1
|
Kim SH, Lee DS. Orostachys japonicus induce caspase-dependent apoptosis in HeLa human cervical cancer cells. Nutr Res Pract 2025; 19:131-142. [PMID: 39959744 PMCID: PMC11821777 DOI: 10.4162/nrp.2025.19.1.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/29/2024] [Accepted: 09/24/2024] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND/OBJECTIVES Orostachys japonicus A. Berger (O. japonicus) is a perennial herb belonging to the Crassulaceae family that has been traditionally used to treat inflammation, fever, and poisoning. Although studies on the anticancer activity of O. japonicus have been conducted, its effect on virus-induced cancers has yet to be elucidated. MATERIALS/METHODS In the present study, we investigated the effects and mechanisms of action of the ethyl acetate fraction of O. japonicus extract (E-OJ) on the viability and apoptosis of HeLa cervical cancer cells. RESULTS The effect of E-OJ on HeLa cells was compared to that of kaempferol, quercetin, and gallic acid, which are components of O. japonicus. Treatment with E-OJ induced a concentration-dependent decrease in cell viability, as confirmed by MTS assay. Pretreatment with a broad-spectrum caspase inhibitor resulted in the recovery of cell viability. Western blot analysis was conducted to determine whether the induction of apoptosis was caspase-dependent. E-OJ induced apoptosis by increasing Bax/Bcl-2 ratio. Furthermore, it modulated the levels of cleaved caspase-3, -8, and -9, indicative of an impact on both the intrinsic and extrinsic pathways of apoptosis. Pretreatment with caspase inhibitors reduced caspase activity. CONCLUSION These results suggest that the anticancer activity of O. japonicus is mediated by caspases, resulting in a decrease in the viability of HeLa cells.
Collapse
Affiliation(s)
- Seon-Hee Kim
- Department of Biomedical Laboratory Science, Inje University, Gimhae 50834, Korea
| | - Dong Seok Lee
- Department of Biomedical Laboratory Science, Inje University, Gimhae 50834, Korea
- Institute of Digital Anti-aging Healthcare, Graduate School, Inje University, Gimhae 50834, Korea
| |
Collapse
|
2
|
Merecz-Sadowska A, Sitarek P, Kowalczyk T, Zajdel K, Kucharska E, Zajdel R. The Modulation of Melanogenesis in B16 Cells Upon Treatment with Plant Extracts and Isolated Plant Compounds. Molecules 2022; 27:molecules27144360. [PMID: 35889231 PMCID: PMC9324663 DOI: 10.3390/molecules27144360] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023] Open
Abstract
Plants are a rich source of secondary metabolites that exhibit numerous desired properties. The compounds may influence the biology of melanocytes, pigment cells that produce melanin, by modulating numerous signaling pathways, including cAMP/PKA, MAPKs and PI3K/AKT. Its downstream target is microphthalmia-associated transcription factor, responsible for the expression of the tyrosinase enzyme, which plays a major role in melanogenesis. Therefore, this literature review aims to provide insights related to melanogenesis modulation mechanisms of plant extracts and isolated plant compounds in B16 cells. Database searches were conducted using online-based library search instruments from 2012 to 2022, such as NCBI-PubMed and Google Scholar. Upregulation or downregulation of signaling pathways by phytochemicals can influence skin hypo- and hyperpigmentation by changing the level of melanin production, which may pose a significant cosmetic issue. Therefore, plant extracts or isolated plant compounds may be used in the therapy of pigmentation disorders.
Collapse
Affiliation(s)
- Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
- Correspondence:
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Karolina Zajdel
- Department of Medical Informatics and Statistics, Medical University of Lodz, 90-645 Lodz, Poland;
| | - Ewa Kucharska
- Chair of Gerontology, Geriatrics and Social Work at the Faculty of Pedagogy, Ignatianum Academy in Cracow, 31-501 Cracow, Poland;
| | - Radosław Zajdel
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| |
Collapse
|
3
|
Mechanistic Insights into the Ameliorating Effect of Melanogenesis of Psoralen Derivatives in B16F10 Melanoma Cells. Molecules 2022; 27:molecules27092613. [PMID: 35565964 PMCID: PMC9102055 DOI: 10.3390/molecules27092613] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
The objectives of this study were to investigate the melanogenetic potential of the psoralen derivatives 5-hydroxypsoralen, 5-methoxypsoralen, 8-hydroxypsoralen, 8-methoxypsoralen, and 5,8-dimethoxypsoralen in B16F10 melanoma cells. The results indicated that melanin production is significantly stimulated in B16F10 melanoma cells with 5-methoxypsoralen, 8-methoxypsoralen, and 5,8-dimethoxypsoralen, especially for 5-methoxypsoralen (bergapten), as reported previously. In addition, Western blot results showed that the protein levels of microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2) increase after bergapten treatment for the first time. The results also showed that bergapten promotes the phosphorylation of Akt at Ser 473 and glycogen synthase kinase-3β at Ser 9. Moreover, bergapten increased the content of β-catenin in the cell cytoplasm and nucleus by reducing the phosphorylated β-catenin (p-β-catenin) content. The results also indicated that bergapten regulates melanogenesis by upregulating the phosphorylation of p38 and JNK-mitogen-activated protein kinase. Taken together, these findings suggest that the regulation of melanogenesis by bergapten may be mediated by the β-catenin and MAPK signaling pathways and that bergapten might provide new insights into the pathogenesis of pigmented diseases.
Collapse
|
4
|
Kang MS, Jang SC, Park T, Kim MS, Park JS, Chi WJ, Kim SY. Synthesis and Melanogenesis Effect of 7,8-Dimethoxy-4-Methylcoumarin via MAPK Signaling-Mediated Microphthalmia-Associated Transcription Factor Upregulation. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221076647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Tyrosinase ultimately controls the melanogenesis rate of the skin, and tanning and haircare products generally induce the activation of tyrosinase. Moreover, various enzymes, including tyrosinase, tyrosinase-related protein 1 (TRP1), and tyrosinase-related protein 2 (TRP2), mediate melanogenesis in which microphthalmia-associated transcription factor (MITF) is a master regulator. One coumarin family member 7,8-dihydroxy-4-methylcoumarin (DHMC) shows extensive biological activities with beneficial health effects; however, it also induces cytotoxicity and its melanogenic effect has not been reported yet. Therefore, we first synthesized DHMC derivatives via methylation to obtain 7,8-dimethoxy-4-methylcoumairn (DMMC), and investigated the pro- or anti-melanogenic effects of DHMC and DMMC in B16-F10 melanoma cells as well as the underlying mechanism. DHMC showed cytotoxicity at all tested concentrations, whereas DMMC did not reduce cell viability, even at the high concentration. DMMC also drives the significant increase in intracellular melanin and tyrosinase activity. Moreover, DMMC induced MITF expression by significantly increasing tyrosinase activity, which activates the gene expression of TRP1 and TRP2. Western blotting confirmed that DMMC induced the activation of mitogen-activated protein kinase (MAPK) signaling by the phosphorylation of C-Jun N-terminal kinase (JNK), resulting in the increased melanin production and the decreased phosphorylation of protein kinase B. Collectively, this study showed the pro-melanogenic effect of DMMC and its potential as a safe tanning and dyeing agent.
Collapse
Affiliation(s)
| | | | - Taejin Park
- Sunmoon University, Chungnam, Republic of Korea
| | - Min-Seon Kim
- Korea Institute of Science and Technology (KIST), Gangwon-do, Republic of Korea
| | - Jin-Soo Park
- Korea Institute of Science and Technology (KIST), Gangwon-do, Republic of Korea
| | - Won-Jae Chi
- National Institute of Biological Resources, Incheon, Republic of South Korea
| | | |
Collapse
|
5
|
Goelzer Neto CF, do Nascimento P, da Silveira VC, Nunes de Mattos AB, Bertol CD. Natural Sources of Melanogenic Inhibitors: A Systematic Review. Int J Cosmet Sci 2022; 44:143-153. [PMID: 35048395 DOI: 10.1111/ics.12763] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/22/2021] [Accepted: 01/17/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Melanin gives some natural protection against the harmful effects of UV radiation, however, excessive production of melanin causes skin hyperpigmentation. Depigmenting cosmetics can be used to control this process, however, depigmenting agents commonly used have some disadvantages, such as low bioavailability, photosensitization, cellular toxicity, and insolubility. Natural sources of melanogenic inhibitors have become important alternatives to synthetic ones. The objective of this review was to summarise the results of studies on natural extracts that have been reported in the literature to inhibit the process of melanogenesis, giving a view on their suitability for potential use in new cosmetic formulations for skin-lightening. DATA SOURCES A systematic literature search was carried out using the descriptors: "melanogenesis", "tyrosinase", "tyrosinase inhibition", and "natural agents". STUDY SELECTION Publications were selected based on our designated inclusion and exclusion criteria and a total of fifteen studies were found which met these criteria. DATA EXTRACTION The following were used in the review of each paper which met the criteria: the name of the plant (all of the natural extracts turned out to be from plants), the method used to obtain the plant extract, the method for evaluating anti-tyrosinase activity, the main results and the conclusions. DATA SYNTHESIS All evaluated natural agents demonstrated anti-tyrosinase effect. The species Leathesia difformis, Morus alba, Orostachys japonicus, Heracleum moellendorffii, Coix lacryma-jobi (adlay), Inula brittanica, and Gailardia aristata stood out from the others due to their application as potential inhibitors of more than three proteins related to melanogenesis, including the cyclic adenosine monophosphate response element-binding protein (CREB), microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein-1 (TRP-1), tyrosinase-related protein-2 (TRP-2), and dopachrome tautomerase (DCT). CONCLUSION The plants present an anti-tyrosinase effect that must be better explored in the new cosmetic formulations. The anti-melanogenic effects of the plant are mainly related to presence of phenolic and antioxidant compounds.
Collapse
Affiliation(s)
| | | | | | | | - Charise Dallazem Bertol
- Human Aging, University of Passo Fundo, Rio Grande do Sul, Brazil.,College of Pharmacy, University of Passo Fundo, Rio Grande do Sul, Brazil
| |
Collapse
|
6
|
Kim JW, Kim SH, Mariappan R, Moon D, Kim J, Yoon SP. Anti-cancer effects of the aqueous extract of Orostachys japonica A. Berger on 5-fluorouracil-resistant colorectal cancer via MAPK signalling pathways in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114412. [PMID: 34265383 DOI: 10.1016/j.jep.2021.114412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/28/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Orostachys japonica A. Berger, also known as Wa-song in Korea, has traditionally been used as a folk medicine, but the potential anti-cancer effects of aqueous extract of Orostachys japonica (OJe) have not yet been thoroughly investigated. AIM OF THE STUDY To evaluate the anti-cancer effects of OJe, its possible mechanisms of action were investigated in 5-fluorouracil (5-FU) resistant SNU-C5/5-FUR colorectal cancer cells. MATERIALS AND METHODS The functional compounds of OJe were identified with high performance liquid chromatography. The anti-cancer effects of OJe in SNU-C5/5-FUR cells were investigated by a cell viability assays, flow cytometry analysis, and a subcutaneous xenograft model employing BALB/c-nude mice. Possible signalling pathways were assayed with Western blotting. RESULTS OJe (250 μg/ml) showed anti-cancer effects in SNU-C5/5-FUR cells, that were mediated via apoptosis as well as cell cycle arrest at the G0/G1 phase. Gallic acid and (-)-epicatechin, the major functional components of OJe, induced cell cycle arrest. OJe treatment (250 mg/kg, p.o.) produced a significant anti-proliferative effect in the xenograft model via decreased β-catenin/GSK3β and increased p27 expression. OJe treatment significantly activated ERK and p38 both in vitro and in vivo. CONCLUSIONS These results suggest that OJe has anti-proliferative effects on 5-FU-resistant colorectal cancer cells via regulation of MAPK signalling pathways.
Collapse
Affiliation(s)
- Jung Woo Kim
- KIM JUNG WOO R&D Laboratory, Namwon, Jeollabuk-do, 55790, Republic of Korea
| | - Sang Hee Kim
- Division of Creative Food Science for Health, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
| | - Ramesh Mariappan
- Department of Cellular & Molecular Medicine, College of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Daeun Moon
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jinu Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea; Department of Anatomy, College of Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sang-Pil Yoon
- Department of Anatomy, College of Medicine, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
7
|
Inhibitory Effects of Pinostilbene Hydrate on Melanogenesis in B16F10 Melanoma Cells via ERK and p38 Signaling Pathways. Int J Mol Sci 2020; 21:ijms21134732. [PMID: 32630811 PMCID: PMC7369948 DOI: 10.3390/ijms21134732] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022] Open
Abstract
Melanin protects our skin from harmful ultraviolet (UV) radiation. However, when produced in excess, it can cause hyperpigmentation disorders, such as melanoma, freckles, lentigo, and blotches. In this study, we investigated the effects of pinostilbene hydrate (PH) on melanogenesis. We also examined the underlying mechanisms of PH on melanin production in B16F10 cells. Our findings indicated that PH significantly inhibits melanin content and cellular tyrosinase activity in cells without causing cytotoxicity. In addition, Western blot analysis showed that PH downregulated the protein levels of microphthalmia-associated transcription factor (MITF), tyrosinase, and other melanogenic enzymes, such as tyrosinase-related protein-1 (TRP-1) and tyrosinase-related protein-2 (TRP-2). Although PH activated the phosphorylation of extracellular signal-regulated kinase (ERK), it inhibited p38 mitogen-activated protein kinases (p38). Furthermore, the inhibition of tyrosinase activity by PH was attenuated by treatment with PD98059 (a specific ERK inhibitor). Additionally, p-AKT was upregulated by PH treatment. Finally, the inhibitory effects of PH on melanin content and tyrosinase activity were confirmed in normal human melanocytes. These results suggest PH downregulates melanogenesis via the inhibition of MITF expression, followed by the MAPKase signaling pathways. Thus, PH may be used to treat or prevent hyperpigmentation disorders and in functional cosmetic agents for skin whitening.
Collapse
|
8
|
Orostachys japonicus ethanol extract inhibits 2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in NC/Nga mice and TNF-α/IFN-γ-induced TARC expression in HaCaT cells. Toxicol Res 2019; 36:99-108. [PMID: 32257921 DOI: 10.1007/s43188-019-00026-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 01/10/2023] Open
Abstract
The risk of atopic dermatitis (AD)-like skin lesions has increased due to the elevated levels of allergens worldwide. Natural-origin agents, which are effective and safe, show promise for the prevention and treatment of inflammatory conditions. Orostachys japonicus (OJ) A. Berger is an ingredient of traditional herbal medicines for fever, gingivitis, and cancer in Korea, China, and Japan. However, the effect of OJ on AD-like skin lesions is unknown. Therefore, we investigated the effect of OJ ethanol extract (OJEE) on AD-like skin symptoms in mice and cells. OJEE reduced the 2,4-dinitrochlorobenzene-induced AD severity, serum levels of IgE and TARC, and mRNA levels of TARC, TNF-α, and IL-4 in NC/Nga mice. Histopathological analysis showed that OJEE reduced the thickness of the epidermis/dermis and dermal infiltration of inflammatory cells in ear tissue. Furthermore, OJEE suppressed the TNF-α/IFN-γ-increased TARC mRNA level by inhibiting NF-κB and STAT1 activation in HaCaT cells. Taken together, our findings show that OJEE reduced the risk of AD-like skin symptoms by decreasing TARC expression via inhibiting NF-κB and STAT1 activation in skin keratinocytes and thus shows promise as an alternative therapy for AD-like skin lesions.
Collapse
|
9
|
Chung YC, Kim YB, Kim BS, Hyun CG. Anti-Melanogenic Effects of Bergamottin via Mitogen-Activated Protein Kinases and Protein Kinase B Signaling Pathways. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19862105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, we examined the inhibitory effects of bergamottin on melanogenesis in B16F10 murine melanoma cells, together with its effects on the mechanism of melanin synthesis. α-Melanocyte stimulating hormone-stimulated B16F10 cells were treated with various concentrations of bergamottin, with arbutin as a positive control. Bergamottin significantly decreased the melanin content and tyrosinase activity without showing any cytotoxicity. In addition, bergamottin treatment significantly downregulated the expression of tyrosinase-related protein-1,2 and tyrosinase by suppressing the expression of microphthalmia-associated transcription factor. The phosphorylation status of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was examined to determine the mechanism underlying the antimelanogenic effects of bergamottin. Bergamottin treatment increased the phosphorylation of extracellular signal-regulated kinase (ERK) and AKT, but decreased the phosphorylation of p38 and c-Jun N-terminal kinase in the B16F10 cells. Moreover, the use of PD98059 (ERK inhibitor) and LY294002 (AKT inhibitor) corroborated these findings, indicating that bergamottin inhibits melanogenesis via the MAPKase and AKT signaling pathway. Thus, bergamottin has potential for treating hyperpigmentation disorders and can be a promising chemical for skin-whitening in the cosmetic industry.
Collapse
Affiliation(s)
- You Chul Chung
- Department of Chemistry and Cosmetics, Jeju National University, Republic of Korea
| | - Yun Beom Kim
- NewMedion Co.,Ltd., Jeju City, Jeju, Republic of Korea
| | - Bong Seok Kim
- Bio-Convergence Center, Jeju Technopark, Republic of Korea
| | - Chang-Gu Hyun
- Department of Chemistry and Cosmetics, Jeju National University, Republic of Korea
| |
Collapse
|
10
|
Chung YC, Kim MJ, Kang EY, Kim YB, Kim BS, Park SM, Hyun CG. Anti-Melanogenic Effects of Hydroxyectoine via MITF Inhibition by JNK, p38, and AKT Pathways in B16F10 Melanoma Cells. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19858523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Melanin plays a role in determining human skin color of a person, and a large amount of melanin makes the skin color look darkened. The proper amount of melanin formation protects our skin from UV radiation, but excessive melanin production causes hyperpigmentation and leads to freckles, melasma, and lentigo. In this study, we investigated the inhibitory effect of hydroxyectoine on melanogenesis and its mechanism in B16F10 cells. Melanin content and cellular tyrosinase activity were determined. The expression of microphthalmia-associated transcription factor (MITF), and the activities of tyrosinase and other melanogenesis-related enzymes, such as tyrosinase-related protein 1 (TRP-1) and tyrosinase-related protein 2, were also examined. Hydroxyectoine treatment significantly inhibited melanin production and intracellular tyrosinase activity in a dose-dependent manner. Western blot analysis showed that hydroxyectoine also reduced the expressions of tyrosinase and TRP-1. In addition, hydroxyectoine significantly reduced the expression of MITF, a major regulator of melanin production, and inhibited the phosphorylation of p38, c-Jun N-terminal kinase, and activated the protein kinase B. The results demonstrated that hydroxyectoine inhibits the expression of MITF through the inhibition or activation of melanin-related signaling pathways and downregulates melanogenesis by inhibiting melanogenic enzyme expression and tyrosinase activity. Hydroxyectoine has potential value in functional cosmetics applications, such as whitening.
Collapse
Affiliation(s)
- You C. Chung
- Department of Chemistry and Cosmetics, Jeju National University, Korea
| | - Min-Jin Kim
- Nakdonggang National Institute of Biological Resources, Sangju, Gyeongbuk, Korea
| | | | - Yun B. Kim
- NewMedion Co., Ltd., Jeju City, Jeju, Korea
| | - Bong S. Kim
- Bio-Convergence Center, Jeju Technopark, Korea
| | | | - Chang-Gu Hyun
- Department of Chemistry and Cosmetics, Jeju National University, Korea
| |
Collapse
|
11
|
Chung YC, Ko JH, Kang HK, Kim S, Kang CI, Lee JN, Park SM, Hyun CG. Antimelanogenic Effects of Polygonum tinctorium Flower Extract from Traditional Jeju Fermentation via Upregulation of Extracellular Signal-Regulated Kinase and Protein Kinase B Activation. Int J Mol Sci 2018; 19:ijms19102895. [PMID: 30249988 PMCID: PMC6213794 DOI: 10.3390/ijms19102895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 11/26/2022] Open
Abstract
This study was carried out to investigate the antimelanogenic effects of a Polygonum tinctorium flower extract obtained using red nuruk, a traditional Jeju barley-based fermentation starter. We also studied the mechanism of action of the P. tinctorium fermented flower extract (PTFFE) in mouse melanoma cells (B16F10). Cells were treated with various concentrations (62.5, 125 and 250 μg/mL) of PTFFE and the results showed that PTFFE significantly decreased the melanin content and tyrosinase activity without being cytotoxic. In addition, PTFFE strongly inhibited the expression of tyrosinase and tyrosinase-related protein 2 by decreasing the expression of the microphthalmia-associated transcription factor, as shown by a western blot assay. Furthermore, PTFFE inhibited melanogenesis via upregulation of the phosphorylation of extracellular signal-regulated kinase (ERK) and protein kinase B, also known as AKT. We also used inhibitors such as PD98059 (a specific ERK inhibitor) or LY294002 (an AKT inhibitor) to determine whether the signaling pathways are involved. High-performance liquid chromatography fingerprinting showed the presence of a quercetin glucoside (isoquercitrin) and quercetin in PTFFE. To test the potential for PTFFE application as a cosmetic material, we also performed a primary skin irritation test on human skin. In this assay, PTFFE did not induce any adverse reactions at the treatment dose. Based on these results, we suggest that PTFFE may be considered a potential antimelanogenesis candidate for topical applications.
Collapse
Affiliation(s)
- You Chul Chung
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea.
| | - Ji-Hye Ko
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea.
| | - Hyun-Kyu Kang
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea.
| | - Seoyeon Kim
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea.
| | | | - Jung No Lee
- R&D Center, CoSeedBioPham Co., Chungbuk 28161, Korea.
| | - Sung-Min Park
- R&D Center, CoSeedBioPham Co., Chungbuk 28161, Korea.
| | - Chang-Gu Hyun
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
12
|
Lee J, Ji J, Park S. Antiwrinkle and antimelanogenesis activity of the ethanol extracts of Lespedeza cuneata G. Don for development of the cosmeceutical ingredients. Food Sci Nutr 2018; 6:1307-1316. [PMID: 30065832 PMCID: PMC6060902 DOI: 10.1002/fsn3.682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/15/2018] [Accepted: 04/27/2018] [Indexed: 12/31/2022] Open
Abstract
To develop the ingredient with the cosmeceutical function, the antiwrinkle and antimelanogenesis effects of the ethanol extract of Lespedeza cuneata G. Don were investigated. DPPH radical scavenging activity was significantly increased with the extract of L. cuneata G. Don. Cell viability on CCD986Sk human fibroblast was also increased by the ethanol extract of L. cuneata G. Don. The inhibitory function of the extract of L. cuneata G. Don on collagenase, elastase, and tyrosinase was evaluated. Protein expression level of Claudin-1, Occludin, and ZO-1 was up-regulated in HaCaT human keratinocyte by the extract of L. cuneata G. Don. In addition, the extract of L. cuneata G. Don inhibited melanin synthesis in B16F10 murine melanoma cells by decreasing MITF, TRP1, and TRP2 protein levels and increasing the phosphorylated Erk and Akt. Thus, these findings would be useful for developing the new cosmeceutical formulations based on the extract of L. cuneata G. Don.
Collapse
Affiliation(s)
- Jongsung Lee
- Department of Genetic EngineeringSungkyunkwan UniversitySuwonKorea
| | - Jun Ji
- Department of Natural MedicineHallym UniversityChuncheonKorea
- FA CompanySejongKorea
| | - See‐Hyoung Park
- Department of Bio and Chemical EngineeringHongik UniversitySejongKorea
| |
Collapse
|