1
|
Branco A, Rayabaram J, Miranda CC, Fernandes-Platzgummer A, Fernandes TG, Sajja S, da Silva CL, Vemuri MC. Advances in ex vivo expansion of hematopoietic stem and progenitor cells for clinical applications. Front Bioeng Biotechnol 2024; 12:1380950. [PMID: 38846805 PMCID: PMC11153805 DOI: 10.3389/fbioe.2024.1380950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/25/2024] [Indexed: 06/09/2024] Open
Abstract
As caretakers of the hematopoietic system, hematopoietic stem cells assure a lifelong supply of differentiated populations that are responsible for critical bodily functions, including oxygen transport, immunological protection and coagulation. Due to the far-reaching influence of the hematopoietic system, hematological disorders typically have a significant impact on the lives of individuals, even becoming fatal. Hematopoietic cell transplantation was the first effective therapeutic avenue to treat such hematological diseases. Since then, key use and manipulation of hematopoietic stem cells for treatments has been aspired to fully take advantage of such an important cell population. Limited knowledge on hematopoietic stem cell behavior has motivated in-depth research into their biology. Efforts were able to uncover their native environment and characteristics during development and adult stages. Several signaling pathways at a cellular level have been mapped, providing insight into their machinery. Important dynamics of hematopoietic stem cell maintenance were begun to be understood with improved comprehension of their metabolism and progressive aging. These advances have provided a solid platform for the development of innovative strategies for the manipulation of hematopoietic stem cells. Specifically, expansion of the hematopoietic stem cell pool has triggered immense interest, gaining momentum. A wide range of approaches have sprouted, leading to a variety of expansion systems, from simpler small molecule-based strategies to complex biomimetic scaffolds. The recent approval of Omisirge, the first expanded hematopoietic stem and progenitor cell product, whose expansion platform is one of the earliest, is predictive of further successes that might arise soon. In order to guarantee the quality of these ex vivo manipulated cells, robust assays that measure cell function or potency need to be developed. Whether targeting hematopoietic engraftment, immunological differentiation potential or malignancy clearance, hematopoietic stem cells and their derivatives need efficient scaling of their therapeutic potency. In this review, we comprehensively view hematopoietic stem cells as therapeutic assets, going from fundamental to translational.
Collapse
Affiliation(s)
- André Branco
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Janakiram Rayabaram
- Protein and Cell Analysis, Biosciences Division, Invitrogen Bioservices, Thermo Fisher Scientific, Bangalore, India
| | - Cláudia C. Miranda
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- AccelBio, Collaborative Laboratory to Foster Translation and Drug Discovery, Cantanhede, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Tiago G. Fernandes
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Suchitra Sajja
- Protein and Cell Analysis, Biosciences Division, Invitrogen Bioservices, Thermo Fisher Scientific, Bangalore, India
| | - Cláudia L. da Silva
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | | |
Collapse
|
2
|
Zhu X, Li Y, Dong Q, Tian C, Gong J, Bai X, Ruan J, Gao J. Small Molecules Promote the Rapid Generation of Dental Epithelial Cells from Human-Induced Pluripotent Stem Cells. Int J Mol Sci 2024; 25:4138. [PMID: 38673725 PMCID: PMC11049943 DOI: 10.3390/ijms25084138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) offer a promising source for generating dental epithelial (DE) cells. Whereas the existing differentiation protocols were time-consuming and relied heavily on growth factors, herein, we developed a three-step protocol to convert hiPSCs into DE cells in 8 days. In the first phase, hiPSCs were differentiated into non-neural ectoderm using SU5402 (an FGF signaling inhibitor). The second phase involved differentiating non-neural ectoderm into pan-placodal ectoderm and simultaneously inducing the formation of oral ectoderm (OE) using LDN193189 (a BMP signaling inhibitor) and purmorphamine (a SHH signaling activator). In the final phase, OE cells were differentiated into DE through the application of Purmorphamine, XAV939 (a WNT signaling inhibitor), and BMP4. qRT-PCR and immunostaining were performed to examine the expression of lineage-specific markers. ARS staining was performed to evaluate the formation of the mineralization nodule. The expression of PITX2, SP6, and AMBN, the emergence of mineralization nodules, and the enhanced expression of AMBN and AMELX in spheroid culture implied the generation of DE cells. This study delineates the developmental signaling pathways and uses small molecules to streamline the induction of hiPSCs into DE cells. Our findings present a simplified and quicker method for generating DE cells, contributing valuable insights for dental regeneration and dental disease research.
Collapse
Affiliation(s)
- Ximei Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (X.Z.); (Y.L.); (Q.D.)
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China;
| | - Yue Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (X.Z.); (Y.L.); (Q.D.)
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China;
| | - Qiannan Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (X.Z.); (Y.L.); (Q.D.)
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China;
| | - Chunli Tian
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China;
| | - Jing Gong
- Department of Pediatric Dentistry, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (J.G.); (X.B.)
| | - Xiaofan Bai
- Department of Pediatric Dentistry, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (J.G.); (X.B.)
| | - Jianping Ruan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (X.Z.); (Y.L.); (Q.D.)
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China;
| | - Jianghong Gao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (X.Z.); (Y.L.); (Q.D.)
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China;
| |
Collapse
|
3
|
Zand H, Pourvali K. The Function of the Immune System, Beyond Strategies Based on Cell-Autonomous Mechanisms, Determines Cancer Development: Immune Response and Cancer Development. Adv Biol (Weinh) 2024; 8:e2300528. [PMID: 38221702 DOI: 10.1002/adbi.202300528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/09/2023] [Indexed: 01/16/2024]
Abstract
Although cancer remains a challenging disease to treat, early detection and removal of primary tumors through surgery or chemotherapy/radiotherapy can offer hope for patients. The privilege paradigm in cancer biology suggests that cell-autonomous mechanisms play a central role in tumorigenesis. According to this paradigm, these cellular mechanisms are the primary focus for the prevention and treatment of cancers. However, this point of view does not present a comprehensive theory for the initiation of cancer and an effective therapeutic strategy. Having an incomplete understanding of the etiology of cancer, it is essential to re-examine previous assumptions about carcinogenesis and develop new, practical theories that can account for all available clinical and experimental evidence. This will not only help to gain a better understanding of the disease, but also offer new avenues for treatment. This review provides evidence suggesting a shift in focus from a cell-autonomous mechanism to systemic mechanisms, particularly the immune system, that are involved in cancer formation.
Collapse
Affiliation(s)
- Hamid Zand
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran
| | - Katayoun Pourvali
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran
| |
Collapse
|
4
|
Sun Y, Li T, Qian X. Biological Role of Nodal Modulator: A Comprehensive Review of the Last Two Decades. DNA Cell Biol 2022; 41:336-341. [PMID: 35133875 DOI: 10.1089/dna.2021.0944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nodal modulator (NOMO) is a type I transmembrane protein that is conserved in various human tissues. Humans have three highly similar NOMO proteins, namely NOMO1, NOMO2, and NOMO3. These three proteins are closely related and may have similar functions. NOMO has been identified as a part of a protein complex that mediates a wide range of biological processes such as tumor formation, bone and cartilage formation, embryo formation, facial asymmetry, and development of congenital heart disease. To date, a few studies have focused on the role of NOMO; however, the mechanism underlying its effects remains unknown. To improve our understanding regarding NOMO, we reviewed the role of NOMO in different diseases and investigated the mechanism underlying its effects.
Collapse
Affiliation(s)
- Yuhui Sun
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Tao Li
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Xin Qian
- Department of Pulmonary and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, P.R. China
| |
Collapse
|
5
|
Arboretto P, Cillo M, Leonardi A. New Insights into Cancer Targeted Therapy: Nodal and Cripto-1 as Attractive Candidates. Int J Mol Sci 2021; 22:ijms22157838. [PMID: 34360603 PMCID: PMC8345935 DOI: 10.3390/ijms22157838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
The transforming growth factor beta (TGF-β) signaling is fundamental for correct embryonic development. However, alterations of this pathway have been correlated with oncogenesis, tumor progression and sustaining of cancer stem cells (CSCs). Cripto-1 (CR-1) and Nodal are two embryonic proteins involved in TGF-β signaling. Their expression is almost undetectable in terminally differentiated cells, but they are often re-expressed in tumor cells, especially in CSCs. Moreover, cancer cells that show high levels of CR-1 and/or Nodal display more aggressive phenotypes in vitro, while in vivo their expression correlates with a worse prognosis in several human cancers. The ability to target CSCs still represents an unmet medical need for the complete eradication of certain types of tumors. Given the prognostic role and the selective expression of CR-1 and Nodal on cancer cells, they represent archetypes for targeted therapy. The aim of this review is to clarify the role of CR-1 and Nodal in cancer stem populations and to summarize the current therapeutic strategy to target CSCs using monoclonal antibodies (mAbs) or other molecular tools to interfere with these two proteins.
Collapse
|
6
|
Zhu X, Xue D, Liu J, Dong F, Li Y, Liu Y. Nodal is involved in chemoresistance of renal cell carcinoma cells via regulation of ABCB1. J Cancer 2021; 12:2041-2049. [PMID: 33754002 PMCID: PMC7974526 DOI: 10.7150/jca.52092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/26/2020] [Indexed: 11/05/2022] Open
Abstract
Renal cell carcinoma (RCC) is the third most frequent malignancy within urological oncology. Understanding mechanisms of chemoresistance in RCC cell is important for therapy and drug development. We established cisplatin (CDDP) resistant RCC cells by treating cells with increasing concentrations of CDDP. Nodal, an important embryonic morphogen, was increased in RCC/CDDP cells. Targeted inhibition of Nodal via its siRNA or neutralization antibody restored sensitivity of RCC resistant cells to CDDP treatment. It was due to that si-Nodal can decrease expression of P-glycoprotein (P-gp, encoded by ABCB1), one important ATP-binding cassette (ABC) membrane transporter for drug efflux. si-Nodal can decrease the transcription and promoter activity of ABCB1. Mechanistically, si-Nodal can decrease the phosphorylation of p65, which can bind to the promoter of ABCB1 and then trigger its transcription. Further, CDDP treatment decreased the expression of Nodal in culture medium of RCC cells. Collectively, we found that Nodal can regulate chemoresistance of RCC cells via regulating transcription of ABCB1.
Collapse
Affiliation(s)
- Xingwang Zhu
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Dongwei Xue
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Jia Liu
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Fengming Dong
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Yongzhi Li
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Yili Liu
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| |
Collapse
|
7
|
Diaz-Hernandez ME, Khan NM, Trochez CM, Yoon T, Maye P, Presciutti SM, Gibson G, Drissi H. Derivation of notochordal cells from human embryonic stem cells reveals unique regulatory networks by single cell-transcriptomics. J Cell Physiol 2019; 235:5241-5255. [PMID: 31840817 DOI: 10.1002/jcp.29411] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022]
Abstract
Intervertebral disc degeneration (IDD) is a public health dilemma as it is associated with low back and neck pain, a frequent reason for patients to visit the physician. During IDD, nucleus pulposus (NP), the central compartment of intervertebral disc (IVD) undergo degeneration. Stem cells have been adopted as a promising biological source to regenerate the IVD and restore its function. Here, we describe a simple, two-step differentiation strategy using a cocktail of four factors (LDN, AGN, FGF, and CHIR) for efficient derivation of notochordal cells from human embryonic stem cells (hESCs). We employed a CRISPR/Cas9 based genome-editing approach to knock-in the mCherry reporter vector upstream of the 3' untranslated region of the Noto gene in H9-hESCs and monitored notochordal cell differentiation. Our data show that treatment of H9-hESCs with the above-mentioned four factors for 6 days successfully resulted in notochordal cells. These cells were characterized by morphology, immunostaining, and gene and protein expression analyses for established notochordal cell markers including FoxA2, SHH, and Brachyury. Additionally, pan-genomic high-throughput single cell RNA-sequencing revealed an efficient and robust notochordal differentiation. We further identified a key regulatory network consisting of eight candidate genes encoding transcription factors including PAX6, GDF3, FOXD3, TDGF1, and SOX5, which are considered as potential drivers of notochordal differentiation. This is the first single cell transcriptomic analysis of notochordal cells derived from hESCs. The ability to efficiently obtain notochordal cells from pluripotent stem cells provides an additional tool to develop new cell-based therapies for the treatment of IDD.
Collapse
Affiliation(s)
- Martha E Diaz-Hernandez
- Department of Orthopaedics, Emory University, Atlanta, Georgia.,Atlanta VA Medical Center, Decatur, Georgia
| | - Nazir M Khan
- Department of Orthopaedics, Emory University, Atlanta, Georgia.,Atlanta VA Medical Center, Decatur, Georgia
| | | | - Tim Yoon
- Department of Orthopaedics, Emory University, Atlanta, Georgia
| | - Peter Maye
- UConn Health Center, University of Connecticut, Farmington, Connecticut
| | - Steven M Presciutti
- Department of Orthopaedics, Emory University, Atlanta, Georgia.,Atlanta VA Medical Center, Decatur, Georgia
| | - Greg Gibson
- Center for Integrative Genomics, Georgia Tech, Atlanta, Georgia
| | - Hicham Drissi
- Department of Orthopaedics, Emory University, Atlanta, Georgia.,Atlanta VA Medical Center, Decatur, Georgia
| |
Collapse
|
8
|
Luo M, Bai J, Liu B, Yan P, Zuo F, Sun H, Sun Y, Xu X, Song Z, Yang Y, Massagué J, Lan X, Lu Z, Chen YG, Deng H, Xie W, Xi Q. H3K18ac Primes Mesendodermal Differentiation upon Nodal Signaling. Stem Cell Reports 2019; 13:642-656. [PMID: 31564646 PMCID: PMC6830056 DOI: 10.1016/j.stemcr.2019.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 01/17/2023] Open
Abstract
Cellular responses to transforming growth factor β (TGF-β) depend on cell context. Here, we explored how TGF-β/nodal signaling crosstalks with the epigenome to promote mesendodermal differentiation. We find that expression of a group of mesendodermal genes depends on both TRIM33 and nodal signaling in embryoid bodies (EBs) but not in embryonic stem cells (ESCs). Only in EBs, TRIM33 binds these genes in the presence of expanded H3K18ac marks. Furthermore, the H3K18ac landscape at mesendodermal genes promotes TRIM33 recruitment. We reveal that HDAC1 binds to active gene promoters and interferes with TRIM33 recruitment to mesendodermal gene promoters. However, the TRIM33-interacting protein p300 deposits H3K18ac and further enhances TRIM33 recruitment. ATAC-seq data demonstrate that TRIM33 primes mesendodermal genes for activation by maintaining chromatin accessibility at their regulatory regions. Altogether, our study suggests that HDAC1 and p300 are key factors linking the epigenome through TRIM33 to the cell context-dependent nodal response during mesendodermal differentiation.
Collapse
Affiliation(s)
- Maoguo Luo
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianbo Bai
- Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bofeng Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Beijing 100084, China
| | - Peiqiang Yan
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Feifei Zuo
- Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hongyao Sun
- Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ye Sun
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuanhao Xu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhihong Song
- Department of Basic Medical Sciences, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yang Yang
- Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Xun Lan
- Department of Basic Medical Sciences, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhi Lu
- Key Laboratory of Bioinformatics and the Center of Biomedical Analysis, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- Key Laboratory of Bioinformatics and the Center of Biomedical Analysis, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Xie
- Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Beijing 100084, China
| | - Qiaoran Xi
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Genga RMJ, Kernfeld EM, Parsi KM, Parsons TJ, Ziller MJ, Maehr R. Single-Cell RNA-Sequencing-Based CRISPRi Screening Resolves Molecular Drivers of Early Human Endoderm Development. Cell Rep 2019; 27:708-718.e10. [PMID: 30995470 PMCID: PMC6525305 DOI: 10.1016/j.celrep.2019.03.076] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 02/22/2019] [Accepted: 03/20/2019] [Indexed: 12/22/2022] Open
Abstract
Studies in vertebrates have outlined conserved molecular control of definitive endoderm (END) development. However, recent work also shows that key molecular aspects of human END regulation differ even from rodents. Differentiation of human embryonic stem cells (ESCs) to END offers a tractable system to study the molecular basis of normal and defective human-specific END development. Here, we interrogated dynamics in chromatin accessibility during differentiation of ESCs to END, predicting DNA-binding proteins that may drive this cell fate transition. We then combined single-cell RNA-seq with parallel CRISPR perturbations to comprehensively define the loss-of-function phenotype of those factors in END development. Following a few candidates, we revealed distinct impairments in the differentiation trajectories for mediators of TGFβ signaling and expose a role for the FOXA2 transcription factor in priming human END competence for human foregut and hepatic END specification. Together, this single-cell functional genomics study provides high-resolution insight on human END development.
Collapse
Affiliation(s)
- Ryan M J Genga
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Eric M Kernfeld
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Krishna M Parsi
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Teagan J Parsons
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael J Ziller
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - René Maehr
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
10
|
A mathematical model of the biochemical network underlying left-right asymmetry establishment in mammals. Biosystems 2018; 173:281-297. [PMID: 30292532 DOI: 10.1016/j.biosystems.2018.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 11/22/2022]
Abstract
The expression of the TGF-β protein Nodal on the left side of vertebrate embryos is a determining event in the development of internal-organ asymmetry. We present a mathematical model for the control of the expression of Nodal and its antagonist Lefty consisting entirely of realistic elementary reactions. We analyze the model in the absence of Lefty and find a wide range of parameters over which bistability (two stable steady states) is observed, with one stable steady state a low-Nodal state corresponding to the right-hand developmental fate, and the other a high-Nodal state corresponding to the left. We find that bistability requires a transcription factor containing two molecules of phosphorylated Smad2. A numerical survey of the full model, including Lefty, shows the effects of Lefty on the potential for bistability, and on the conditions that lead to the system reaching one or the other steady state.
Collapse
|
11
|
Gao J, Ye J, Ying Y, Lin H, Luo Z. Negative regulation of TGF-β by AMPK and implications in the treatment of associated disorders. Acta Biochim Biophys Sin (Shanghai) 2018; 50:523-531. [PMID: 29873702 DOI: 10.1093/abbs/gmy028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Indexed: 01/18/2023] Open
Abstract
Transforming growth factor beta (TGF-β) regulates a large number of biological processes, including proliferation, differentiation, immune response, and development. In addition, TGF-β plays important roles in some pathological processes, for instance, it is upregulated and activated in fibrosis and advanced cancer. Adenosine monophosphate-activated protein kinase (AMPK) acts as a fuel gauge that is activated when cells sense shortage of ATP and increase in AMP or AMP:ATP ratio. Activation of AMPK slows down anabolic processes and stimulates catabolic processes, leading to increased production of ATP. Furthermore, the functions of AMPK have been extended beyond energy homeostasis. In fact, AMPK has been shown to exert a tumor suppressive effect. Recent studies have demonstrated negative impacts of AMPK on TGF-β function. Therefore, in this review, we will discuss the differences in the biological functions of TGF-β and AMPK, and some pathological processes such as fibrosis, epithelial-mesenchymal transition (EMT) and cancer metastasis, as well as angiogenesis and heterotopic ossifications where TGF-β and AMPK exert opposite effects.
Collapse
Affiliation(s)
- Jiayu Gao
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University Jiangxi Medical College, Nanchang 330000, China
- Department of Pathology, Schools of Basic Sciences, Nanchang University Jiangxi Medical College, Nanchang 330000, China
| | - Jinhui Ye
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University Jiangxi Medical College, Nanchang 330000, China
| | - Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University Jiangxi Medical College, Nanchang 330000, China
| | - Hui Lin
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University Jiangxi Medical College, Nanchang 330000, China
| | - Zhijun Luo
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University Jiangxi Medical College, Nanchang 330000, China
- Department of Pathology, Schools of Basic Sciences, Nanchang University Jiangxi Medical College, Nanchang 330000, China
| |
Collapse
|