1
|
He TC, Li JA, Xu ZH, Chen QD, Yin HL, Pu N, Wang WQ, Liu L. Biological and clinical implications of early-onset cancers: A unique subtype. Crit Rev Oncol Hematol 2023; 190:104120. [PMID: 37660930 DOI: 10.1016/j.critrevonc.2023.104120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
In recent years, the incidence of cancers is continuously increasing in young adults. Early-onset cancer (EOC) is usually defined as patients with cancers under the age of 50, and may represent a unique subgroup due to its special disease features. Overall, EOCs often initiate at a young age, present as a better physical performance but high degree of malignancy. EOCs also share common epidemiological and hereditary risk factors. In this review, we discuss several representative EOCs which were well studied previously. By revealing their clinical and molecular similarities and differences, we consider the group of EOCs as a unique subtype compared to ordinary cancers. In consideration of EOC as a rising threat to human health, more researches on molecular mechanisms, and large-scale, prospective clinical trials should be carried out to further translate into improved outcomes.
Collapse
Affiliation(s)
- Tao-Chen He
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian-Ang Li
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhi-Hang Xu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qiang-Da Chen
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Han-Lin Yin
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ning Pu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Tomazini A, Shifman JM. Targeting Ras with protein engineering. Oncotarget 2023; 14:672-687. [PMID: 37395750 DOI: 10.18632/oncotarget.28469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Ras proteins are small GTPases that regulate cell growth and division. Mutations in Ras genes are associated with many types of cancer, making them attractive targets for cancer therapy. Despite extensive efforts, targeting Ras proteins with small molecules has been extremely challenging due to Ras's mostly flat surface and lack of small molecule-binding cavities. These challenges were recently overcome by the development of the first covalent small-molecule anti-Ras drug, sotorasib, highlighting the efficacy of Ras inhibition as a therapeutic strategy. However, this drug exclusively inhibits the Ras G12C mutant, which is not a prevalent mutation in most cancer types. Unlike the G12C variant, other Ras oncogenic mutants lack reactive cysteines, rendering them unsuitable for targeting via the same strategy. Protein engineering has emerged as a promising method to target Ras, as engineered proteins have the ability to recognize various surfaces with high affinity and specificity. Over the past few years, scientists have engineered antibodies, natural Ras effectors, and novel binding domains to bind to Ras and counteract its carcinogenic activities via a variety of strategies. These include inhibiting Ras-effector interactions, disrupting Ras dimerization, interrupting Ras nucleotide exchange, stimulating Ras interaction with tumor suppressor genes, and promoting Ras degradation. In parallel, significant advancements have been made in intracellular protein delivery, enabling the delivery of the engineered anti-Ras agents into the cellular cytoplasm. These advances offer a promising path for targeting Ras proteins and other challenging drug targets, opening up new opportunities for drug discovery and development.
Collapse
Affiliation(s)
- Atilio Tomazini
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Julia M Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
3
|
Andrade F, German-Cortés J, Montero S, Carcavilla P, Baranda-Martínez-Abascal D, Moltó-Abad M, Seras-Franzoso J, Díaz-Riascos ZV, Rafael D, Abasolo I. The Nanotechnology-Based Approaches against Kirsten Rat Sarcoma-Mutated Cancers. Pharmaceutics 2023; 15:1686. [PMID: 37376135 DOI: 10.3390/pharmaceutics15061686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/18/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Kirsten rat sarcoma (KRAS) is a small GTPase which acts as a molecular switch to regulate several cell biological processes including cell survival, proliferation, and differentiation. Alterations in KRAS have been found in 25% of all human cancers, with pancreatic cancer (90%), colorectal cancer (45%), and lung cancer (35%) being the types of cancer with the highest mutation rates. KRAS oncogenic mutations are not only responsible for malignant cell transformation and tumor development but also related to poor prognosis, low survival rate, and resistance to chemotherapy. Although different strategies have been developed to specifically target this oncoprotein over the last few decades, almost all of them have failed, relying on the current therapeutic solutions to target proteins involved in the KRAS pathway using chemical or gene therapy. Nanomedicine can certainly bring a solution for the lack of specificity and effectiveness of anti-KRAS therapy. Therefore, nanoparticles of different natures are being developed to improve the therapeutic index of drugs, genetic material, and/or biomolecules and to allow their delivery specifically into the cells of interest. The present work aims to summarize the most recent advances related to the use of nanotechnology for the development of new therapeutic strategies against KRAS-mutated cancers.
Collapse
Affiliation(s)
- Fernanda Andrade
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Departament de Farmàcia i Tecnologia Farmacèutica i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Júlia German-Cortés
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
| | - Sara Montero
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
| | - Pilar Carcavilla
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
| | - Diego Baranda-Martínez-Abascal
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
| | - Marc Moltó-Abad
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Functional Validation & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Joaquín Seras-Franzoso
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Zamira Vanessa Díaz-Riascos
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Functional Validation & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Diana Rafael
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Functional Validation & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Ibane Abasolo
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Functional Validation & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Clinical Biochemistry Service, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| |
Collapse
|
4
|
Burska AN, Ilyassova B, Dildabek A, Khamijan M, Begimbetova D, Molnár F, Sarbassov DD. Enhancing an Oxidative "Trojan Horse" Action of Vitamin C with Arsenic Trioxide for Effective Suppression of KRAS-Mutant Cancers: A Promising Path at the Bedside. Cells 2022; 11:3454. [PMID: 36359850 PMCID: PMC9657932 DOI: 10.3390/cells11213454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
The turn-on mutations of the KRAS gene, coding a small GTPase coupling growth factor signaling, are contributing to nearly 25% of all human cancers, leading to highly malignant tumors with poor outcomes. Targeting of oncogenic KRAS remains a most challenging task in oncology. Recently, the specific G12C mutant KRAS inhibitors have been developed but with a limited clinical outcome because they acquire drug resistance. Alternatively, exploiting a metabolic breach of KRAS-mutant cancer cells related to a glucose-dependent sensitivity to oxidative stress is becoming a promising indirect cancer targeting approach. Here, we discuss the use of a vitamin C (VC) acting in high dose as an oxidative "Trojan horse" agent for KRAS-mutant cancer cells that can be potentiated with another oxidizing drug arsenic trioxide (ATO) to obtain a potent and selective cytotoxic impact. Moreover, we outline the advantages of VC's non-natural enantiomer, D-VC, because of its distinctive pharmacokinetics and lower toxicity. Thus, the D-VC and ATO combination shows a promising path to treat KRAS-mutant cancers in clinical settings.
Collapse
Affiliation(s)
- Agata N. Burska
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | | | - Aruzhan Dildabek
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Medina Khamijan
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Dinara Begimbetova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Ferdinand Molnár
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Dos D. Sarbassov
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
5
|
Huang Y, Liu J, Zhu X. Mutations in lysine methyltransferase 2C and PEG3 are associated with tumor mutation burden, prognosis, and antitumor immunity in pancreatic adenocarcinoma patients. Digit Health 2022; 8:20552076221133699. [PMID: 36312851 PMCID: PMC9597037 DOI: 10.1177/20552076221133699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND As a common cancer-related death worldwide, pancreatic adenocarcinoma (PAAD) has significantly increased mortality in recent years. In recent years, tumor mutation burden (TMB) has been regarded as the most popular biomarker for PAAD immunotherapy. However, it remains unclear which gene mutations affect TMB and immune response in pancreatic adenocarcinoma. METHODS The somatic mutation images of PAAD samples were downloaded from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC). Based on the expression data of the TCGA and IGCC cohorts, various bioinformatics algorithms are used for evaluating the prognostic value and functional annotation of some frequently somatically mutated genes. Furthermore, the correlation between gene mutation and tumor immunity was also evaluated. RESULTS The results showed that lysine methyltransferase 2C (KMT2C) and paternally expressed 3 (PEG3) are frequently mutated genes in PAAD. Patients with KMT2C and PEG3 mutations have higher TMB severity and a lousy prognosis. In addition, the mutations of KMT2C and PEG3 genes positively regulate the metabolic and protein-related pathways in PAAD. Meanwhile, significant differences in the composition of the immune cells were observed for KMT2C and PEG3 mutations PAAD patients, for providing additional guidelines for antitumor treatments in various KMT2C and PEG3 mutation states in PAAD. CONCLUSION This study reveals that KMT2C and PEG3 mutation may serve as biomarkers for predicting prognosis and guiding anti-PAAD immunotherapy for PAAD patients.
Collapse
Affiliation(s)
- Yili Huang
- The Third Clinical Medical College, Henan University of Traditional Chinese
Medicine, Zhengzhou, Henan Province, People's Republic of China,Department of Radiotherapy, Henan Cancer Hospital, Zhengzhou, Henan Province, People's Republic of China,Xiaole Zhu, Pancreas Center, Jiangsu Province Hospital, 300
Guangzhou Road, Nanjing 210029, Jiangsu Province, People's Republic of China.
Jinsong Liu, Department of
Radiotherapy, Henan Cancer Hospital, 127 Dongming Road, Zhengzhou 450003, Henan
Province, People's Republic of China.
| | - Jinsong Liu
- The Third Clinical Medical College, Henan University of Traditional Chinese
Medicine, Zhengzhou, Henan Province, People's Republic of China,Department of Radiotherapy, Henan Cancer Hospital, Zhengzhou, Henan Province, People's Republic of China
| | - Xiaole Zhu
- Pancreas Center, Jiangsu Province Hospital,
Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
6
|
Song Y, Zhao F, Ma W, Li G. Hotspots and trends in liver kinase B1 research: A bibliometric analysis. PLoS One 2021; 16:e0259240. [PMID: 34735498 PMCID: PMC8568265 DOI: 10.1371/journal.pone.0259240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 10/15/2021] [Indexed: 11/29/2022] Open
Abstract
Introduction In the past 22 years, a large number of publications have reported that liver kinase B1 (LKB1) can regulate a variety of cellular processes and play an important role in many diseases. However, there is no systematic bibliometric analysis on the publications of LKB1 to reveal the research hotspots and future direction. Methods Publications were retrieved from the Web of Science Core Collection (WoSCC), Scopus, and PubMed databases. CiteSpace and VOSviewer were used to analysis the top countries, institutions, authors, source journals, discipline categories, references, and keywords. Results In the past 22 years, the number of LKB1 publications has increased gradually by year. The country, institution, author, journals that have published the most articles and cited the most frequently were the United States, Harvard University, Prof. Benoit Viollet, Journal of Biochemistry and Plos One. The focused research hotspot was the molecular functions of LKB1. The emerging hotspots and future trends are the clinical studies about LKB1 and co-mutated genes as biomarkers in tumors, especially in lung adenocarcinoma. Conclusions Our research could provide knowledge base, frontiers, emerging hotspots and future trends associated with LKB1 for researchers in this field, and contribute to finding potential cooperation possibilities.
Collapse
Affiliation(s)
- Yaowen Song
- Department of Radiotherapy Oncology, The First Affiliated Hospital of China Medical University, Shenyan, China
| | - Fangkun Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Wei Ma
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Guang Li
- Department of Radiotherapy Oncology, The First Affiliated Hospital of China Medical University, Shenyan, China
- * E-mail:
| |
Collapse
|
7
|
The Significance of Targeting Poly (ADP-Ribose) Polymerase-1 in Pancreatic Cancer for Providing a New Therapeutic Paradigm. Int J Mol Sci 2021. [PMID: 33805293 DOI: 10.3390/ijms22073509.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Genome-wide studies focusing on elucidating the effects on cancer progression have enabled the consequent identification of a distinct subpopulation of pancreatic cancer cells with unstable genomic characteristics. Based on this background, deleterious changes by poly (adenosine diphosphate (ADP)-ribose) polymerase-1 (PARP)-1 have been concentrated in oncology. One of the critical functions of PARP-1 is the response to DNA damage, which plays a pivotal role in DNA repair in cancers. PARP-1 also has widespread functions that are essential for the survival and growth of cancer cells. It regulates oxidative stress in mitochondria through the regulation of superoxide and oxidation. PARP-1 is in charge of regulating mitosis, which is a crucial role in tumorigenesis and remodels histones and chromatin enzymes related to transcriptional regulation, causing alterations in epigenetic markers and chromatin structure. Given the significance of these processes, it can be understood that these processes in cancer cells are at the frontline of the pathogenetic changes required for cancer cell survival, and these contributions can result in malignant transformation. Therefore, this review addresses the current molecular biological features for understanding the multifactorial function of PARP-1 in pancreatic cancer related to the aforementioned roles, along with the summary of recent approaches with PARP-1 inhibition in clinical studies targeting pancreatic cancer. This understanding could help to embrace the importance of targeting PARP-1 in the treatment of pancreatic cancer, which may present the potential to find out a variety of research topics that can be both challenged clinically and non-clinically.
Collapse
|
8
|
Jeong KY, Park MH. The Significance of Targeting Poly (ADP-Ribose) Polymerase-1 in Pancreatic Cancer for Providing a New Therapeutic Paradigm. Int J Mol Sci 2021; 22:ijms22073509. [PMID: 33805293 PMCID: PMC8037971 DOI: 10.3390/ijms22073509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/27/2022] Open
Abstract
Genome-wide studies focusing on elucidating the effects on cancer progression have enabled the consequent identification of a distinct subpopulation of pancreatic cancer cells with unstable genomic characteristics. Based on this background, deleterious changes by poly (adenosine diphosphate (ADP)-ribose) polymerase-1 (PARP)-1 have been concentrated in oncology. One of the critical functions of PARP-1 is the response to DNA damage, which plays a pivotal role in DNA repair in cancers. PARP-1 also has widespread functions that are essential for the survival and growth of cancer cells. It regulates oxidative stress in mitochondria through the regulation of superoxide and oxidation. PARP-1 is in charge of regulating mitosis, which is a crucial role in tumorigenesis and remodels histones and chromatin enzymes related to transcriptional regulation, causing alterations in epigenetic markers and chromatin structure. Given the significance of these processes, it can be understood that these processes in cancer cells are at the frontline of the pathogenetic changes required for cancer cell survival, and these contributions can result in malignant transformation. Therefore, this review addresses the current molecular biological features for understanding the multifactorial function of PARP-1 in pancreatic cancer related to the aforementioned roles, along with the summary of recent approaches with PARP-1 inhibition in clinical studies targeting pancreatic cancer. This understanding could help to embrace the importance of targeting PARP-1 in the treatment of pancreatic cancer, which may present the potential to find out a variety of research topics that can be both challenged clinically and non-clinically.
Collapse
|
9
|
Dong SW, Li R, Cheng Z, Liu DC, Xia J, Xu J, Li S, Wang J, Yue Y, Fan Y, Cao Y, Dai L, Wang J, Zhao P, Wang X, Xiao Z, Qiu C, Wang GS, Zou C. Mutational Pattern in Multiple Pulmonary Nodules Are Associated With Early Stage Lung Adenocarcinoma. Front Oncol 2021; 10:571521. [PMID: 33680914 PMCID: PMC7934775 DOI: 10.3389/fonc.2020.571521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/08/2020] [Indexed: 01/07/2023] Open
Abstract
The clinical significance of mutation in multiple pulmonary nodules is largely limited by single gene mutation-directed analysis and lack of validation of gene expression profiles. New analytic strategy is urgently needed for comprehensive understanding of genomic data in multiple pulmonary nodules. In this study, we performed whole exome sequencing in 16 multiple lung nodules and 5 adjacent normal tissues from 4 patients with multiple pulmonary nodules and decoded the mutation information from a perspective of cellular functions and signaling pathways. Mutated genes as well as mutation patterns shared in more than two lesions were identified and characterized. We found that the number of mutations or mutated genes and the extent of protein structural changes caused by different mutations is positively correlated with the degree of malignancy. Moreover, the mutated genes in the nodules are associated with the molecular functions or signaling pathways related to cell proliferation and survival. We showed a developing pattern of quantity (the number of mutations/mutated genes) and quality (the extent of protein structural changes) in multiple pulmonary nodules. The mutation and mutated genes in multiple pulmonary nodules are associated with cell proliferation and survival related signaling pathways. This study provides a new perspective for comprehension of genomic mutational data and might shed new light on deciphering molecular evolution of early stage lung adenocarcinoma.
Collapse
Affiliation(s)
- Shao-Wei Dong
- Clinical Medical Research Centre, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China.,Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen, China
| | - Rong Li
- Department of Oncology, Taikang Xianlin Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhiqiang Cheng
- Department of Pathology, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Dong-Cheng Liu
- Clinical Medical Research Centre, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Jinquan Xia
- Clinical Medical Research Centre, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Jing Xu
- Department of Pathology, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Shixuan Li
- Department of Thoracic Surgery, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Jian Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Yongjian Yue
- Department of Respiratory and Critical Medicine, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Yingrui Fan
- Department of Oncology, Taikang Xianlin Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yundi Cao
- Department of Oncology, Taikang Xianlin Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Lingyun Dai
- Department of Geriatrics, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Jigang Wang
- Department of Geriatrics, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Pan Zhao
- Clinical Medical Research Centre, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong
| | - Zhangang Xiao
- Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwestern Medical University, Luzhou, China
| | - Chen Qiu
- Department of Respiratory and Critical Medicine, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Guang-Suo Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Chang Zou
- Clinical Medical Research Centre, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China.,Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen, China
| |
Collapse
|
10
|
Chen R, Wu J, Lu C, Yan T, Qian Y, Shen H, Zhao Y, Wang J, Kong P, Zhang X. Systematic Transcriptome Analysis Reveals the Inhibitory Function of Cinnamaldehyde in Non-Small Cell Lung Cancer. Front Pharmacol 2021; 11:611060. [PMID: 33633568 PMCID: PMC7900626 DOI: 10.3389/fphar.2020.611060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
Cinnamaldehyde (CA) is the main component extracted from the traditional Chinese medicine cinnamon. Recent studies revealed that CA has antiviral and anti-tumor effects. However, the effect and mechanism of CA on non-small cell lung cancer (NSCLC) through whole transcriptome sequencing integrated analysis have not been systematically investigated. In this study, whole transcriptome sequencing was used to identify differentially expressed messenger RNAs (mRNAs), micro RNAs (miRNAs), and long non-coding RNAs (lncRNAs) that were influenced by CA and screen regulatory pathways. The results showed that CA significantly inhibited proliferation, invasion, and migration, whereas it induced the apoptosis of NSCLC cells. CA inhibited tumor growth in vivo. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis revealed that these differentially expressed mRNAs were potentially implicated in the CA-suppressing malignant phenotypes of NSCLC. According to the competing endogenous RNA (ceRNA) hypothesis, a ceRNA network was constructed, including 13 mRNAs, 6 miRNAs, and 11 lncRNAs. Kyoto Encyclopedia of Genes and Genomes analysis of the 13 mRNAs in the ceRNA network showed that suppressors of cytokine signaling 1 (SOCS1), BTG anti-proliferation factor 2 (BTG2), and Bruton tyrosine kinase (BTK) were significantly enriched in the JAK/STAT signaling pathway, RNA degradation, and nuclear factor-κB (NF-κB) signaling pathway related to cancer. These findings indicated that SOCS1, BTG2, and BTK play an essential role in CA against NSCLC. Meanwhile, based on the ceRNA network, three lncRNAs (long intergenic non-protein coding RNA 1504 [LINC01504], LINC01783, and THUMPD3 antisense RNA 1 [THUMPD3-AS1]) and three miRNAs (has-miR-155-5p, has-miR-7-5p, and has-miR-425-5p) associated with SOCS1, BTG2, and BTK may be important in CA against NSCLC. Taken together, the present study demonstrated the activity of CA against lung cancer and its potential use as a therapeutic agent.
Collapse
Affiliation(s)
- Ru Chen
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Juan Wu
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chang Lu
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Ting Yan
- Department of Pathology and Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, Taiyuan, China
| | - Yu Qian
- Department of Pathology and Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, Taiyuan, China
| | - Huiqing Shen
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yujing Zhao
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianzhen Wang
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Pengzhou Kong
- Department of Pathology and Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, Taiyuan, China
| | - Xinri Zhang
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
11
|
Zhang X, Zhang R, Chen H, Wang L, Ren C, Pataer A, Wu S, Meng QH, Ha MJ, Morris J, Xi Y, Wang J, Zhang J, Gibbons DL, Heymach JV, Meric-Bernstam F, Minna J, Swisher SG, Roth JA, Fang B. KRT-232 and navitoclax enhance trametinib's anti-Cancer activity in non-small cell lung cancer patient-derived xenografts with KRAS mutations. Am J Cancer Res 2020; 10:4464-4475. [PMID: 33415011 PMCID: PMC7783771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023] Open
Abstract
Activating mutations of the KRAS gene are one of the major genomic alterations associated with tumorigenesis of non-small cell lung cancer (NSCLC). Thus far, treatment of KRAS-mutant NSCLC remains an unmet medical need. We determined the in vivo treatment responses of 13 KRAS mutant and 14 KRAS wild type NSCLC patient-derived xenografts (PDXs) to agents that target known NSCLC vulnerabilities: the MEK inhibitor trametinib, the MDM2 inhibitor KRT-232, and the BCL-XL/BCL-2 inhibitor navitoclax. The results showed that the tumor regression rate after single agent therapy with KRT-232, trametinib and navitoclax was 11%, 10% and 0%, respectively. Combination therapies of trametinib plus KRT-232 and trametinib plus navitoclax led to improved partial response rates over single-agent activity in a subset of PDX models. Tumor regression was observed in 23% and 50% of PDXs after treatment with trametinib plus KRT-232 and trametinib plus navitoclax, respectively. The disease control rates in KRAS-mutant PDXs tested were 90%-100% after treatment with trametinib plus KRT-232 or plus navitoclax. A correlation analysis of treatment responses and genomic and proteomic biomarkers revealed that sensitivity to KRT-232 was significantly associated with TP53 wild-type or STK11 mutant genotypes (P<0.05). The levels of several proteins, including GSK3b, Nrf2, LKB1/pS334, and SMYD3, were significantly associated with sensitivity to trametinib plus navitoclax. Thus, the combination of trametinib plus KRT-232 or navitoclax resulted in improved efficacy compared with the agents alone in a subgroup of NSCLC PDX model with KRAS mutations. Expanded clinical trials of these targeted drug combinations in NSCLC are warranted.
Collapse
Affiliation(s)
- Xiaoshan Zhang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Ran Zhang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Huiqin Chen
- Department of Biostatistics, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Li Wang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Chenghui Ren
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Apar Pataer
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Shuhong Wu
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Qing H Meng
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Min Jin Ha
- Department of Biostatistics, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Jeffrey Morris
- Department of Biostatistics, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Yuanxin Xi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - John Minna
- Hamon Center for Therapeutic Oncology, The Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical CenterDallas, Texas, USA
| | - Stephen G Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| |
Collapse
|
12
|
Popper H. Primary tumor and metastasis-sectioning the different steps of the metastatic cascade. Transl Lung Cancer Res 2020; 9:2277-2300. [PMID: 33209649 PMCID: PMC7653118 DOI: 10.21037/tlcr-20-175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Patients with lung cancer in the majority die of metastases. Treatment options include surgery, chemo- and radiotherapy, targeted therapy by tyrosine kinase inhibitors (TKIs), and immuno-oncologic treatment. Despite the success with these treatment options, cure of lung cancer is achieved in only a very small proportion of patients. In most patients’ recurrence and metastasis will occur, and finally kill the patient. Metastasis is a multistep procedure. It requires a change in adhesion of tumor cells for detachment from their neighboring cells. The next step is migration either as single cells [epithelial-mesenchymal transition (EMT)], or as cell clusters (hybrid-EMT or bulk migration). A combination of genetic changes is required to facilitate migration. Then tumor cells have to orient themselves along matrix proteins, detect oxygen concentrations, prevent attacks by immune cells, and induce a tumor-friendly switch of stroma cells (macrophages, myofibroblasts, etc.). Having entered the blood stream tumor cells need to adapt to shear stress, avoid being trapped by coagulation, but also use coagulation in small veins for adherence to endothelia, and express homing molecules for extravasation. Within a metastatic site, tumor cells need a well-prepared niche to establish a metastatic focus. Tumor cells again have to establish a vascular net for maintaining nutrition and oxygen supply, communicate with stroma cells, grow out and set further metastases. In this review the different steps will be discussed with a focus on pulmonary carcinomas. The vast amount of research manuscripts published so far are not easy to analyze: in most reports’ single steps of the metastatic cascade are interpreted as evidence for the whole process; for example, migration is interpreted as evidence for metastasis. In lung cancer most often latency periods are shorter, in between 1–5 years. In other cases, despite widespread migration occurs, tumor cells die within the circulation and do not reach a metastatic site. Therefore, migration is a requisite, but does not necessarily predict metastasis. The intention of this review is to point to these different aspects and hopefully provoke research directed into a more functional analysis of the metastatic process.
Collapse
Affiliation(s)
- Helmut Popper
- Institute of Pathology, Medical University of Graz, Graz, Austria
| |
Collapse
|
13
|
Ganaie AA, Siddique HR, Sheikh IA, Parray A, Wang L, Panyam J, Villalta PW, Deng Y, Konety BR, Saleem M. A novel terpenoid class for prevention and treatment of KRAS-driven cancers: Comprehensive analysis using in situ, in vitro, and in vivo model systems. Mol Carcinog 2020; 59:886-896. [PMID: 32291806 PMCID: PMC7334075 DOI: 10.1002/mc.23200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
Inhibiting the disease progression in KRAS-driven cancers after diagnosis has been a difficult task for clinicians to manage due to the lack of effective intervention/preventive therapies. KRAS-driven cancers depend on sustained KRAS signaling. Although developing inhibitors of KRAS signaling has proven difficult in the past, the quest for identifying newer agents has not stopped. Based on studies showing terpenoids as modulators of KRAS-regulated downstream molecular pathways, we asked if this chemical family has an affinity of inhibiting KRAS protein activity. Using crystal structure as a bait in silico, we identified 20 terpenoids for their KRAS protein-binding affinity. We next carried out biological validation of in silico data by employing in situ, in vitro, patient-derived explant ex vivo, and KPC transgenic mouse models. In this report, we provide a comprehensive analysis of a lup-20(29)-en-3b-ol (lupeol) as a KRAS inhibitor. Using nucleotide exchange, isothermal titration calorimetry, differential scanning fluorimetry, and immunoprecipitation assays, we show that lupeol has the potential to reduce the guanosine diphosphate/guanosine triphosphate exchange of KRAS protein including mutant KRASG12V . Lupeol treatment inhibited the KRAS activation in KRAS-activated cell models (NIH-panel, colorectal, lung, and pancreatic intraepithelial neoplasia) and patient tumor explants ex vivo. Lupeol reduced the three-dimensional growth of KRAS-activated cells. The pharmacokinetic analysis showed the bioavailability of lupeol after consumption via oral and intraperitoneal routes in animals. Tested under prevention settings, the lupeol consumption inhibited the development of pancreatic intraepithelial neoplasia in LSL-KRASG12D/Pdx-cre mice (pancreatic ductal adenocarcinoma progression model). These data suggest that the selected members of the triterpene family (such as lupeol) could be exploited as clinical agents for preventing the disease progression in KRAS-driven cancers which however warrants further investigation.
Collapse
Affiliation(s)
- Arsheed A. Ganaie
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Hifzur R. Siddique
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
- Department of Zoology, Aligarh Muslim University, India
| | - Ishfaq A. Sheikh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aijaz Parray
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
- Academic Health Systems Hamad Medical Corporation, Doha, Qatar
| | | | - Jayanth Panyam
- School of Pharmacy, University of Minnesota, Minneapolis, MN
| | - Peter W. Villalta
- Analytical Chemistry Core, Masonic Cancer Center, University of Minnesota, MN
| | - Yibin Deng
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Badrinath R. Konety
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Mohammad Saleem
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| |
Collapse
|
14
|
Lee HW, Chung W, Lee HO, Jeong DE, Jo A, Lim JE, Hong JH, Nam DH, Jeong BC, Park SH, Joo KM, Park WY. Single-cell RNA sequencing reveals the tumor microenvironment and facilitates strategic choices to circumvent treatment failure in a chemorefractory bladder cancer patient. Genome Med 2020; 12:47. [PMID: 32460812 PMCID: PMC7251908 DOI: 10.1186/s13073-020-00741-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/24/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Tumor cell-intrinsic mechanisms and complex interactions with the tumor microenvironment contribute to therapeutic failure via tumor evolution. It may be possible to overcome treatment resistance by developing a personalized approach against relapsing cancers based on a comprehensive analysis of cell type-specific transcriptomic changes over the clinical course of the disease using single-cell RNA sequencing (scRNA-seq). METHODS Here, we used scRNA-seq to depict the tumor landscape of a single case of chemo-resistant metastatic, muscle-invasive urothelial bladder cancer (MIUBC) addicted to an activating Harvey rat sarcoma viral oncogene homolog (HRAS) mutation. In order to analyze tumor evolution and microenvironmental changes upon treatment, we also applied scRNA-seq to the corresponding patient-derived xenograft (PDX) before and after treatment with tipifarnib, a HRAS-targeting agent under clinical evaluation. RESULTS In the parallel analysis of the human MIUBC and the PDX, diverse stromal and immune cell populations recapitulated the cellular composition in the human and mouse tumor microenvironment. Treatment with tipifarnib showed dramatic anticancer effects but was unable to achieve a complete response. Importantly, the comparative scRNA-seq analysis between pre- and post-tipifarnib-treated PDX revealed the nature of tipifarnib-refractory tumor cells and the tumor-supporting microenvironment. Based on the upregulation of programmed death-ligand 1 (PD-L1) in surviving tumor cells, and the accumulation of multiple immune-suppressive subsets from post-tipifarnib-treated PDX, a PD-L1 inhibitor, atezolizumab, was clinically applied; this resulted in a favorable response from the patient with acquired resistance to tipifarnib. CONCLUSION We presented a single case report demonstrating the power of scRNA-seq for visualizing the tumor microenvironment and identifying molecular and cellular therapeutic targets in a treatment-refractory cancer patient.
Collapse
Affiliation(s)
- Hye Won Lee
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
- Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, 06351, Republic of Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
- Department of Hospital Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Woosung Chung
- Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, 06351, Republic of Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
- DCGen Co., Ltd, Seoul, 03170, Republic of Korea
| | - Hae-Ock Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Da Eun Jeong
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Areum Jo
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Joung Eun Lim
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Jeong Hee Hong
- Department of Urology, Dankook University College of Medicine, Cheonan, 31116, Republic of Korea
| | - Do-Hyun Nam
- Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, 06351, Republic of Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Byong Chang Jeong
- Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, 06351, Republic of Korea.
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea.
| | - Se Hoon Park
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea.
| | - Kyeung-Min Joo
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
- Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, 06351, Republic of Korea.
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, Republic of Korea.
| | - Woong-Yang Park
- Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, 06351, Republic of Korea.
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea.
| |
Collapse
|
15
|
Zhong G, Lou W, Yao M, Du C, Wei H, Fu P. Identification of novel mRNA-miRNA-lncRNA competing endogenous RNA network associated with prognosis of breast cancer. Epigenomics 2019; 11:1501-1518. [PMID: 31502865 DOI: 10.2217/epi-2019-0209] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: To identify novel competing endogenous RNA (ceRNA) network related to patients prognosis in breast cancer. Materials & methods: Dysregulated mRNA based on intersection of three Gene Expression Omnibus and The Cancer Genome Atlas datasets were analyzed by bioinformatics. Results: In total 72 upregulated and 208 downregulated genes were identified. Functional analysis showed that some pathways related to cancer were significantly enriched. By means of stepwise reverse prediction and validation from mRNA to lncRNA, 19 hub genes, nine key miRNA and four key lncRNAs were identified by expression and survival analysis. Ultimately, the coexpression analysis identified RRM2-let-7a-5p-SNHG16/MAL2 as key ceRNA subnetwork associated with prognosis of breast cancer. Conclusion: We successfully constructed a novel ceRNA network, among which each component was significantly associated with breast cancer prognosis.
Collapse
Affiliation(s)
- Guansheng Zhong
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003, PR China
| | - Weiyang Lou
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Key Laboratory of Organ Transplantation, Zhejiang University, 79 Qingchun Road, Zhejiang Province, Hangzhou 310003, PR China
| | - Minya Yao
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003, PR China
| | - Chengyong Du
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003, PR China
| | - Haiyan Wei
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003, PR China
| | - Peifen Fu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003, PR China
| |
Collapse
|
16
|
Sang B, Sun J, Yang D, Xu Z, Wei Y. Ras-AKT signaling represses the phosphorylation of histone H1.5 at threonine 10 via GSK3 to promote the progression of glioma. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2882-2890. [PMID: 31307224 DOI: 10.1080/21691401.2019.1638795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ben Sang
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong, China
- Affiliated Jining No. 1 People’s Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Jianjing Sun
- Department of Endocrinology, Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Dongxu Yang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Zhen Xu
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Yuzhen Wei
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong, China
- Affiliated Jining No. 1 People’s Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
17
|
Zhang Y, Xu L, Li A, Han X. The roles of ZEB1 in tumorigenic progression and epigenetic modifications. Biomed Pharmacother 2018; 110:400-408. [PMID: 30530042 DOI: 10.1016/j.biopha.2018.11.112] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/19/2018] [Accepted: 11/25/2018] [Indexed: 02/07/2023] Open
Abstract
Highly expressed Zinc-finger E-box binding protein 1 (ZEB1) is significantly associated with the malignancy of various cancers. Signal transduction and activation of ZEB1 play important roles in cancer transformation and epithelial-mesenchymal transition (EMT). Emerging evidence suggests that ZEB1 drives the induction of EMT with activation of stem cell traits, immune evasion and epigenetic reprogramming. As an ideal target for EMT research, ZEB1 has been extensively studied for decades. However, the link between ZEB1 and epigenetic regulation of EMT has only recently been discovered. ZEB1 facilitates the epigenetic silencing of E-cadherin by recruiting multiple chromatin enzymes of E-cadherin promoter, such as histone deacetylases (HDACs), DNA methyltransferase (DNMT) and ubiquitin ligase. Destruction of the connection between ZEB1 and these chromatin-modifying enzymes may represent an efficient for treating cancer. In this review, we outlined the biological function of ZEB1 in tumorigenic progression and epigenetic modifications and elucidate its transcriptional network, which is a suitable potential target for the design of novel anticancer drugs.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, Shandong Province, China
| | - Lei Xu
- Pharmaceutical Preparation Section, Hospital of Laiwu Steel Group, 68 Xinxing Road, Laigang 271126, Shandong Province, China
| | - Anqi Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, Shandong Province, China
| | - Xiuzhen Han
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, Shandong Province, China.
| |
Collapse
|
18
|
Chong SJF, Lai JXH, Eu JQ, Bellot GL, Pervaiz S. Reactive Oxygen Species and Oncoprotein Signaling-A Dangerous Liaison. Antioxid Redox Signal 2018; 29:1553-1588. [PMID: 29186971 DOI: 10.1089/ars.2017.7441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE There is evidence to implicate reactive oxygen species (ROS) in tumorigenesis and its progression. This has been associated with the interplay between ROS and oncoproteins, resulting in enhanced cellular proliferation and survival. Recent Advances: To date, studies have investigated specific contributions of the crosstalk between ROS and signaling networks in cancer initiation and progression. These investigations have challenged the established dogma of ROS as agents of cell death by demonstrating a secondary function that fuels cell proliferation and survival. Studies have thus identified (onco)proteins (Bcl-2, STAT3/5, RAS, Rac1, and Myc) in manipulating ROS level as well as exploiting an altered redox environment to create a milieu conducive for cancer formation and progression. CRITICAL ISSUES Despite these advances, drug resistance and its association with an altered redox metabolism continue to pose a challenge at the mechanistic and clinical levels. Therefore, identifying specific signatures, altered protein expressions, and modifications as well as protein-protein interplay/function could not only enhance our understanding of the redox networks during cancer initiation and progression but will also provide novel targets for designing specific therapeutic strategies. FUTURE DIRECTIONS Not only a heightened realization is required to unravel various gene/protein networks associated with cancer formation and progression, particularly from the redox standpoint, but there is also a need for developing more sensitive tools for assessing cancer redox metabolism in clinical settings. This review attempts to summarize our current knowledge of the crosstalk between oncoproteins and ROS in promoting cancer cell survival and proliferation and treatment strategies employed against these oncoproteins. Antioxid. Redox Signal.
Collapse
Affiliation(s)
- Stephen Jun Fei Chong
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Jolin Xiao Hui Lai
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Jie Qing Eu
- 2 Cancer Science Institute , Singapore, Singapore
| | - Gregory Lucien Bellot
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,3 Department of Hand and Reconstructive Microsurgery, National University Health System , Singapore, Singapore
| | - Shazib Pervaiz
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,4 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore .,5 National University Cancer Institute, National University Health System , Singapore, Singapore .,6 School of Biomedical Sciences, Curtin University , Perth, Australia
| |
Collapse
|
19
|
Burns MB, Montassier E, Abrahante J, Priya S, Niccum DE, Khoruts A, Starr TK, Knights D, Blekhman R. Colorectal cancer mutational profiles correlate with defined microbial communities in the tumor microenvironment. PLoS Genet 2018; 14:e1007376. [PMID: 29924794 PMCID: PMC6028121 DOI: 10.1371/journal.pgen.1007376] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/02/2018] [Accepted: 04/24/2018] [Indexed: 02/06/2023] Open
Abstract
Variation in the gut microbiome has been linked to colorectal cancer (CRC), as well as to host genetic variation. However, we do not know whether, in addition to baseline host genetics, somatic mutational profiles in CRC tumors interact with the surrounding tumor microbiome, and if so, whether these changes can be used to understand microbe-host interactions with potential functional biological relevance. Here, we characterized the association between CRC microbial communities and tumor mutations using microbiome profiling and whole-exome sequencing in 44 pairs of tumors and matched normal tissues. We found statistically significant associations between loss-of-function mutations in tumor genes and shifts in the abundances of specific sets of bacterial taxa, suggestive of potential functional interaction. This correlation allows us to statistically predict interactions between loss-of-function tumor mutations in cancer-related genes and pathways, including MAPK and Wnt signaling, solely based on the composition of the microbiome. In conclusion, our study shows that CRC microbiomes are correlated with tumor mutational profiles, pointing towards possible mechanisms of molecular interaction.
Collapse
Affiliation(s)
- Michael B. Burns
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, United States of America
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
- * E-mail: (MBB); (RB)
| | - Emmanuel Montassier
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- MiHAR lab, Université de Nantes, 44000 Nantes, France
| | - Juan Abrahante
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Sambhawa Priya
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - David E. Niccum
- Department of Medicine, Division of Gastroenterology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Alexander Khoruts
- Department of Medicine, Division of Gastroenterology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Timothy K. Starr
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Dan Knights
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- BioTechnology Institute, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ran Blekhman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, United States of America
- * E-mail: (MBB); (RB)
| |
Collapse
|
20
|
Mott HR, Owen D. Bioblockades join the assault on small G protein signalling. Semin Cancer Biol 2018; 54:149-161. [PMID: 29307570 DOI: 10.1016/j.semcancer.2018.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/04/2018] [Indexed: 01/06/2023]
Abstract
Inhibition of Ras signalling has been a goal almost since its central role in cell signalling and its deregulation in disease were discovered. Early attempts at inhibiting its post-translational modification using peptidomimetics were successful in cell culture but failed spectacularly in clinical trials, making industry wary of targeting this critical oncoprotein. Small molecule inhibition of the protein-protein interactions involving Ras has also been difficult due to the nature of the interaction interface. Recent improvements in design, synthesis and selection of stabilised peptides, peptidomimetics and macrocycles have suggested that these biologics may represent a new hope in Ras inhibition. Here we review the various ways in which Ras has been targeted with these molecules. We also describe work on related small G proteins of the Ras superfamily, since many of the principles may be applicable to Ras, and these also provide inhibition of pathways downstream of Ras.
Collapse
Affiliation(s)
- Helen R Mott
- Department of Biochemistry, 80, Tennis Court Road, Cambridge CB2 1GA, UK.
| | - Darerca Owen
- Department of Biochemistry, 80, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
21
|
Genomic Variations in Pancreatic Cancer and Potential Opportunities for Development of New Approaches for Diagnosis and Treatment. Int J Mol Sci 2017; 18:ijms18061201. [PMID: 28587243 PMCID: PMC5486024 DOI: 10.3390/ijms18061201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/30/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Human pancreatic cancer has a very poor prognosis with an overall five-year survival rate of less than 5% and an average median survival time of six months. This is largely due to metastatic disease, which is already present in the majority of patients when diagnosed. Although our understanding of the molecular events underlying multi-step carcinogenesis in pancreatic cancer has steadily increased, translation into more effective therapeutic approaches has been inefficient in recent decades. Therefore, it is imperative that novel and targeted approaches are designed to facilitate the early detection and treatment of pancreatic cancer. Presently, there are numerous ongoing studies investigating the types of genomic variations in pancreatic cancer and their impact on tumor initiation and growth, as well as prognosis. This has led to the development of therapeutics to target these genetic variations for clinical benefit. Thus far, there have been minimal clinical successes directly targeting these genomic alterations; however research is ongoing to ultimately discover an innovative approach to tackle this devastating disease. This review will discuss the genomic variations in pancreatic cancer, and the resulting potential diagnostic and therapeutic implications.
Collapse
|
22
|
Yousef M, Tsiani E. Metformin in Lung Cancer: Review of in Vitro and in Vivo Animal Studies. Cancers (Basel) 2017; 9:cancers9050045. [PMID: 28481268 PMCID: PMC5447955 DOI: 10.3390/cancers9050045] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 12/19/2022] Open
Abstract
Cancer cells display enhanced growth rates and a resistance to apoptosis. The ability of cancer cells to evade homeostasis and proliferate uncontrollably while avoiding programmed cell death/apoptosis is acquired through mutations to key signaling molecules, which regulate pathways involved in cell proliferation and survival and these mutations allow them to develop resistance to many chemotherapeutic agents, highlighting the need for development of new potent anti-cancer agents. Metformin has long been used as a treatment for type 2 diabetes and has recently attracted attention as a potential agent to be used in the treatment of cancer. The present review summarizes the existing in vitro and in vivo animal studies focusing on the anti-lung cancer effects of metformin and its effects on key proliferative and anti-apoptotic signaling pathways.
Collapse
Affiliation(s)
- Michael Yousef
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
23
|
Regulatory miRNAs in Colorectal Carcinogenesis and Metastasis. Int J Mol Sci 2017; 18:ijms18040890. [PMID: 28441730 PMCID: PMC5412469 DOI: 10.3390/ijms18040890] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/15/2017] [Accepted: 04/20/2017] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer is one of the most common malignancies and is the second-leading cause of cancer-related death world-wide, which is linked to genetic mutations, epigenetic alterations, and oncogenic signaling activation. MicroRNAs, one of the categories of epigenetics, have been demonstrated significant roles in carcinogenesis and progression through regulating of oncogenic signaling pathways, stem cells, epithelial-mesenchymal transition, and metastasis. This review summarizes the roles of microRNAs in the regulating of Wnt, Ras, TGF-β, and inflammatory signaling pathways, stemness, and epithelial-mesenchymal transition, for carcinogenesis and metastasis in colorectal cancer. Improving our understanding of the mechanisms of regulatory interactions of microRNAs with signaling pathways in colorectal cancer formation and progression will aid in determining the genes responsible for colorectal cancer initiation, progression, metastasis, and recurrence and, finally, in developing personalized approaches for cancer prevention and therapy.
Collapse
|
24
|
ErbB Family Signalling: A Paradigm for Oncogene Addiction and Personalized Oncology. Cancers (Basel) 2017; 9:cancers9040033. [PMID: 28417948 PMCID: PMC5406708 DOI: 10.3390/cancers9040033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
ErbB family members represent important biomarkers and drug targets for modern precision therapy. They have gained considerable importance as paradigms for oncoprotein addiction and personalized medicine. This review summarizes the current understanding of ErbB proteins in cell signalling and cancer and describes the molecular rationale of prominent cases of ErbB oncoprotein addiction in different cancer types. In addition, we have highlighted experimental technologies for the development of innovative cancer cell models that accurately predicted clinical ErbB drug efficacies. In the future, such cancer models might facilitate the identification and validation of physiologically relevant novel forms of oncoprotein and non-oncoprotein addiction or synthetic lethality. The identification of genotype-drug response relationships will further advance personalized oncology and improve drug efficacy in the clinic. Finally, we review the most important drugs targeting ErbB family members that are under investigation in clinical trials or that made their way already into clinical routine. Taken together, the functional characterization of ErbB oncoproteins have significantly increased our knowledge on predictive biomarkers, oncoprotein addiction and patient stratification and treatment.
Collapse
|
25
|
Ilinskaya ON, Singh I, Dudkina E, Ulyanova V, Kayumov A, Barreto G. Direct inhibition of oncogenic KRAS by Bacillus pumilus ribonuclease (binase). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1559-67. [PMID: 27066977 DOI: 10.1016/j.bbamcr.2016.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 11/18/2022]
Abstract
RAS proteins function as molecular switches that transmit signals from cell surface receptors into specific cellular responses via activation of defined signaling pathways (Fang, 2015). Aberrant constitutive RAS activation occurs with high incidence in different types of cancer (Bos, 1989). Thus, inhibition of RAS-mediated signaling is extremely important for therapeutic approaches against cancer. Here we showed that the ribonuclease (RNase) binase, directly interacts with endogenous KRAS. Further, molecular structure models suggested an inhibitory nature of binase-RAS interaction involving regions of RAS that are important for different aspects of its function. Consistent with these models, phosphorylation analysis of effectors of RAS-mediated signaling revealed that binase inhibits the MAPK/ERK signaling pathway. Interestingly, RAS activation assays using a non-hydrolysable GTP analog (GTPγS) demonstrated that binase interferes with the exchange of GDP by GTP. Furthermore, we showed that binase reduced the interaction of RAS with the guanine nucleotide exchange factor (GEF), SOS1. Our data support a model in which binase-KRAS interaction interferes with the function of GEFs and stabilizes the inactive GDP-bound conformation of RAS thereby inhibiting MAPK/ERK signaling. This model plausibly explains the previously reported, antitumor-effect of binase specific towards RAS-transformed cells and suggests the development of anticancer therapies based on this ribonuclease.
Collapse
Affiliation(s)
- Olga N Ilinskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal (Volga-Region) University, Kremlevskaya str. 18, 420008, Kazan, Russia
| | - Indrabahadur Singh
- LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, Parkstr. 1, 61231 Bad Nauheim, Germany
| | - Elena Dudkina
- Institute of Fundamental Medicine and Biology, Kazan Federal (Volga-Region) University, Kremlevskaya str. 18, 420008, Kazan, Russia.
| | - Vera Ulyanova
- Institute of Fundamental Medicine and Biology, Kazan Federal (Volga-Region) University, Kremlevskaya str. 18, 420008, Kazan, Russia
| | - Airat Kayumov
- Institute of Fundamental Medicine and Biology, Kazan Federal (Volga-Region) University, Kremlevskaya str. 18, 420008, Kazan, Russia
| | - Guillermo Barreto
- Institute of Fundamental Medicine and Biology, Kazan Federal (Volga-Region) University, Kremlevskaya str. 18, 420008, Kazan, Russia; LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, Parkstr. 1, 61231 Bad Nauheim, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Germany; German Center of Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Germany.
| |
Collapse
|