1
|
Liu HL, Peng H, Huang CH, Zhou HY, Ge J. Mutational separation and clinical outcomes of TP53 and CDH1 in gastric cancer. World J Gastrointest Surg 2023; 15:2855-2865. [PMID: 38222005 PMCID: PMC10784822 DOI: 10.4240/wjgs.v15.i12.2855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/18/2023] [Accepted: 11/21/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a deadly tumor with the fifth highest occurrence and highest global mortality rates. Owing to its heterogeneity, the underlying mechanism of GC remains unclear, and chemotherapy offers little benefit to individuals. AIM To investigate the clinical outcomes of TP53 and CDH1 mutations in GC. METHODS In this study, 202 gastric adenocarcinoma tumor tissues and their corresponding normal tissues were collected. A total of 490 genes were identified using target capture. Through t-test and Wilcoxon rank-sum test, somatic mutations, microsatellite instability, and clinical statistics, including overall survival, were detected, compared, and calculated. RESULTS The mutation rates of 32 genes, including TP53, SPEN, FAT1, and CDH1 exceeded 10%. TP53 mutations had a slightly lower overall occurrence rate (33%). The TP53 mutation rate was significantly higher in advanced stages (stage III/IV) than that in early stages (stage I/II) (P < 0.05). In contrast, CDH1 mutations were significantly associated with diffuse GC. TP53 is related to poor prognosis of advanced-stage tumors; nevertheless, CDH1 corresponds to a diffuse type of cancer. TP53 is exclusively mutated in CDH1 and is primarily affected by two distinct GC mechanisms. CONCLUSION Different somatic mutation patterns in TP53 and CDH1 indicate two major mechanisms of GC.
Collapse
Affiliation(s)
- He-Li Liu
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Huan Peng
- Clinical Nursing Teaching and Research Section, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Chang-Hao Huang
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Hai-Yan Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Jie Ge
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|
2
|
Lee S, Lee SK, Jung J. Potentiating activities of chrysin in the therapeutic efficacy of 5-fluorouracil in gastric cancer cells. Oncol Lett 2020; 21:24. [PMID: 33240430 PMCID: PMC7681229 DOI: 10.3892/ol.2020.12285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
The incidence and mortality rates of gastric cancer rank among the highest five of all cancer types worldwide. The chemotherapeutic agent 5-fluorouracil (5-FU) is the gold standard for treating gastric cancer, but its efficacy is limited due to high rates of resistance. To improve the therapeutic efficacy of 5-FU and overcome its resistance, the synergistic effect of chrysin with 5-FU was investigated and its mechanism was elucidated. Chrysin was co-administered with 5-FU in AGS cells and 5-FU-resistant AGS cells (AGS/FR). Cytotoxicity was investigated using MTT assay, followed by calculating the combination index (CI). Several biomarkers were detected using western blotting analysis. Apoptosis and cell cycle distribution were measured by flow cytometry. The combination of chrysin and 5-FU significantly increased cytotoxicity more than chrysin or 5-FU alone. 5-FU induced apoptosis through p53-p21 activity, while chrysin arrested the cell cycle in the G2/M phase. The combination of chrysin and 5-FU showed an anticancer effect via S phase arrest. The results indicated that chrysin and 5-FU exhibited anticancer properties via different pathways. Furthermore, the present study found that chrysin enhanced the chemotherapeutic effect of 5-FU in AGS/FR cells. In the resistant cells, the combination of chrysin and 5-FU improved the anticancer effect via G2/M phase arrest. These findings indicated that chrysin potentiated the chemotherapeutic effect of 5-FU in gastric cancer AGS and AGS/FR cells via cell cycle arrest. Therefore, chrysin may be used to treat gastric cancers that have become resistant to 5-FU.
Collapse
Affiliation(s)
- Sunyi Lee
- Duksung Innovative Drug Center, Duksung Women's University, Seoul 01369, Republic of Korea.,College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Suk Kyeong Lee
- Department of Medical Life Sciences, Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Joohee Jung
- Duksung Innovative Drug Center, Duksung Women's University, Seoul 01369, Republic of Korea.,College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| |
Collapse
|
3
|
Yang H, Jiang Z, Wang S, Zhao Y, Song X, Xiao Y, Yang S. Long non-coding small nucleolar RNA host genes in digestive cancers. Cancer Med 2019; 8:7693-7704. [PMID: 31691514 PMCID: PMC6912041 DOI: 10.1002/cam4.2622] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 08/21/2019] [Accepted: 09/26/2019] [Indexed: 12/22/2022] Open
Abstract
Although long noncoding RNAs (lncRNAs) do not have protein coding capacities, they are involved in the pathogenesis of many types of cancers, including hepatocellular carcinoma, cervical cancer, and gastric cancer. Notably, the roles of lncRNAs are vital in nearly every aspect of tumor biology. Long non-coding small nucleolar RNA host genes (lnc-SNHGs) are abnormally expressed in multiple cancers, including urologic neoplasms, respiratory tumors, and digestive cancers, and play vital roles in these cancers. These host genes could participate in tumorigenesis by regulating proliferation, migration, invasion and apoptosis of tumor cells. This review focuses on the overview of the roles that lnc-SNHGs play in the formation and progression of digestive cancers.
Collapse
Affiliation(s)
- Huan Yang
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Zheng Jiang
- Department of GastroenterologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Shuang Wang
- Department of GastroenterologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of GastroenterologyPeople's Hospital of Changshou ChongqingChongqingChina
| | - Yongbing Zhao
- Department of GastroenterologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of GastroenterologyPeople's Hospital of Changshou ChongqingChongqingChina
| | - Xiaomei Song
- Department of GastroenterologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of GastroenterologyPeople's Hospital of Changshou ChongqingChongqingChina
| | - Yufeng Xiao
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Shiming Yang
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityChongqingChina
| |
Collapse
|
4
|
Tang Z, Li L, Tang Y, Xie D, Wu K, Wei W, Xiao Q. CDK2 positively regulates aerobic glycolysis by suppressing SIRT5 in gastric cancer. Cancer Sci 2018; 109:2590-2598. [PMID: 29896817 PMCID: PMC6113437 DOI: 10.1111/cas.13691] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/04/2018] [Accepted: 06/07/2018] [Indexed: 12/13/2022] Open
Abstract
Although significant progress has been made in the diagnosis and treatment of gastric cancer, the overall survival rate of the disease remains unchanged at approximately 20%‐25%. Thus, there is an urgent need for a better understanding of the molecular biology aspects of the disease in the hope of discovering novel diagnosis and treatment strategies. Recent years have witnessed decisive roles of aberrant cancer cell metabolism in the maintenance of malignant hallmarks of cancers, and cancer cell metabolism has been regarded as a novel target for the treatment of cancer. CDK2, a cell cycle‐dependent kinase that usually regulates cell cycle progression and the DNA damage response, is reported to be upregulated in many cancers. However, little is known about its role in cancer cell metabolism. In the present study, we showed that silencing CDK2 inhibited the aerobic glycolytic capacity of gastric cancer cell lines. Mechanism explorations showed that silencing CDK2 increased expression of the SIRT5 tumor suppressor. In addition, the physiological roles of SIRT5 in the regulation of proliferation and glycolysis were studied in gastric cancer cells. Taken together, the present study uncovered novel roles of the CDK2/SIRT5 axis in gastric cancer and suggests future studies concerning gastric cancer cell metabolism.
Collapse
Affiliation(s)
- Zhenyong Tang
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lei Li
- Department of Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yuntian Tang
- Department of Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Dongyi Xie
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kun Wu
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weiyuan Wei
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Qiang Xiao
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
5
|
Yu B, Gu D, Zhang X, Li J, Liu B, Xie J. GLI1-mediated regulation of side population is responsible for drug resistance in gastric cancer. Oncotarget 2018; 8:27412-27427. [PMID: 28404967 PMCID: PMC5432345 DOI: 10.18632/oncotarget.16174] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/24/2017] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is the third leading cause of cancer-related mortality worldwide. Chemotherapy is frequently used for gastric cancer treatment. Most patients with advanced gastric cancer eventually succumb to the disease despite some patients responded initially to chemotherapy. Thus, identifying molecular mechanisms responsible for cancer relapse following chemotherapy will help design new ways to treat gastric cancer. In this study, we revealed that the residual cancer cells following treatment with chemotherapeutic reagent cisplatin have elevated expression of hedgehog target genes GLI1, GLI2 and PTCH1, suggestive of hedgehog signaling activation. We showed that GLI1 knockdown sensitized gastric cancer cells to CDDP whereas ectopic GLI1 expression decreased the sensitivity. Further analyses indicate elevated GLI1 expression is associated with an increase in tumor sphere formation, side population and cell surface markers for putative cancer stem cells. We have evidence to support that GLI1 is critical for maintenance of putative cancer stem cells through direct regulation of ABCG2. In fact, GLI1 protein was shown to be associated with the promoter fragment of ABCG2 through a Gli-binding consensus site in gastric cancer cells. Disruption of ABCG2 function, through ectopic expression of an ABCG2 dominant negative construct or a specific ABCG2 inhibitor, increased drug sensitivity of cancer cells both in culture and in mice. The relevance of our studies to gastric cancer patient care is reflected by our discovery that high ABCG2 expression was associated with poor survival in the gastric cancer patients who underwent chemotherapy. Taken together, we have identified a molecular mechanism by which gastric cancer cells gain chemotherapy resistance.
Collapse
Affiliation(s)
- Beiqin Yu
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Department of Pediatrics, The Wells Center for Pediatrics Research and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dongsheng Gu
- Department of Pediatrics, The Wells Center for Pediatrics Research and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiaoli Zhang
- Department of Pediatrics, The Wells Center for Pediatrics Research and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jianfang Li
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingwu Xie
- Department of Pediatrics, The Wells Center for Pediatrics Research and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
6
|
Ai Y, Zhou Q, Li L, Pan Z, Guo M, Han J. Interference of P-REX2a may inhibit proliferation and reverse the resistance of SGC7901 cells to doxorubicin. Oncol Lett 2018; 15:3185-3191. [PMID: 29435055 DOI: 10.3892/ol.2017.7693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/15/2017] [Indexed: 12/23/2022] Open
Abstract
Drug resistance inhibits the efficacy of doxorubicin in gastric cancer. Phosphatidylinositol 3,4,5-trisphosphate RAC exchanger 2a (P-REX2a) activates the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway by binding to and inactivating phosphatase and tensin homolog (PTEN), which functions as a tumor promoter in a number of types of cancer. However, there is no research concerning the association between P-REX2a expression and drug resistance in gastric cancer. In the present study, the expression of P-REX2a in clinical gastric cancer tissues was detected, and the mechanism of doxorubicin resistance in the gastric cancer cell line SGC7901 was investigated. Using reverse transcription-quantitative polymerase chain reaction and western blotting, it was demonstrated that the mRNA and protein expression of P-REX2a was increased in gastric cancer tissues. MTT assays were also used to determine proliferation, and proliferation was revealed to be reduced following transfection of P-REX2a small interfering (si)RNA. When the cells were treated with 0.3 µM doxorubicin for 24 h, the rate of apoptosis in the siRNA-transfected groups significantly increased and no marked changes in of PTEN and Akt expression were observed. By contrast, the activity of PTEN increased, and the expression of p-Akt (S473) decreased in the P-REX2a siRNA-transfected group compared with the control. The detection of PTEN enzymatic activity in the present study was based on phosphatidylinositol-3,4,5-trisphosphate. Therefore, it was concluded that P-REX2a may participate in the generation of resistance to doxorubicin in gastric cancer, and this may be associated with the upregulation of the PI3K/Akt signaling pathway via inactivation of PTEN.
Collapse
Affiliation(s)
- Yaowei Ai
- Department of Gastroenterology, The First People's Hospital of Yichang, China Three Georges University, Yichang, Hubei 443000, P.R. China
| | - Qiaohui Zhou
- Department of Gastroenterology, The First People's Hospital of Yichang, China Three Georges University, Yichang, Hubei 443000, P.R. China
| | - Ling Li
- Department of Gastroenterology, The First People's Hospital of Yichang, China Three Georges University, Yichang, Hubei 443000, P.R. China
| | - Zhihong Pan
- Department of Gastroenterology, The First People's Hospital of Yichang, China Three Georges University, Yichang, Hubei 443000, P.R. China
| | - Mingwen Guo
- Department of Gastroenterology, The First People's Hospital of Yichang, China Three Georges University, Yichang, Hubei 443000, P.R. China
| | - Jingbo Han
- Department of Anesthesiology, Ren He Hospital of Three Gorges University, Yichang, Hubei 443000, P.R. China
| |
Collapse
|
7
|
Liu L, Hao H, Zhao L, Hu J, Si B. Analysis of survival and prognosis of 298 gastric adenocarcinoma patients with no distant metastasis. Oncol Lett 2018; 14:7813-7816. [PMID: 29344226 PMCID: PMC5755019 DOI: 10.3892/ol.2017.7202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/06/2017] [Indexed: 12/20/2022] Open
Abstract
This study investigated the survival and prognosis of 298 gastric adenocarcinoma patients with no distant metastasis. For analysis and comparison of the prognosis of patients, a retrospective analysis was performed in 298 patients with perfect clinical data and follow-up data who received the D2 resections for gastric cancer in Shandong Provincial Hospital Affiliated to Shandong University between January, 2005 and January, 2012, and were diagnosed as gastric adenocarcinoma with no distant metastasis in postoperative pathological examination. Among the gastric adenocarcinoma patients without distant metastasis, we found that differences of sex, age, differentiation and position of tumor had no statistical significance (P>0.05), while comparisons of the tumor diameter, regional lymphatic metastasis, vascular invasion and pathological TNM stages (pTNM; T for tumor, N for lymph node and M for metastasis) showed statistical significance (P<0.05). One-way analysis of variance (ANOVA) indicated the correlation between the prognosis of gastric adenocarcinoma patients and tumor diameter, regional lymphatic metastasis, vascular invasion and pTNM stages of patients (P<0.05). Multivariate analysis of Cox regression models was performed for discovering the factors associated with the prognosis of patients, and the results suggested that position of tumor (P=0.016), regional lymphatic metastasis (P=0.042), vascular invasion (P=0.021) and pTNM stage (P=0.009) were the independent risk factors affecting the prognosis of gastric adenocarcinoma patients. During 60-month follow-up, the median survival duration of gastric adenocarcinoma patients with no distant metastasis was 38 months, while the 5-year accumulate survival rate was 49.3%. The results indicated that in gastric adenocarcinoma patients without distant metastasis, tumor diameter, regional lymphatic metastasis, vascular invasion and pTNM stage are major indicators affecting the prognosis of patients.
Collapse
Affiliation(s)
- Luguang Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hongbo Hao
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Lijuan Zhao
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Junxia Hu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Baocai Si
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
8
|
Shi Q, Wang W, Jia Z, Chen P, Ma K, Zhou C. ISL1, a novel regulator of CCNB1, CCNB2 and c-MYC genes, promotes gastric cancer cell proliferation and tumor growth. Oncotarget 2017; 7:36489-36500. [PMID: 27183908 PMCID: PMC5095015 DOI: 10.18632/oncotarget.9269] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 04/22/2016] [Indexed: 12/22/2022] Open
Abstract
Islet-1 (ISL1) belongs to the LIM homeodomain transcription factor family, which is specifically expressed in certain tissue types only. Previously, we reported that ISL1 is aberrantly overexpressed in gastric cancer (GC). However, its role in GC is not clear. Here, we report that ISL1 is aberrantly upregulated not only in human gastric carcinoma tissues but also in some GC cell lines. Upregulated ISL1 expression enhanced xenografted gastric carcinoma development, while ISL1 knockdown inhibited GC growth in nude mice. ISL1 overexpression promoted GC cell proliferation, colony formation, and cell growth in soft agar, and facilitated cell cycle transition in GC cells, demonstrated an increase in the proportion of cells in the G2/M and S phases and a decrease in the proportion of cells in the G1 phase. Furthermore, we provide evidence that ISL1 is a novel regulator of the cyclin B1 (CCNB1), cyclin B2 (CCNB2) and c-myc (c-MYC) genes. ISL1 activated the expression of these genes in GC cells by binding to the conserved binding sites on their promoters or enhancers. The expression levels of the genes were decreased in response to ISL1 knockdown. Therefore, ISL1 may serve as a potential therapeutic target in GC.
Collapse
Affiliation(s)
- Qiong Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, Beijing, P.R. China
| | - Weiping Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, Beijing, P.R. China
| | - Zhuqing Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, Beijing, P.R. China
| | - Ping Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, Beijing, P.R. China
| | - Kangtao Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, Beijing, P.R. China
| | - Chunyan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, Beijing, P.R. China
| |
Collapse
|
9
|
Pan Z, Tian Y, Zhang B, Zhang X, Shi H, Liang Z, Wu P, Li R, You B, Yang L, Mao F, Qian H, Xu W. YAP signaling in gastric cancer-derived mesenchymal stem cells is critical for its promoting role in cancer progression. Int J Oncol 2017; 51:1055-1066. [PMID: 28848999 PMCID: PMC5592864 DOI: 10.3892/ijo.2017.4101] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/24/2017] [Indexed: 12/20/2022] Open
Abstract
Cancer-associated mesenchymal stem cells (MSCs) are critically involved in tumor development and progression. However, the mechanisms of action for MSCs in cancer remain largely unknown. Herein, we reported that the expression of Yes-associated protein 1 (YAP) was higher in gastric cancer derived mesenchymal stem cells (GC-MSCs) than that in bone marrow derived MSCs (BM-MSCs). YAP knockdown not only inhibited the growth, migration and invasion, and stemness of GC-MSCs, but also suppressed their promoting effect on gastric cancer growth in vitro and in vivo. In addition, the interference of YAP expression in GC-MSCs also attenuated the promoting role of gastric cancer cells in endothelial cell tube formation and migration. Mechanistically, YAP knockdown reduced the activation of β-catenin and its target genes in gastric cancer cells by GC-MSCs. Taken together, these findings suggest that YAP activation in GC-MSCs plays an important role in promoting gastric cancer progression, which may represent a potential target for gastric cancer therapy.
Collapse
Affiliation(s)
- Zhaoji Pan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yiqing Tian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Bin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Zhaofeng Liang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Peipei Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Rong Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Benshuai You
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Lunyu Yang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Fei Mao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
10
|
Yu B, Gu D, Zhang X, Liu B, Xie J. The role of GLI2-ABCG2 signaling axis for 5Fu resistance in gastric cancer. J Genet Genomics 2017; 44:375-383. [PMID: 28847472 DOI: 10.1016/j.jgg.2017.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/20/2017] [Accepted: 04/13/2017] [Indexed: 12/17/2022]
Abstract
Gastric cancer is a leading cause of cancer-related mortality worldwide, and options to treat gastric cancer are limited. Fluorouracil (5Fu)-based chemotherapy is frequently used as a neoadjuvant or an adjuvant agent for gastric cancer therapy. Most patients with advanced gastric cancer eventually succumb to the disease despite the fact that some patients respond initially to chemotherapy. Thus, identifying molecular mechanisms responsible for chemotherapy resistance will help design novel strategies to treat gastric cancer. In this study, we discovered that residual cancer cells following 5Fu treatment have elevated expression of hedgehog (Hg) target genes GLI1 and GLI2, suggestive of Hh signaling activation. Hh signaling, a pathway essential for embryonic development, is an important regulator for putative cancer stem cells/residual cancer cells. We found that high GLI1/GLI2 expression is associated with some features of putative cancer stem cells, such as increased side population. We demonstrated that GLI2 knockdown sensitized gastric cancer cells to 5Fu treatment, decreased ABCG2 expression, and reduced side population. Elevated GLI2 expression is also associated with an increase in tumor sphere size, another marker for putative cancer stem cells. We believe that GLI2 regulates putative cancer stem cells through direct regulation of ABCG2. ABCG2 can rescue the GLI2 shRNA effects in 5Fu response, tumor sphere formation and side population changes, suggesting that ABCG2 is an important mediator for GLI2-associated 5Fu resistance. The relevance of our studies to gastric cancer patient care is reflected by our discovery that high GLI1/GLI2/ABCG2 expression is associated with a high incidence of cancer relapse in two cohorts of gastric cancer patients who underwent chemotherapy (containing 5Fu). Taken together, we have identified a molecular mechanism by which gastric cancer cells gain 5Fu resistance.
Collapse
Affiliation(s)
- Beiqin Yu
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Departments of Pediatrics, Biochemistry and Molecular Biology, Pharmacology and Toxicology, The Wells Center for Pediatrics Research and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dongsheng Gu
- Departments of Pediatrics, Biochemistry and Molecular Biology, Pharmacology and Toxicology, The Wells Center for Pediatrics Research and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiaoli Zhang
- Departments of Pediatrics, Biochemistry and Molecular Biology, Pharmacology and Toxicology, The Wells Center for Pediatrics Research and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Jingwu Xie
- Departments of Pediatrics, Biochemistry and Molecular Biology, Pharmacology and Toxicology, The Wells Center for Pediatrics Research and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
11
|
Zhang B, Gong A, Shi H, Bie Q, Liang Z, Wu P, Mao F, Qian H, Xu W. Identification of a novel YAP-14-3-3ζ negative feedback loop in gastric cancer. Oncotarget 2017; 8:71894-71910. [PMID: 29069755 PMCID: PMC5641098 DOI: 10.18632/oncotarget.18011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/09/2017] [Indexed: 12/18/2022] Open
Abstract
Growing evidence indicates that 14-3-3ζ and yes-associated protein (YAP) substantially promote tumorigenesis and tumor development. However, the regulatory mechanism underlying these two proteins remains unknown. Herein, we report a new regulatory role of 14-3-3ζ in the phosphorylation of YAP and the feedback inhibition of 14-3-3ζ by YAP. YAP and 14-3-3ζ expression exhibited a negative correlation in gastric cancer (GC) tissues. Moreover, patients with higher YAP and lower 14-3-3ζ expression had poor prognoses. Studies have revealed that 14-3-3ζ promotes cytoplasmic retention and suppresses the transcriptional activity of YAP by inducing its phosphorylation. Furthermore, we observed that the overexpression of YAP significantly reduced the expression of 14-3-3ζ by inducing its ubiquitination. YAP, 14-3-3ζ, and mouse double minute 2 homolog (MDM2) were colocalized, and the knockdown of MDM2 by siRNA attenuated the YAP-induced decrease of 14-3-3ζ. The binding of 14-3-3ζ and MDM2 was also restrained when the expression of YAP was interfered. Our results indicated the presence of a 14-3-3ζ–YAP negative regulatory feedback loop, which has a crucial role in cell proliferation and survival and is a potential target for the clinical treatment of GC.
Collapse
Affiliation(s)
- Bin Zhang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Aihua Gong
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Hui Shi
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Qingli Bie
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Zhaofeng Liang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Peipei Wu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Fei Mao
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Hui Qian
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Wenrong Xu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,The Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| |
Collapse
|