1
|
Zhuang L, Liu W, Tsai XQ, Outtrim C, Tang A, Wang Z, Huang Y. Repurposing Niclosamide to Modulate Renal RNA-Binding Protein HuR for the Treatment of Diabetic Nephropathy in db/db Mice. Int J Mol Sci 2024; 25:9651. [PMID: 39273597 PMCID: PMC11394915 DOI: 10.3390/ijms25179651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Hu antigen R (HuR) plays a key role in regulating genes critical to the pathogenesis of diabetic nephropathy (DN). This study investigates the therapeutic potential of niclosamide (NCS) as an HuR inhibitor in DN. Uninephrectomized mice were assigned to four groups: normal control; untreated db/db mice terminated at 14 and 22 weeks, respectively; and db/db mice treated with NCS (20 mg/kg daily via i.p.) from weeks 18 to 22. Increased HuR expression was observed in diabetic kidneys from db/db mice, which was mitigated by NCS treatment. Untreated db/db mice exhibited obesity, progressive hyperglycemia, albuminuria, kidney hypertrophy and glomerular mesangial matrix expansion, increased renal production of fibronectin and a-smooth muscle actin, and decreased glomerular WT-1+-podocytes and nephrin expression. NCS treatment did not affect mouse body weight, but reduced blood glucose and HbA1c levels and halted the DN progression observed in untreated db/db mice. Renal production of inflammatory and oxidative stress markers (NF-κBp65, TNF-a, MCP-1) and urine MDA levels increased during disease progression in db/db mice but were halted by NCS treatment. Additionally, the Wnt1-signaling-pathway downstream factor, Wisp1, was identified as a key downstream mediator of HuR-dependent action and found to be markedly increased in db/db mouse kidneys, which was normalized by NCS treatment. These findings suggest that inhibition of HuR with NCS is therapeutic for DN by improving hyperglycemia, renal inflammation, and oxidative stress. The reduction in renal Wisp1 expression also contributes to its renoprotective effects. This study supports the potential of repurposing HuR inhibitors as a novel therapy for DN.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yufeng Huang
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah Health, Salt Lake City, UT 84132, USA; (L.Z.); (W.L.); (X.-Q.T.); (C.O.); (A.T.); (Z.W.)
| |
Collapse
|
2
|
Wang X, Zhao M, Lu X, Du P, Feng S, Gong R, Chen H, Qi G, Yang F. HuR deficiency abrogated the enhanced NLRP3 signaling in experimental ischemic stroke. FASEB J 2024; 38:e23342. [PMID: 38038724 DOI: 10.1096/fj.202300812r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/27/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
Human antigen R (HuR) is a universally expressed RNA-binding protein that plays an essential role in governing the fate of mRNA transcripts. Accumulating evidence indicated that HuR is involved in the development and functions of several cell types. However, its role in cerebral ischemia/reperfusion injury (CIRI) remains unclear. In this study, we found that HuR was significantly upregulated after CIRI. Moreover, we found that silencing HuR could inhibit the inflammatory response of microglia and reduce the damage to neurons caused by oxygen-glucose deprivation/reperfusion treatment. In vivo, we found that microglial HuR deficiency significantly ameliorated CIRI and reduced NLRP3-mediated inflammasome activation. Mechanistically, we found that HuR could regulate NLRP3 mRNA stability by binding to the AU-rich element (ARE) region within the 3' untranslated region (UTR) of NLRP3 mRNA. In addition, we found that the upregulation of HuR was dependent on the upregulation of NADPH oxidase-mediated ROS accumulation. Collectively, our studies revealed that HuR could regulate NLRP3 expression and that HuR deficiency abrogated the enhanced NLRP3 signaling in experimental ischemic stroke. Targeting HuR may be a novel therapeutic strategy for cerebral ischemic stroke treatment.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Mingfeng Zhao
- Department of Pathology, Binzhou Medical University, Binzhou, China
| | - Xiulian Lu
- Cisen Pharmaceutical Co., Ltd, Jining, China
| | - Pengchao Du
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Shaobin Feng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ruo Gong
- Cisen Pharmaceutical Co., Ltd, Jining, China
| | - Hao Chen
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guoliang Qi
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fan Yang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
3
|
Yang Z, Zhang Q, Wu X, Hao S, Hao X, Jones E, Zhang Y, Qiu J, Xu L. Repurposing Niclosamide as a Novel Anti-SARS-CoV-2 Drug by Restricting Entry Protein CD147. Biomedicines 2023; 11:2019. [PMID: 37509657 PMCID: PMC10377517 DOI: 10.3390/biomedicines11072019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the global coronavirus disease 2019 (COVID-19) pandemic, and the search for effective treatments has been limited. Furthermore, the rapid mutations of SARS-CoV-2 have posed challenges to existing vaccines and neutralizing antibodies, as they struggle to keep up with the increased viral transmissibility and immune evasion. However, there is hope in targeting the CD147-spike protein, which serves as an alternative point for the entry of SARS-CoV-2 into host cells. This protein has emerged as a promising therapeutic target for the development of drugs against COVID-19. Here, we demonstrate that the RNA-binding protein Human-antigen R (HuR) plays a crucial role in the post-transcriptional regulation of CD147 by directly binding to its 3'-untranslated region (UTR). We observed a decrease in CD147 levels across multiple cell lines upon HuR depletion. Furthermore, we identified that niclosamide can reduce CD147 by lowering the cytoplasmic translocation of HuR and reducing CD147 glycosylation. Moreover, our investigation revealed that SARS-CoV-2 infection induces an upregulation of CD147 in ACE2-expressing A549 cells, which can be effectively neutralized by niclosamide in a dose-dependent manner. Overall, our study unveils a novel regulatory mechanism of regulating CD147 through HuR and suggests niclosamide as a promising therapeutic option against COVID-19.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| | - Qi Zhang
- Higuchi Biosciences Center, The University of Kansas, Lawrence, KS 66045, USA
| | - Xiaoqing Wu
- Higuchi Biosciences Center, The University of Kansas, Lawrence, KS 66045, USA
- The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Siyuan Hao
- Department of Microbiology, Molecular Genetics and Immunology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xinbao Hao
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| | - Elizabeth Jones
- Department of Pharmacology, Toxicology & Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology & Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Liang Xu
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
- The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Radiation Oncology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
4
|
Zhou C, Luo Y, Huang Z, Dong F, Lin J, Luo L, Li X, Cai C, Wu W. ELAVL1 promotes LPS-induced endothelial cells injury through modulation of cytokine storm. Immunobiology 2023; 228:152412. [PMID: 37343439 DOI: 10.1016/j.imbio.2023.152412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/16/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023]
Abstract
Sepsis is a life-threatening systemic organ dysfunction caused by the host's unregulated response to a widespread bacterial infection. Endothelial injury is a major pathophysiologic symptom of sepsis and is considered a critical factor in promoting the progression of disease severity. ELAV like RNA binding protein 1(ELAVL1) is a ubiquitously expressed RNA-binding protein that may play an important role during sepsis. Nonetheless, the molecular mechanisms of ELAVL1 on endothelial cell damage in sepsis have not been well defined. Here, we aimed to confirm the role of ELAVL1 in sepsis-induced endothelial cell damage using lipopolysaccharide (LPS)-induced zebrafish and endothelial cells (ECs) models. We found that zebrafish larvae treated with LPS exhibited systemic endothelial cell damage, mostly manifested as pericardial edema, curved tail, and impaired angiogenesis. LPS treatments also significantly induced the expression levels of inflammatory cytokines (interleukin-6 (IL-6), IL-8, and tumor necrosis factor (TNF)-α) in vivo. In vitro, we observed the increase of ELAVL1 cytoplasmic translocation with LPS treatment. Mechanistically, targeted disruption of the ELAVL1 gene decreased the expression of TNF-α, IL-6, and IL-8 during induction of sepsis and alleviated LPS-induced blood vessel injury in zebrafish. Taken together, our study indicates that ELAVL1 knockdown may alleviate sepsis-induced endothelial cells injury by suppressing cytokine storm. Our research suggests that inhibition of ELAVL1 could reduce the level of inflammatory cytokine production induced by LPS and protect against endothelial cell injury. ELAVL1 might be a potential therapeutic target to block endothelial cells injury associated with sepsis.
Collapse
Affiliation(s)
- Chaoyang Zhou
- Intensive Care Unit, The People's Hospital of Yuhuan, Yuhuan, PR China
| | - Yacan Luo
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Zhengwei Huang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Fubo Dong
- Intensive Care Unit, The People's Hospital of Yuhuan, Yuhuan, PR China
| | - Junliang Lin
- Intensive Care Unit, The People's Hospital of Yuhuan, Yuhuan, PR China
| | - Liwen Luo
- Intensive Care Unit, The People's Hospital of Yuhuan, Yuhuan, PR China
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Chang Cai
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China.
| | - Wenzhi Wu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China.
| |
Collapse
|
5
|
Huang Z, Liu S, Tang A, Wu X, Aube J, Xu L, Huang Y. Targeting RNA-binding protein HuR to inhibit the progression of renal tubular fibrosis. J Transl Med 2023; 21:428. [PMID: 37391777 PMCID: PMC10311833 DOI: 10.1186/s12967-023-04298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/23/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Upregulation of an RNA-binding protein HuR has been implicated in glomerular diseases. Herein, we evaluated whether it is involved in renal tubular fibrosis. METHODS HuR was firstly examined in human kidney biopsy tissue with tubular disease. Second, its expression and the effect of HuR inhibition with KH3 on tubular injury were further assessed in a mouse model induced by a unilateral renal ischemia/reperfusion (IR). KH3 (50 mg kg-1) was given daily via intraperitoneal injection from day 3 to 14 after IR. Last, one of HuR-targeted pathways was examined in cultured proximal tubular cells. RESULTS HuR significantly increases at the site of tubular injury both in progressive CKD in patients and in IR-injured kidneys in mice, accompanied by upregulation of HuR targets that are involved in inflammation, profibrotic cytokines, oxidative stress, proliferation, apoptosis, tubular EMT process, matrix remodeling and fibrosis in renal tubulointerstitial fibrosis. KH3 treatment reduces the IR-induced tubular injury and fibrosis, accompanied by the remarkable amelioration in those involved pathways. A panel of mRNA array further revealed that 519 molecules in mouse kidney following IR injury changed their expression and 71.3% of them that are involved in 50 profibrotic pathways, were ameliorated when treated with KH3. In vitro, TGFβ1 induced tubular HuR cytoplasmic translocation and subsequent tubular EMT, which were abrogated by KH3 administration in cultured HK-2 cells. CONCLUSIONS These results suggest that excessive upregulation of HuR contributes to renal tubulointerstitial fibrosis by dysregulating genes involved in multiple profibrotic pathways and activating the TGFß1/HuR feedback circuit in tubular cells. Inhibition of HuR may have therapeutic potential for renal tubular fibrosis.
Collapse
Affiliation(s)
- Zhimin Huang
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah Health Science, Wintrobe Rm 403, 26 N Medical Dr., Salt Lake City, UT, 84132, USA
| | - Simeng Liu
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah Health Science, Wintrobe Rm 403, 26 N Medical Dr., Salt Lake City, UT, 84132, USA
| | - Anna Tang
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah Health Science, Wintrobe Rm 403, 26 N Medical Dr., Salt Lake City, UT, 84132, USA
| | - Xiaoqing Wu
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Jeffrey Aube
- Department of Chemical Biology and Medical Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Liang Xu
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Yufeng Huang
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah Health Science, Wintrobe Rm 403, 26 N Medical Dr., Salt Lake City, UT, 84132, USA.
| |
Collapse
|
6
|
Supe S, Upadhya A, Tripathi S, Dighe V, Singh K. Liposome-polyethylenimine complexes for the effective delivery of HuR siRNA in the treatment of diabetic retinopathy. Drug Deliv Transl Res 2023; 13:1675-1698. [PMID: 36630075 DOI: 10.1007/s13346-022-01281-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/12/2023]
Abstract
Diabetic retinopathy (DR) is a vision-impairing complication of diabetes, damaging the retinal microcirculatory system. Overexpression of VEGF (vascular endothelial growth factor) is implicated in the pathogenesis of DR. Human antigen R (HuR) is an RNA-binding protein that favorably regulates VEGF protein expression by binding to VEGF-encoding mRNA. Downregulating HuR via RNA interference strategies using small interfering RNAs (siRNAs) may constitute a novel therapeutic method for preventing VEGF protein overexpression in DR. Delivery of siRNAs to the cellular cytoplasm can be facilitated by cationic peptides or polymers and lipids. In this study, a cationic polymer (polyethylenimine (PEI)) and lipid nanoparticles (liposomes) were co-formulated with siRNA to form lipopolyplexes (LPPs) for the delivery of HuR siRNA. LPPs-siRNA were analyzed for size, zeta potential, serum stability, RNase stability, heparin stability, toxicity, and siRNA encapsulation efficiency. Cellular uptake, downregulation of the target HuR (mRNA and protein), and associated VEGF protein were used to demonstrate the biological efficacy of the LPPs-HuR siRNA, in vitro (human ARPE-19 cells), and in vivo (Wistar rats). In vivo efficacy study was performed by injecting LPPs-HuR siRNA formulations into the eye of streptozotocin (STZ)-induced diabetic rats after the development of retinopathy. Our findings demonstrated that high retinal HuR and VEGF levels observed in the eyes of untreated STZ rats were lowered after LPPs-HuR siRNA administration. Our observations indicate that intravitreal treatment with HuR siRNA is a promising option for DR using LPPs as delivery agents.
Collapse
Affiliation(s)
- Shibani Supe
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, Maharashtra, 400056, India
| | - Archana Upadhya
- Humera Khan College of Pharmacy, HK College Campus, Oshiwara, Jogeshwari (West), Mumbai, Maharashtra, 400102, India
| | - Santosh Tripathi
- Bombay Veterinary College, Sindhu Nagar, Parel Village, Parel, Mumbai, Maharashtra, 400012, India
| | - Vikas Dighe
- National Centre for Preclinical Reproductive and Genetic Toxicology, ICMR-National Institute for Research in Reproductive and Child Health, J.M.Street, Parel, Mumbai, Maharashtra, 400012, India.
| | - Kavita Singh
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
7
|
Yang Z, Zhang Q, Wu X, Hao S, Hao X, Jones E, Zhang Y, Qiu J, Xu L. Repurposing niclosamide as a novel anti-SARS-Cov-2 drug by restricting entry protein CD147. RESEARCH SQUARE 2023:rs.3.rs-2763207. [PMID: 37090542 PMCID: PMC10120763 DOI: 10.21203/rs.3.rs-2763207/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Background The burst of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing the global COVID-19 pandemic. But until today only limited numbers of drugs are discovered to treat COVID-19 patients. Even worse, the rapid mutations of SARS-CoV-2 compromise the effectiveness of existing vaccines and neutralizing antibodies due to the increased viral transmissibility and immune escape. CD147-spike protein, one of the entries of SRAR-CoV-2 into host cells, has been reported as a promising therapeutic target for developing drugs against COVID-19. Methods CRISPR-Cas9 induced gene knockout, western blotting, tet-off protein overexpression, ribonucleoprotein IP and RNA-IP were used to confirm the regulation of HuR on mRNA of CD147. Regulation of niclosamide on HuR nucleo-translocation was assessed by immunofluorescence staining of cell lines, IHC staining of tissue of mouse model and western blotting. Finally, the suppression of niclosamide on SARS-CoV-2 infection induced CD147 was evaluated by ACE2-expressing A549 cells and western blotting. Results We first discovered a novel regulation mechanism of CD147 via the RNA-binding protein HuR. We found that HuR regulates CD147 post-transcription by directly bound to its 3'-UTR. The loss of HuR reduced CD147 in multiple cell lines. Niclosamide inhibited CD147 function by blocking HuR cytoplasmic translocation and diminishing CD147 glycosylation. SARS-CoV-2 infection induced CD147 in ACE2-expressing A549 cells, which could be neutralized by niclosamide in a dose-dependent manner. Conclusion Together, our study reveals a novel regulation mechanism of CD147 and niclosamide can be repurposed as an effective COVID-19 drug by targeting the virus entry, CD147-spike protein.
Collapse
|
8
|
Ma Q, Lu Q, Lei X, Zhao J, Sun W, Huang D, Zhu Q, Xu Q. Relationship between HuR and tumor drug resistance. Clin Transl Oncol 2023:10.1007/s12094-023-03109-5. [PMID: 36947360 DOI: 10.1007/s12094-023-03109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/31/2023] [Indexed: 03/23/2023]
Abstract
Human resistance protein R (HuR), also known as embryonic lethal abnormal visual-like protein (ELAVL1), is an RNA-binding protein widely expressed in vivo that affects the mRNA stability of targeted and is involved in post-transcriptional regulation. Recent studies have shown that HuR is aberrantly expressed in different human cancers and is an essential factor in poor clinical prognosis. The role of HuR in numerous tumors suggests that it could be a new target for tumor therapy and as a marker for efficacy and prognostic assessment. This review focuses on the relationship between HuR and drug resistance in different tumors and briefly describes the structure, function, and inhibitors of HuR. We summarize the mechanisms by which HuR causes tumor resistance and the molecular targets affected.
Collapse
Affiliation(s)
- Qiancheng Ma
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qiliang Lu
- Qingdao Medical College, Qingdao University, Qingdao, 266000, China
| | | | - Jie Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wen Sun
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis, and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
| | - Qing Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis, and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
| |
Collapse
|
9
|
Dong J, Liu S, Li Q, Wu L, Zhang C, Duan S, Zhang B, Yuan Y, Huang Z, Xing C, Mao H. The association of RNA-binding protein Human antigen R with kidney clinicopathologic features and renal outcomes in patients with diabetic nephropathy. Diabetes Res Clin Pract 2022; 193:110142. [PMID: 36343862 DOI: 10.1016/j.diabres.2022.110142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/15/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
AIMS RNA-binding protein Human antigen R (HuR) is closely related to diabetic nephropathy (DN) pathogenesis. However, the capacity of histological HuR level as a biomarker for DN progression remains unclear. METHODS A total of 147 patients with type 2 diabetes mellitus who had biopsy-proven DN were enrolled. Renal outcomes were defined by doubling serum creatinine level or progression to end-stage renal disease (ESRD). A nomogram was built to predict renal outcomes based on Cox proportional hazards regression. RESULTS The median follow-up period was 31 months, during which 71 (48.30 %) patients confronted DN progression. Pearson's correlation indicated that histological HuR increased along with DN pathological class rising (r = 0.776, p < 0.001). Notably, multivariate Cox regression analysis showed that elevated HuR was associated with a greater risk of DN progression (HR 2.431, 95 %CI: 1.275-4.634, p = 0.007) beyond 6 months after renal biopsy. Patients in the higher HuR expression group had lower cumulative renal survival rates beyond the first 6 months. Simultaneously, a well-performed nomogram including HuR classification, was developed to predict the individual progression risk (C-index 0.828). CONCLUSIONS Our findings demonstrated that the histologic HuR expression was an independent risk factor for kidney progression beyond 6 months after renal biopsy in DN.
Collapse
Affiliation(s)
- Jiaxin Dong
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Simeng Liu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Qing Li
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Lin Wu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Chengning Zhang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Suyan Duan
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Bo Zhang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Yanggang Yuan
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Zhimin Huang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| | - Changying Xing
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| | - Huijuan Mao
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
10
|
Mineralocorticoid Receptor Pathway Is a Key Mediator of Carfilzomib-induced Nephrotoxicity: Preventive Role of Eplerenone. Hemasphere 2022; 6:e791. [PMID: 36285072 PMCID: PMC9584194 DOI: 10.1097/hs9.0000000000000791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022] Open
Abstract
Carfilzomib is an irreversible proteasome inhibitor indicated for relapsed/refractory multiple myeloma. Carfilzomib toxicity includes renal adverse effects (RAEs) of obscure pathobiology. Therefore, we investigated the mechanisms of nephrotoxicity developed by Carfilzomib. In a first experimental series, we used our previously established in vivo mouse models of Carfilzomib cardiotoxicity, that incorporated 2 and 4 doses of Carfilzomib, to identify whether Carfilzomib affects renal pathways. Hematology and biochemical analyses were performed, while kidneys underwent histological and molecular analyses. In a second and third experimental series, the 4 doses protocol was repeated for 24 hours urine collection and proteomic/metabolomic analyses. To test an experimental intervention, primary murine collecting duct tubular epithelial cells were treated with Carfilzomib and/or Eplerenone and Metformin. Finally, Eplerenone was orally co-administered with Carfilzomib daily (165 mg/kg) in the 4 doses protocol. We additionally used material from 7 patients to validate our findings and patients underwent biochemical analysis and assessment of renal mineralocorticoid receptor (MR) axis activation. In vivo screening showed that Carfilzomib-induced renal histological deficits and increased serum creatinine, urea, NGAL levels, and proteinuria only in the 4 doses protocol. Carfilzomib decreased diuresis, altered renal metabolism, and activated MR axis. This was consistent with the cytotoxicity found in primary murine collecting duct tubular epithelial cells, whereas Carfilzomib + Eplerenone co-administration abrogated Carfilzomib-related nephrotoxic effects in vitro and in vivo. Renal SGK-1, a marker of MR activation, increased in patients with Carfilzomib-related RAEs. Conclusively, Carfilzomib-induced renal MR/SGK-1 activation orchestrates RAEs and water retention both in vivo and in the clinical setting. MR blockade emerges as a potential therapeutic approach against Carfilzomib-related nephrotoxicity.
Collapse
|
11
|
Raguraman R, Shanmugarama S, Mehta M, Elle Peterson J, Zhao YD, Munshi A, Ramesh R. Drug delivery approaches for HuR-targeted therapy for lung cancer. Adv Drug Deliv Rev 2022; 180:114068. [PMID: 34822926 PMCID: PMC8724414 DOI: 10.1016/j.addr.2021.114068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/18/2021] [Indexed: 01/03/2023]
Abstract
Lung cancer (LC) is often diagnosed at an advanced stage and conventional treatments for disease management have limitations associated with them. Novel therapeutic targets are thus avidly sought for the effective management of LC. RNA binding proteins (RBPs) have been convincingly established as key players in tumorigenesis, and their dysregulation is linked to multiple cancers, including LC. In this context, we review the role of Human antigen R (HuR), an RBP that is overexpressed in LC, and further associated with various aspects of LC tumor growth and response to therapy. Herein, we describe the role of HuR in LC progression and outline the evidences supporting various pharmacologic and biologic approaches for inhibiting HuR expression and function. These approaches, including use of small molecule inhibitors, siRNAs and shRNAs, have demonstrated favorable results in reducing tumor cell growth, invasion and migration, angiogenesis and metastasis. Hence, HuR has significant potential as a key therapeutic target in LC. Use of siRNA-based approaches, however, have certain limitations that prevent their maximal exploitation as cancer therapies. To address this, in the conclusion of this review, we provide a list of nanomedicine-based HuR targeting approaches currently being employed for siRNA and shRNA delivery, and provide a rationale for the immense potential therapeutic benefits offered by nanocarrier-based HuR targeting and its promise for treating patients with LC.
Collapse
Affiliation(s)
- Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Santny Shanmugarama
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Meghna Mehta
- Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jo Elle Peterson
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yan D Zhao
- Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anupama Munshi
- Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
12
|
Fattahi F, Ellis JS, Sylvester M, Bahleda K, Hietanen S, Correa L, Lugogo NL, Atasoy U. HuR-Targeted Inhibition Impairs Th2 Proinflammatory Responses in Asthmatic CD4 + T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:38-48. [PMID: 34862257 DOI: 10.4049/jimmunol.2100635] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/01/2021] [Indexed: 11/19/2022]
Abstract
RNA-binding protein HuR (ELAVL1) is a master regulator of gene expression in human pathophysiology. Its dysregulation plays an important role in many diseases. We hypothesized that HuR plays an important role in Th2 inflammation in asthma in both mouse and human. To address this, we used a model of airway inflammation in a T cell-specific knockout mouse model, distal lck-Cre HuRfl/fl, as well as small molecule inhibitors in human peripheral blood-derived CD4+ T cells. Peripheral CD4+ T cells were isolated from 26 healthy control subjects and 45 asthmatics (36 type 2 high and 9 non-type 2 high, determined by blood eosinophil levels and fraction of exhaled NO). Our mouse data showed conditional ablation of HuR in T cell-abrogated Th2 differentiation, cytokine production, and lung inflammation. Studies using human T cells showed that HuR protein levels in CD4+ T cells were significantly higher in asthmatics compared with healthy control subjects. The expression and secretion of Th2 cytokines were significantly higher in asthmatics compared with control subjects. AMP-activated protein kinase activator treatment reduced the expression of several cytokines in both type 2 high and non-type 2 high asthma groups. However, the effects of CMLD-2 (a HuR-specific inhibitor) were more specific to endotype-defining cytokines in type 2 high asthmatics. Taken together, these data suggest that HuR plays a permissive role in both allergen and non-allergen-driven airway inflammation by regulating key genes, and that interfering with its function may be a novel method of asthma treatment.
Collapse
Affiliation(s)
- Fatemeh Fattahi
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Jason S Ellis
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Michael Sylvester
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI.,Department of Otolaryngology, Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - Kristin Bahleda
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Samuel Hietanen
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Luis Correa
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Njira L Lugogo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI; and
| | - Ulus Atasoy
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI; .,Division of Allergy-Immunology, Ann Arbor VA Health System, Ann Arbor, MI
| |
Collapse
|
13
|
Sui M, Xu D, Zhao W, Lu H, Chen R, Duan Y, Li Y, Zhu Y, Zhang L, Zeng L. CIRBP promotes ferroptosis by interacting with ELAVL1 and activating ferritinophagy during renal ischaemia-reperfusion injury. J Cell Mol Med 2021; 25:6203-6216. [PMID: 34114349 PMCID: PMC8256344 DOI: 10.1111/jcmm.16567] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/29/2021] [Accepted: 04/05/2021] [Indexed: 12/21/2022] Open
Abstract
Renal ischaemia-reperfusion (IR) is a major cause of acute kidney injury (AKI). Cold-inducible RNA-binding protein (CIRBP) may contribute to AKI because its deficiency protects against renal IR injury in a mechanism believed to involve ferroptosis. We aimed to investigate whether ferroptosis is associated with CIRBP-mediated renal damage. The differential expression of CIRBP was examined in tubular epithelial (HK2) cells during hypoxia-reoxygenation (HR) or in response to erastin, an inducer of ferroptosis. CIRBP expression was increased in response to HR or erastin in HK2 cells but the silencing of CIRBP inhibited HR and erastin-induced ferroptosis together with ferritinophagy. We discovered an interaction between CIRBP and ELAVL1 using STRING software, which was verified through co-immunoprecipitation and fluorescence colocalization assays. We found that ELAVL1 is a critical regulator in the activation of ferritinophagy and the promotion of ferroptosis. HR or erastin also induced the expression of ELAVL1. An autophagy inhibitor (hydroxychloroquine) or si-ELAVL1 transfection reversed CIRBP-enhanced ferritinophagy activation and ferroptosis in HK2 cells under HR. Injection of anti-CIRBP antibody into a mouse model of IR inhibited ferroptosis and decreased renal IR injury in vivo. In summary, our results provide evidence that ferritinophagy-mediated ferroptosis could be responsible for CIRBP-enhanced renal IR injury.
Collapse
Affiliation(s)
- Mingxing Sui
- Department of Organ TransplantationShanghai Changhai HospitalShanghaiChina
| | - Da Xu
- Department of UrologyThe Third Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Wenyu Zhao
- Department of Organ TransplantationShanghai Changhai HospitalShanghaiChina
| | - Hanlan Lu
- Department of Organ TransplantationShanghai Changhai HospitalShanghaiChina
| | - Rui Chen
- Department of Organ TransplantationShanghai Changhai HospitalShanghaiChina
| | - Yazhe Duan
- Department of Organ TransplantationShanghai Changhai HospitalShanghaiChina
| | - Yanhua Li
- Department of Organ TransplantationShanghai Changhai HospitalShanghaiChina
| | - Youhua Zhu
- Department of Organ TransplantationShanghai Changhai HospitalShanghaiChina
- The Committee of Experts of China Organ DonationBeijingChina
| | - Lei Zhang
- Department of Organ TransplantationShanghai Changhai HospitalShanghaiChina
| | - Li Zeng
- Department of Organ TransplantationShanghai Changhai HospitalShanghaiChina
| |
Collapse
|
14
|
Kelaini S, Chan C, Cornelius VA, Margariti A. RNA-Binding Proteins Hold Key Roles in Function, Dysfunction, and Disease. BIOLOGY 2021; 10:biology10050366. [PMID: 33923168 PMCID: PMC8146904 DOI: 10.3390/biology10050366] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
RNA-binding proteins (RBPs) are multi-faceted proteins in the regulation of RNA or its RNA splicing, localisation, stability, and translation. Amassing proof from many recent and dedicated studies reinforces the perception of RBPs exerting control through differing expression levels, cellular localization and post-transcriptional alterations. However, since the regulation of RBPs is reliant on the micro-environment and events like stress response and metabolism, their binding affinities and the resulting RNA-RBP networks may be affected. Therefore, any misregulation and disruption in the features of RNA and its related homeostasis can lead to a number of diseases that include diabetes, cardiovascular disease, and other disorders such as cancer and neurodegenerative diseases. As such, correct regulation of RNA and RBPs is crucial to good health as the effect RBPs exert through loss of function can cause pathogenesis. In this review, we will discuss the significance of RBPs and their typical function and how this can be disrupted in disease.
Collapse
|
15
|
ELAVL1a is an immunocompetent protein that protects zebrafish embryos from bacterial infection. Commun Biol 2021; 4:251. [PMID: 33637956 PMCID: PMC7910469 DOI: 10.1038/s42003-021-01777-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 01/13/2021] [Indexed: 12/26/2022] Open
Abstract
Previous studies have shown that ELAVL1 plays multiple roles, but its overall biological function remains ill-defined. Here we clearly demonstrated that zebrafish ELAVL1a was a lipoteichoic acid (LTA)- and LPS-binding protein abundantly stored in the eggs/embryos of zebrafish. ELAVL1a acted not only as a pattern recognition receptor, capable of identifying LTA and LPS, as well as bacteria, but also as an effector molecule, capable of inhibiting the growth of Gram-positive and -negative bacteria. Furthermore, we reveal that the C-terminal 62 residues of ELAVL1a positioned at 181–242 were indispensable for ELAVL1a antibacterial activity. Additionally, site-directed mutagenesis revealed that the hydrophobic residues Val192/Ile193, as well as the positively charged residues Arg203/Arg204, were the functional determinants contributing to the antimicrobial activity of rELAVL1a. Importantly, microinjection of rELAVL1a into embryos markedly promoted their resistance against pathogenic Aeromonas hydrophila challenge, and this pathogen-resistant activity was considerably reduced by co-injection of anti-ELAVL1a antibody or by knockdown with morpholino for elavl1a. Collectively, our results indicate that ELAVL1a is a maternal immune factor that can protect zebrafish embryos from bacterial infection. This work also provides another angle for understanding the biological roles of ELAVL1a. Ni et al. show that RNA-binding protein ELAVL1a is abundantly stored in the eggs and embryos of zebrafish, serving as a first-line innate immune player. They find that ELAVL1a recognizes molecular patterns of bacteria to inhibit bacterial growth. This study suggests that ELAVL1a is a maternal immune factor protecting zebrafish embryos from bacterial infection.
Collapse
|
16
|
Inhibition of RNA-binding protein HuR reduces glomerulosclerosis in experimental nephritis. Clin Sci (Lond) 2020; 134:1433-1448. [PMID: 32478392 PMCID: PMC8086301 DOI: 10.1042/cs20200193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 12/21/2022]
Abstract
Recent identification of an RNA-binding protein (HuR) that regulates mRNA turnover and translation of numerous transcripts via binding to an ARE in their 3′-UTR involved in inflammation and is abnormally elevated in varied kidney diseases offers a novel target for the treatment of renal inflammation and subsequent fibrosis. Thus, we hypothesized that treatment with a selective inhibition of HuR function with a small molecule, KH-3, would down-regulate HuR-targeted proinflammatory transcripts thereby improving glomerulosclerosis in experimental nephritis, where glomerular cellular HuR is elevated. Three experimental groups included normal and diseased rats treated with or without KH-3. Disease was induced by the monoclonal anti-Thy 1.1 antibody. KH-3 was given via daily intraperitoneal injection from day 1 after disease induction to day 5 at the dose of 50 mg/kg BW/day. At day 6, diseased animals treated with KH-3 showed significant reduction in glomerular HuR levels, proteinuria, podocyte injury determined by ameliorated podocyte loss and podocin expression, glomerular staining for periodic acid-Schiff positive extracellular matrix proteins, fibronectin and collagen IV and mRNA and protein levels of profibrotic markers, compared with untreated disease rats. KH-3 treatment also reduced disease-induced increases in renal TGFβ1 and PAI-1 transcripts. Additionally, a marked increase in renal NF-κB-p65, Nox4, and glomerular macrophage cell infiltration observed in disease control group was largely reversed by KH-3 treatment. These results strongly support our hypothesis that down-regulation of HuR function with KH-3 has therapeutic potential for reversing glomerulosclerosis by reducing abundance of pro-inflammatory transcripts and related inflammation.
Collapse
|
17
|
Li Z, Zhou X, Gao X, Bai D, Dong Y, Sun W, Zhao L, Wei M, Yang X, Yang G, Yuan L. Fusion protein engineered exosomes for targeted degradation of specific RNAs in lysosomes: a proof-of-concept study. J Extracell Vesicles 2020; 9:1816710. [PMID: 33133429 PMCID: PMC7580726 DOI: 10.1080/20013078.2020.1816710] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Therapeutically intervening the function of RNA in vivo remains a big challenge. We here developed an exosome-based strategy to deliver engineered RNA-binding protein for the purpose of recruiting specific RNA to the lysosomes for degradation. As a proof-of-principle study, RNA-binding protein HuR was fused to the C-terminus of Lamp2b, a membrane protein localized in both exosome and lysosome. The fusion protein was able to be incorporated into the exosomes. Moreover, exosomes engineered with Lamp2b-HuR successfully decreased the abundance of RNA targets possibly via lysosome-mediated degradation, especially when the exosomes were acidified. The system was specifically effective in macrophages, which are lysosome enriched and resistant to routine transfection mediated RNAi strategy. In the CCl4-induced liver injury mouse model, we found that delivery of acidified exosomes engineered with Lamp2b-HuR significantly reduced liver fibrosis, together with decreased miR-155 and other inflammatory genes. In summary, the established exosome-based RNA-binding protein delivery strategy, namely “exosome-mediated lysosomal clearance”, takes the advantage of exosome in targeted delivery and holds great promise in regulating a set of genes in vivo.
Collapse
Affiliation(s)
- Zhelong Li
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, People's Republic of China.,The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xueying Zhou
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, People's Republic of China.,The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xiaotong Gao
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, People's Republic of China.,Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Danna Bai
- Department of Physiology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yan Dong
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, People's Republic of China.,Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Wenqi Sun
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, People's Republic of China.,The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Lianbi Zhao
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, People's Republic of China.,The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Mengying Wei
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Guodong Yang
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Lijun Yuan
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
18
|
Dong R, Chen P, Polireddy K, Wu X, Wang T, Ramesh R, Dixon DA, Xu L, Aubé J, Chen Q. An RNA-Binding Protein, Hu-antigen R, in Pancreatic Cancer Epithelial to Mesenchymal Transition, Metastasis, and Cancer Stem Cells. Mol Cancer Ther 2020; 19:2267-2277. [PMID: 32879054 DOI: 10.1158/1535-7163.mct-19-0822] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 04/17/2020] [Accepted: 08/21/2020] [Indexed: 01/04/2023]
Abstract
Pancreatic cancer has poor prognosis and treatment outcomes due to its highly metastatic nature and resistance to current treatments. The RNA-binding protein (RBP) Hu-antigen R (HuR) is a central player in posttranscriptional regulation of cancer-related gene expression, and contributes to tumorigenesis, tumor growth, metastasis, and drug resistance. HuR has been suggested to regulate pancreatic cancer epithelial-to-mesenchymal transition (EMT), but the mechanism was not well understood. Here, we further elucidated the role HuR plays in pancreatic cancer cell EMT, and developed a novel inhibitor specifically interrupting HuR-RNA binding. The data showed that HuR binds to the 3'-UTR of the mRNA of the transcription factor Snail, resulting in stabilization of Snail mRNA and enhanced Snail protein expression, thus promoted EMT, metastasis, and formation of stem-like cancer cells (CSC) in pancreatic cancer cells. siRNA silencing or CRISPR/Cas9 gene deletion of HuR inhibited pancreatic cancer cell EMT, migration, invasion, and inhibited CSCs. HuR knockout cells had dampened tumorigenicity in immunocompromised mice. A novel compound KH-3 interrupted HuR-RNA binding, and KH-3 inhibited pancreatic cancer cell viability, EMT, migration/invasion in vitro KH-3 showed HuR-dependent activity and inhibited HuR-positive tumor growth and metastasis in vivo.
Collapse
Affiliation(s)
- Ruochen Dong
- Department of Pharmacology, Toxicology and Therapeutics, the University of Kansas Medical Center, Kansas City, Kansas
| | - Ping Chen
- Department of Pharmacology, Toxicology and Therapeutics, the University of Kansas Medical Center, Kansas City, Kansas
| | - Kishore Polireddy
- Department of Pharmacology, Toxicology and Therapeutics, the University of Kansas Medical Center, Kansas City, Kansas
| | - Xiaoqing Wu
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas
| | - Tao Wang
- Department of Pharmacology, Toxicology and Therapeutics, the University of Kansas Medical Center, Kansas City, Kansas
| | - Remya Ramesh
- Department of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, North Carolina
| | - Dan A Dixon
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas
| | - Liang Xu
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas
| | - Jeffrey Aubé
- Department of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, North Carolina
| | - Qi Chen
- Department of Pharmacology, Toxicology and Therapeutics, the University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
19
|
Müller-McNicoll M, Rossbach O, Hui J, Medenbach J. Auto-regulatory feedback by RNA-binding proteins. J Mol Cell Biol 2020; 11:930-939. [PMID: 31152582 PMCID: PMC6884704 DOI: 10.1093/jmcb/mjz043] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/25/2019] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
Abstract
RNA-binding proteins (RBPs) are key regulators in post-transcriptional control of gene expression. Mutations that alter their activity or abundance have been implicated in numerous diseases such as neurodegenerative disorders and various types of cancer. This highlights the importance of RBP proteostasis and the necessity to tightly control the expression levels and activities of RBPs. In many cases, RBPs engage in an auto-regulatory feedback by directly binding to and influencing the fate of their own mRNAs, exerting control over their own expression. For this feedback control, RBPs employ a variety of mechanisms operating at all levels of post-transcriptional regulation of gene expression. Here we review RBP-mediated autogenous feedback regulation that either serves to maintain protein abundance within a physiological range (by negative feedback) or generates binary, genetic on/off switches important for e.g. cell fate decisions (by positive feedback).
Collapse
Affiliation(s)
- Michaela Müller-McNicoll
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Max-von-Laue-Strasse 13, D-60438 Frankfurt am Main, Germany
| | - Oliver Rossbach
- Institute of Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Jingyi Hui
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jan Medenbach
- Institute of Biochemistry I, University of Regensburg, Universitaetsstrasse 31, D-93053 Regensburg, Germany
| |
Collapse
|
20
|
Interplay between RNA-binding protein HuR and Nox4 as a novel therapeutic target in diabetic kidney disease. Mol Metab 2020; 36:100968. [PMID: 32240965 PMCID: PMC7115155 DOI: 10.1016/j.molmet.2020.02.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/14/2020] [Accepted: 02/22/2020] [Indexed: 12/28/2022] Open
Abstract
Objective Glomerular injury is a prominent pathological feature of diabetic kidney disease (DKD). Constitutively active NADPH oxidase 4 (Nox4) is a major source of reactive oxygen species that mediates hyperglycemia-induced mesangial cell (MC) fibrotic injury. However, the mechanism that Nox4 utilizes to achieve its biological outcome remains elusive, and the signaling pathways that regulate this isoform oxidase are not well understood. Here, our goal is to study the detailed mechanism by which NAPDH oxidase 4 (Nox4) is post-transcriptionally regulated in MC during diabetic pathology. Methods We studied the protein expression of HuR, Nox4 and matrix proteins by western blotting, while we assessed the mRNA stability of Nox4 by RT-PCR and polysomal assay, examined in vitro cultured glomerular mesangial cells treated by high glucose (HG) and diabetic animal induced by STZ. The binding assay between HuR and the Nox4 promoter was done by immuno-precipiating with HuR antibody and detecting the presence of Nox4 mRNA, or by pull-down by using biotinlyated labeled Nox4 promoter RNA and detecting the presence of the HuR protein. The binding was also confirmed in MCs where Nox4 promoter-containing luciferage constructs were transfected. ROS levels were measured with DHE/DCF dyes in cells, or lucigenin chemiluminescence for Nox enzymatic levels, or HPLC assay for superoxide. HuR protein was inhibited by antisense oligo that utilized osmotic pumps for continuous delivery in animal models. The H1bAc1 ratio was measured by an ELISA kit for mice. Results We demonstrate that in MCs, high glucose (HG) elicits a rapid upregulation of Nox4 protein via translational mechanisms. Nox4 mRNA 3′ untranslated region (3′-UTR) contains numerous AU-rich elements (AREs) that are potential binding sites for the RNA-binding protein human antigen R (HuR). We show that HG promotes HuR activation/expression and that HuR is required for HG-induced Nox4 protein expression/mRNA translation, ROS generation, and subsequent MC fibrotic injury. Through a series of invitro RNA-binding assays, we demonstrate that HuR acts via binding to AREs in Nox4 3′-UTR in response to HG. The invivo relevance of these observations is confirmed by the findings that increased Nox4 is accompanied by the binding of HuR to Nox4 mRNA in kidneys from type 1 diabetic animals, and further suppressing HuR expression showed a reno-protective role in a type 1 diabetic mouse model via reducing MC injury, along with the improvement of hyperglycemia and renal function. Conclusions We established for the first time that HuR-mediated translational regulation of Nox4 contributes to the pathogenesis of fibrosis of the glomerular microvascular bed. Thus therapeutic interventions affecting the interplay between Nox4 and HuR could be exploited as valuable tools in designing treatments for DKD. Increased HuR protein activation/expression responding to HG treatment and in diabetic animals. HuR binds to 3′UTR of Nox4 and promotes its translation during HG treatment. An inhibitor for HuR could be a potential treatment for diabetic kidney disease.
Collapse
|
21
|
Human antigen R: A potential therapeutic target for liver diseases. Pharmacol Res 2020; 155:104684. [PMID: 32045667 DOI: 10.1016/j.phrs.2020.104684] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 02/08/2023]
Abstract
Human antigen R (HuR), also known as HuA and embryonic lethal abnormal vision-like 1 (ELAVL1), is a ubiquitously expressed RNA binding protein and functions as an RNA regulator and mediates the expression of various proteins by diverse post-transcriptional mechanisms. HuR has been well characterized in the inflammatory responses and in the development of various cancers. The importance of HuR-mediated roles in cell signaling, inflammation, fibrogenesis and cancer development in the liver has attracted a great deal of attention. However, there is still a substantial gap between the current understanding of the potential roles of HuR in the progression of liver disease and whether HuR can be targeted for the treatment of liver diseases. In this review, we introduce the function and mechanistic characterization of HuR, and then focus on the physiopathological roles of HuR in the development of different liver diseases, including hepatic inflammation, alcoholic liver diseases, non-alcoholic fatty liver diseases, viral hepatitis, liver fibrosis and liver cancers. We also summarize existing approaches targeting HuR function. In conclusion, although characterizing the liver-specific HuR function and demonstrating the multi-level regulative networks of HuR in the liver are still required, emerging evidence supports the notion that HuR represents a potential therapeutic target for the treatment of chronic liver diseases.
Collapse
|
22
|
Gao JR, Qin XJ, Fang ZH, Han LP, Guo MF, Jiang NN. To Explore the Pathogenesis of Vascular Lesion of Type 2 Diabetes Mellitus Based on the PI3K/Akt Signaling Pathway. J Diabetes Res 2019; 2019:4650906. [PMID: 31179340 PMCID: PMC6501128 DOI: 10.1155/2019/4650906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/03/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) has become a chronic disease, serious harm to human health. Complications of the blood pipe are the main cause of disability and death in diabetic patients, including vascular lesions that directly affects the prognosis of patients with diabetes and survival. This study was to determine the influence of high glucose and related mechanism of vascular lesion of type 2 diabetes mellitus pathogenesis. METHODS In vivo aorta abdominalis of GK rats was observed with blood pressure, heart rate, hematoxylin and eosin (H&E), Masson, and Verhoeff staining. In vitro cells were cultured with 30 mM glucose for 24 h. RT-QPCR was used to detect the mRNA expression of endothelial markers PTEN, PI3K, Akt, and VEGF. Immunofluorescence staining was used to detect the expression of PTEN, PI3K, Akt, and VEGF. PI3K and Akt phosphorylation levels were detected by Western blot analysis. RESULTS Heart rate, systolic blood pressure, diastolic blood pressure, and mean blood pressure in the GK control group were higher compared with the Wistar control group and no difference compared with the GK experimental model group. Fluorescence intensity of VEGF, Akt, and PI3K in the high-sugar stimulus group was stronger than the control group; PTEN in the high-sugar stimulus group was weakening than the control group. VEGF, Akt, and PI3K mRNA in the high-sugar stimulus group were higher than the control group; protein expressions of VEGF, Akt, and PI3K in the high-sugar stimulus group were higher than the control group. PTEN mRNA in the high-sugar stimulus group was lower than the control group. Protein expression of PTEN in the high-sugar stimulus group was lower than the control group. CONCLUSIONS Angiogenesis is an important pathogenesis of T2DM vascular disease, and PTEN plays a negative regulatory role in the development of new blood vessels and can inhibit the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Jia-Rong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, 117 Meishan Road, Hefei, China
| | - Xiu-Juan Qin
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, 117 Meishan Road, Hefei, China
| | - Zhao-Hui Fang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, 117 Meishan Road, Hefei, China
| | - Li-Ping Han
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, 117 Meishan Road, Hefei, China
| | - Ming-Fei Guo
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, 117 Meishan Road, Hefei, China
| | - Nan-Nan Jiang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, 117 Meishan Road, Hefei, China
| |
Collapse
|
23
|
Carrascoso I, Alcalde J, Tabas-Madrid D, Oliveros JC, Izquierdo JM. Transcriptome-wide analysis links the short-term expression of the b isoforms of TIA proteins to protective proteostasis-mediated cell quiescence response. PLoS One 2018; 13:e0208526. [PMID: 30533021 PMCID: PMC6289441 DOI: 10.1371/journal.pone.0208526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/19/2018] [Indexed: 12/20/2022] Open
Abstract
Control of gene expression depends on genetics and environmental factors. The T-cell intracellular antigens T-cell intracellular antigen 1 (TIA1), TIA1-like/related protein (TIAL1/TIAR) and human antigen R (HuR/ELAVL1) are RNA-binding proteins that play crucial roles in regulating gene expression in both situations. This study used massive sequencing analysis to uncover molecular and functional mechanisms resulting from the short-time expression of the b isoforms of TIA1 and TIAR, and of HuR in HEK293 cells. Our gene profiling analysis identified several hundred differentially expressed genes (DEGs) and tens of alternative splicing events associated with TIA1b, TIARb and HuR overexpression. Gene ontology analysis revealed that the controlled expression of these proteins strongly influences the patterns of DEGs and RNA variants preferentially associated with development, reproduction, cell cycle, metabolism, autophagy and apoptosis. Mechanistically, TIA1b and TIARb isoforms display both common and differential effects on the regulation of gene expression, involving systematic perturbations of cell biosynthetic machineries (splicing and translation). The transcriptome outputs were validated using functional assays of the targeted cellular processes as well as expression analysis for selected genes. Collectively, our observations suggest that early TIA1b and TIARb expression operates to connect the regulatory crossroads to protective proteostasis responses associated with a survival quiescence phenotype.
Collapse
Affiliation(s)
- Isabel Carrascoso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/ Nicolás Cabrera, Madrid, Spain
| | - José Alcalde
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/ Nicolás Cabrera, Madrid, Spain
| | - Daniel Tabas-Madrid
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, C/ Darwin, Madrid, Spain
| | - Juan Carlos Oliveros
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, C/ Darwin, Madrid, Spain
| | - José M. Izquierdo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/ Nicolás Cabrera, Madrid, Spain
- * E-mail:
| |
Collapse
|
24
|
Ye Y, Liu H, Chen Y, Zhang Y, Li S, Hu W, Yang R, Zhang Z, Lv L, Liu X. Hemoglobin targets for the anemia in patients with dialysis-dependent chronic kidney disease: a meta-analysis of randomized, controlled trials. Ren Fail 2018; 40:671-679. [PMID: 30741617 PMCID: PMC6282462 DOI: 10.1080/0886022x.2018.1532909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/13/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Anemia is extremely common among dialysis patients and underlies some of the symptoms associated with reduced kidney function, including fatigue, depression, reduced exercise tolerance, and dyspnea. OBJECTIVES A clearer cognition of the prognosistic impact of hemoglobin (Hb) or hematocrit (Hct) target for the outcomes of dialysis patients is urgent. This article aims to establish the suitable hemoglobin in order to provide clinical guidance. METHODS MEDLINE, EmBase, the Cochrane Library and other databases were searched with both MeSH terms and keywords to gather randomized controlled trials that assessed all-cause mortality, cardiovascular events, fistula thrombosis, infectious diseases and transfusion among dialysis-dependent patients using erythropoiesis-stimulating agents. The meta-analysis was accomplished via Revman 5.3 version. FINDINGS Totally, nine eligible studies were included, with study subjects involving 3228 patients. There was a significantly higher risk of fistula thrombosis without heterogeneity (RR 1.34, 95% CI 1.15-1.55; p < 0.05) in the higher Hb target group than in the lower Hb target group in the fixed effects model. However, no significant difference was found in all-cause mortality in the fixed effects model (RR 1.09, 95% CI 0.93-1.27; p = 0.30), cardiovascular events (RR 0.77, 95% CI 0.31-1.92; p = 0.58), infectious diseases (RR 0.69, 95% CI 0.24-1.96; p = 0.49) and transfusion (RR 0.92, 95% CI 0.42-1.99; p = 0.82) in the random effects model between the higher Hb target group and the lower Hb target group. DISCUSSION The results favor lower Hb target. To target lower Hb target when treating dialysis patients with anemia may decrease the risk of fistula thrombosis without increasing the risk of death, cardiovascular events, infectious diseases and transfusion.
Collapse
Affiliation(s)
- Yuqiu Ye
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongyong Liu
- Division of Nephrology, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, China
| | - Yanbing Chen
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yunqiang Zhang
- Division of Nephrology, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, China
| | - Shaomin Li
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wentao Hu
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rongqian Yang
- Department of Biomedical Engineering, South China University of Technology, Guangzhou, China
| | - Zhesi Zhang
- Department of Biomedical Engineering, South China University of Technology, Guangzhou, China
| | - Linsheng Lv
- Operation Room, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xun Liu
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Division of Nephrology, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, China
| |
Collapse
|
25
|
Disease of mRNA Regulation: Relevance for Ischemic Brain Injury. Transl Stroke Res 2017; 9:251-257. [DOI: 10.1007/s12975-017-0586-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 12/25/2022]
|