 bp long, containing 130 genes, in which 8 genes are specified for ribosomal RNA (rRNA), while 85 and 37 genes for protein-coding and transfer RNA (tRNA) respectively. Phylogenetic analyss revealed the closed cluster of Lepidium perfoliatum with other Lepidium species such as Lepidium apetalum, Lepidium sativum, Lepidium meyenii and Lepidium virginicum, which helps for the evaluation of how Lepidium perfoliatum is phylogenetically related to other species.
Collapse
Affiliation(s)
- Qian Zhou
- College of Life and Geography Sciences, Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Kashi University, Kashi, China
| | - Wei-Jun Zeng
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Plant Stress Biology in Arid Land, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Ji-Lian Wang
- College of Life and Geography Sciences, Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Kashi University, Kashi, China
| | - Yu-Zhou Wang
- College of Life and Geography Sciences, Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Kashi University, Kashi, China
| | - Yun Chen
- College of Life and Geography Sciences, Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Kashi University, Kashi, China
| | - Kaidiriye Yusupul
- College of Life and Geography Sciences, Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Kashi University, Kashi, China
| | - Hui-Xin Zhao
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Plant Stress Biology in Arid Land, College of Life Science, Xinjiang Normal University, Urumqi, China
| |
Collapse
|
8
|
Qiao Y, Zhang Q, Chen D, Liu M, Liu W. Application of CRISPR/Cas9 Gene Editing System in Obtaining Natural Products in Actinomycetes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202105035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Płachno BJ, Kapusta M, Świątek P, Stolarczyk P, Kocki J. Immunodetection of Pectic Epitopes, Arabinogalactan Proteins, and Extensins in Mucilage Cells from the Ovules of Pilosella officinarum Vaill. and Taraxacum officinale Agg. (Asteraceae). Int J Mol Sci 2020; 21:E9642. [PMID: 33348898 PMCID: PMC7766254 DOI: 10.3390/ijms21249642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
The main aim of this study was to compare the cytological difference between ovular mucilage cells in two Asteraceae species-Pilosella officinarum and Taraxacum officinale-in order to determine whether pectic epitopes, arabinogalactan proteins, or extensins are present. The immunocytochemical technique was used. Both the Taracacum and Pilosella genera have been used recently as models for understanding the mechanisms of apomixis. Knowledge of the presence of signal molecules (pectic epitopes, arabinogalactan proteins, and extensins) can help better understand the developmental processes in these plants during seed growth. The results showed that in Pilosella officinarum, there was an accumulation of pectins in the mucilage, including both weakly and highly esterified pectins, which was in contrast to the mucilage of Taraxacum officinale, which had low amounts of these pectins. However, Taraxacum protoplasts of mucilage cells were rich in weakly methyl-esterified pectins. While the mucilage contained arabinogalactan proteins in both of the studied species, the types of arabinogalactan proteins were different. In both of the studied species, extensins were recorded in the transmitting tissues. Arabinogalactan proteins as well as weakly and highly esterified pectins and extensins occurred in close proximity to calcium oxalate crystals in both Taraxacum and Pilosella cells.
Collapse
Affiliation(s)
- Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Kraków, Poland
| | - Małgorzata Kapusta
- Department of Plant Cytology and Embryology, University of Gdańsk, 59. Wita Stwosza St., 80-308 Gdańsk, Poland;
| | - Piotr Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland;
| | - Piotr Stolarczyk
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54 Ave., 31-425 Kraków, Poland;
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłowska St., 20-080 Lublin, Poland;
| |
Collapse
|
10
|
Viudes S, Burlat V, Dunand C. Seed mucilage evolution: Diverse molecular mechanisms generate versatile ecological functions for particular environments. PLANT, CELL & ENVIRONMENT 2020; 43:2857-2870. [PMID: 32557703 DOI: 10.1111/pce.13827] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Plant myxodiasporous species have the ability to release a polysaccharidic mucilage upon imbibition of the seed (myxospermy) or the fruit (myxocarpy). This is a widespread capacity in angiosperms providing multiple ecological functions including higher germination efficiency under environmental stresses. It is unclear whether myxodiaspory has one or multiple evolutionary origins and why it was supposedly lost in several species. Here, we summarize recent advances on three main aspects of myxodiaspory. (a) It represents a combination of highly diverse traits at different levels of observation, ranging from the dual tissular origin of mucilage secretory cells to diverse mucilage polysaccharidic composition and ultrastructural organization. (b) An asymmetrical selection pressure is exerted on myxospermy-related genes that were first identified in Arabidopsis thaliana. The A. thaliana and the flax intra-species mucilage variants show that myxospermy is a fast-evolving trait due to high polymorphism in a few genes directly acting on mucilage establishment. In A. thaliana, these actors are downstream of a master regulatory complex and an original phylogenetic overview provided here illustrates that this complex has sequentially evolved after the common ancestor of seed plants and was fully established in the common ancestor of the rosid clade. (c) Newly identified myxodiaspory ecological functions indicate new perspectives such as soil microorganism control and plant establishment support.
Collapse
Affiliation(s)
- Sébastien Viudes
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, Castanet-Tolosan, France
| | - Vincent Burlat
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, Castanet-Tolosan, France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, Castanet-Tolosan, France
| |
Collapse
|
11
|
Liu Y, Maimaitijiang T, Zhang J, Ma Y, Lan H. The Developmental Enhancement of a C 4 System With Non-Typical C 4 Physiological Characteristics in Salsola ferganica (Kranz Anatomy), an Annual Desert Halophyte. FRONTIERS IN PLANT SCIENCE 2020; 11:152. [PMID: 32210984 PMCID: PMC7069449 DOI: 10.3389/fpls.2020.00152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/31/2020] [Indexed: 05/27/2023]
Abstract
Variations of photosynthetic structures in different tissues or cells are in coordination with changes in various aspects, e.g. physiology, biochemistry, gene expression, etc. Most C4 plant species undergo developmental enhancement of the photosynthetic system, which may present different modes of changes between anatomy and physiology/biochemistry. In the current study, we investigated a Kranz-type C4 species Salsola ferganica with the progressive development of photosynthetic (PS) structure, performance of PS physiology, induction of PS enzymes, and transcriptional and translational regulation of PS genes, results revealed that S. ferganica presented C3 type anatomy in cotyledons but C4 type in leaves (C3/L4), with the C4 system separation of initial carbon fixation in the palisade mesophyll (M) cells and the following incorporation into triosephosphates and sugars in the bundle sheath (BS) cells, respectively. The BS cells continuously surrounded the vascular bundles and water storage cells in leaf anatomic structure. Compared to the single-cell C4 species Suaeda aralocaspica, S. ferganica exhibited similar developmental enhancement of C4 syndrome temporally and spatially in anatomic structures, enzyme activities, and gene expression, which suggests that completion of differentiation of the photosynthetic system is necessary for a C4 assimilation pathway. Besides, S. ferganica also displayed some different characteristics compared to S. aralocaspica in photosynthetic physiology, e.g. a more flexible δ13C value, much lower phosphoenolpyruvate carboxylase (PEPC) activity, and an insensitive response to stimuli, etc., which were not typical C4 characteristics. We speculate that this may suggest a different status of these two species in the evolutionary process of the photosynthesis pathway. Our findings will contribute to further understanding of the diversity of photosynthesis systems in Kranz-type C4 species and the Salsola genus.
Collapse
Affiliation(s)
| | | | | | | | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
12
|
Lohaus RH, Zager JJ, Kosma DK, Cushman JC. Characterization of Seed, Oil, and Fatty Acid Methyl Esters of an Ethyl Methanesulfonate Mutant of
Camelina sativa
with Reduced Seed‐Coat Mucilage. J AM OIL CHEM SOC 2020. [DOI: 10.1002/aocs.12322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Richard H. Lohaus
- Department of Biochemistry and Molecular BiologyUniversity of Nevada 1664 N. Virginia Street Reno NV 89557‐0330 USA
| | - Jordan J. Zager
- M.J. Murdock Metabolomics Laboratory, Institute of Biological ChemistryWashington State University Pullman WA 99164‐6340 USA
| | - Dylan K. Kosma
- Department of Biochemistry and Molecular BiologyUniversity of Nevada 1664 N. Virginia Street Reno NV 89557‐0330 USA
| | - John C. Cushman
- Department of Biochemistry and Molecular BiologyUniversity of Nevada 1664 N. Virginia Street Reno NV 89557‐0330 USA
| |
Collapse
|
13
|
Teimouri MS. Investigation of the Biodynamic Commands Use Effect on Mucilage Content and Germination Behavior in Three Ecotypes of Basil (<i>Ocimum</i> Sp.). INTERNATIONAL LETTERS OF NATURAL SCIENCES 2019. [DOI: 10.18052/www.scipress.com/ilns.73.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
One of the most popular and useable of Aromatic plants are kinds of Basilica (Ocimumsp., Lamiaceae). This genius has different characteristics in behavior germination. Biodynamic agriculture is a new science in the research and especially, the position of stars and planet relative to each other, position of moon around the earth and seasonal change and Solar and lunar eclipses. We must to demonstrative of this theory. In this experiment, we want to record the effect of based on two calendars (biodynamic and Astronomic) on 3 ecotype of Basilica seed germination. The based on this experiment randomized block design with 3 replications. We use 50 seeds in Falcon tube (value=15ml) and record the weight and value of seed in tube. Then added 5ml of water in tube and shacked after moisturized and control and record of Mucilage value and another behavior of seed germination in lab condition. Results showed that different position of some planets such as moon and Mars and Jupiter had the highest effect, positive and significant effect on mucilage percent (p>95%), germination speed and length of root. Therefore, we could be express the lunar position had the highest effect on root length of local type and the lowest effect on purple basil. Mucilage percentage of seed coat in green basil had the highest content relative to another ecotype and this content was significant (p>95%). Then, the best suggest for produce of mucilage from the basil seeds, the best time is the first quadrature of moon.
Collapse
|
14
|
Kolarčik V, Kocová V, Vašková D. Flow cytometric seed screen data are consistent with models of chromosome inheritance in asymmetrically compensating allopolyploids. Cytometry A 2018; 93:737-748. [PMID: 30071155 DOI: 10.1002/cyto.a.23511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/10/2018] [Accepted: 06/04/2018] [Indexed: 12/19/2022]
Abstract
Angiosperms have evolved a mechanism of double fertilization, which results in the production of a separate embryo (new individual) and endosperm (nutritive tissue). The flow cytometric seed screen (FCSS) was developed to infer plant reproduction modes based on endosperm-to-embryo DNA content ratio (Pind ). A ratio of 1.5 indicates sexual reproduction, whereas higher values of ≥2.0 are consistent with apomixis. Although FCSS has been successfully applied to the study of sexual and asexual plants, the limits of FCSS and particularly its potential for determination of reproduction modes in hemisexual plants have not been explored. Here, we evaluated the application of FCSS to the study of reproduction modes in two asymmetrically compensating allopolyploids (ACAs), Onosma arenaria and Rosa canina. These two species are characterized by the presence of asexually inherited univalent-forming and sexually inherited bivalent-forming chromosome sets. They both use asymmetric meiosis, which eliminates univalent-forming chromosome sets from the male gamete and retains them in the female gamete. Different chromosomal behavior in male and female meiosis in these plants is reflected in different theoretically derived Pind values, which deviate from a sexual 1.5 value. Here, we determined Pind FCSS-based values in seeds of ACAs, and compared the results to sexual species. As expected, we determined that the mean Pind is 1.51, 1.52, and 1.52 in the sexual plants, that is, Capsella bursa-pastoris, Crataegus monogyna, and O. pseudoarenaria, respectively. In the ACAs, different mean Pind values were determined for O. arenaria (1.61) and R. canina (1.82). These values are consistent with the theoretical Pind values determined based on models of chromosome inheritance. This study highlights the precision of flow cytometry in determining DNA content and it's utility in screening reproduction modes. Additionally, it advocates for more in-depth investigations into rapid screening of accessions where the Pind ratio has deviated from the 1.5 value typical of sexual species, which may indicate meiotic irregularities.
Collapse
Affiliation(s)
- V Kolarčik
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Mánesova 23, SK-041 54, Košice, Slovak Republic
| | - V Kocová
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Mánesova 23, SK-041 54, Košice, Slovak Republic
| | - D Vašková
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Mánesova 23, SK-041 54, Košice, Slovak Republic
| |
Collapse
|