1
|
Yabo W, Dongxu L, Xiao L, Sandeep B, Qi A. Genetic predisposition to acute lung injury in cardiac surgery 'The VEGF Factor': Review article and bibliometric analysis. Curr Probl Cardiol 2024; 50:102927. [PMID: 39510397 DOI: 10.1016/j.cpcardiol.2024.102927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are among the most prevalent complications associated with cardiac surgery involving extracorporeal circulation (ECC), contributing to adverse outcomes and representing a significant impediment to successful cardiac surgical procedures. Vascular endothelial growth factor (VEGF) is implicated in the etiology of ALI/ARDS; however, its precise role remains a subject of debate due to the presence of somewhat contradictory findings in the literature, necessitating further investigation. To date, numerous studies have explored the role of VEGF in the pathophysiology of ALI/ARDS, with ongoing discussions regarding whether VEGF exerts a protective or detrimental effect. The genetic polymorphism of the VEGF gene is a significant factor in the development of ALI/ARDS. Research has indicated that the prevalence of the VEGF polymorphic gene is markedly higher in postoperative cardiac surgery patients who develop ALI/ARDS compared to the general population. Furthermore, the mortality rate among patients possessing the VEGF polymorphic gene is significantly elevated. Concurrently, it has been demonstrated that ARDS patients who are positive for the VEGF polymorphism exhibit a reduction in VEGF levels within alveolar lavage fluid, which correlates with an exacerbation of lung injury. The present paper provides a comprehensive review of the genetic polymorphisms of VEGF and their implications in the pathophysiological alterations observed in postoperative cardiac surgery patients with ALI/ARDS, thereby offering novel insights and evidence to further elucidate the mechanisms underlying ALI/ARDS.
Collapse
Affiliation(s)
- Wang Yabo
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, No.37 GuoXue Xiang, Chengdu 610041, Sichuan, China.
| | - Li Dongxu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, No.37 GuoXue Xiang, Chengdu 610041, Sichuan, China.
| | - Li Xiao
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, No.37 GuoXue Xiang, Chengdu 610041, Sichuan, China.
| | - Bhushan Sandeep
- Department of Cardio-Thoracic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan 610017, China.
| | - An Qi
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, No.37 GuoXue Xiang, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Ding HW, Wang Q, Wang M, Chen Y, Yuan SM. Immunohistochemical and ultrastructural identification of telocytes in the infantile hemangioma. Ultrastruct Pathol 2024:1-12. [PMID: 39397344 DOI: 10.1080/01913123.2024.2415608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Telocytes (TCs) are a distinctive cell entity of the stromal microenvironment of multiple tumors; to date, their existence in infantile hemangioma (IH) remains almost unexplored. This study was therefore undertaken to characterize the immunophenotype, location, morphology, and ultrastructure of telocytes in the IH by means of immunohistochemistry, immunofluorescence confocal microscopy, and transmission electron microscopy. Telocytes were initially identified by CD34, PDGFR-α, Vimentin, and AQP-1 immunostaining. Analyzing the spatial relationship among telocytes, stem cells, endothelial cells, pericytes in the IH with AQP-1/CD31, AQP-1/Glut-1, AQP-1/α-SMA, AQP-1/CD146 and AQP-1/CD133 double immunofluorescence. TCs were immunonegative for CD31, Glut-1, CD146, α-SMA, CD133, and C-kit in the IH. The ultrastructural examination confirmed the presence of TCs, namely stromal cells with characteristic cytoplasmic processes (i.e. telopodes) forming labyrinthine networks around microvessels and releasing extracellular vesicles. Our study provides evidence that telocytes are present and PDGFR-α and AQP-1 are specific antigenic markers in the IH.
Collapse
Affiliation(s)
- Han-Wen Ding
- Department of Plastic Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Wang
- Department of Plastic Surgery, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu, China
| | - Min Wang
- Department of Plastic Surgery, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu, China
| | - Yong Chen
- Department of Plastic Surgery, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu, China
| | - Si-Ming Yuan
- Department of Plastic Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Plastic Surgery, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Junatas KL, Couck L, Tay H, Sinowatz F, Van Den Broeck W. Ultrastructural evidence of telocytes in the embryonic chick heart. Anat Histol Embryol 2024; 53:e12970. [PMID: 37740674 DOI: 10.1111/ahe.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/25/2023]
Abstract
The cardiac telocyte (TC) is a novel interstitial cell type with a unique ultrastructure and great potential in therapy. The present study examined its presence in the heart of chicken embryos ageing 7-15 days old (Hamburger-Hamilton [HH] stages 31-41) using transmission electron microscopy. TCs were identified across all stages in the atrial and ventricular myocardium, close to maturing cardiomyocytes, blood vessels and lymphatics. Early-stage TCs have immature features resembling mesenchymal cells. Late-stage TCs were distinct, possessing the cytoplasmic prolongations termed telopodes (Tps), which are very long and thin, usually 1-3 in number, and display a moniliform appearance and have an average thickness below 0.2 μm. TCs residing in the epicardium and endocardium were also detected. In the subepicardium near developing coronary vessels, they were localized in the cardiac stem cell niches, coexisting with cardiac stem cells and cardiomyocyte progenitors. Electron-dense structures and the release of extracellular vesicles were observed between embryonic TCs and surrounding structures, suggesting roles in intercellular communication, cardiomyocyte differentiation and maturation, angiogenesis, and stem cell nursing and guidance.
Collapse
Affiliation(s)
- Khan Lamanero Junatas
- Department of Morphology, Medical Imaging, Orthopaedics, Physiotherapy and Nutrition - Laboratory of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Department of Basic Veterinary Sciences, College of Veterinary Medicine, University of Southern Mindanao, Cotabato, Philippines
| | - Liesbeth Couck
- Department of Morphology, Medical Imaging, Orthopaedics, Physiotherapy and Nutrition - Laboratory of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hanna Tay
- Department of Morphology, Medical Imaging, Orthopaedics, Physiotherapy and Nutrition - Laboratory of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Fred Sinowatz
- Institute of Anatomy, Histology and Embryology, Department of Veterinary Sciences, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Wim Van Den Broeck
- Department of Morphology, Medical Imaging, Orthopaedics, Physiotherapy and Nutrition - Laboratory of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
4
|
Zhang S, Sun L, Chen B, Lin S, Gu J, Tan L, Lin M. Telocytes protect against lung tissue fibrosis through hexokinase 2-dependent pathway by secreting hepatocyte growth factor. Clin Exp Pharmacol Physiol 2023; 50:964-972. [PMID: 37715611 DOI: 10.1111/1440-1681.13823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/08/2023] [Accepted: 08/27/2023] [Indexed: 09/17/2023]
Abstract
Pulmonary fibrosis (PF) is one of the common manifestations of end-stage lung disease. Chronic lung failure after lung transplantation is mainly caused by bronchiolitis obliterans syndrome (BOS) and is mainly characterized by lung tissue fibrosis. Pulmonary epithelial-mesenchymal transformation (EMT) is crucial for pulmonary fibrosis. Telocytes (TCs), a new type of mesenchymal cells, play a protective role in various acute injuries. For exploring the anti-pulmonary fibrosis effect of TCs in the BOS model in vitro and the related mechanism, rat tracheal epithelial (RTE) cells were treated with transforming growth factor-β (TGF-β) to simulate lung tissue fibrosis in vitro. The RTE cells were then co-cultured with TCs primarily extracted from rat lung tissue. Western blot, Seahorse XF Analysers and enzyme-linked immunosorbent assay were used to detect the level of EMT and aerobic respiration of RTE cells. Furthermore, anti-hepatocyte growth factor (anti-HGF) antibody was exogenously added to the cultured cells to explore further mechanisms. Moreover, hexokinase 2 (HK2) in RTE cells was knocked down to assess whether it influences the blocking effect of the anti-HGF antibody. TGF-β could induce lung tissue fibrosis in RTE cells in vitro. Nevertheless, TCs co-culture decreased the level of EMT, glucose metabolic indicators (lactate and ATP) and oxygen levels. Furthermore, TCs released hepatocyte growth factor (HGF). Therefore, the exogenous addition of anti-HGF antibody in the co-culture system blocked the anti-lung tissue fibrosis effect. However, HK2 knockdown attenuated the blocking effect of the anti-HGF antibody. In conclusion, TCs can protect against lung tissue fibrosis by releasing HGF, a process dependent on HK2.
Collapse
Affiliation(s)
- Shaoyuan Zhang
- Department of Thoracic Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Lung Inflammation and Injury, Shanghai, China
| | - Linyi Sun
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Lung Inflammation and Injury, Shanghai, China
| | - Borong Chen
- Department of Thoracic Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Siyun Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianmin Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Lung Inflammation and Injury, Shanghai, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Lung Inflammation and Injury, Shanghai, China
| | - Miao Lin
- Department of Thoracic Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Lung Inflammation and Injury, Shanghai, China
| |
Collapse
|
5
|
Qi R, Hou J, Yang Y, Yang Z, Wu L, Qiao T, Wang X, Song D. Integrin beta1 mediates the effect of telocytes on mesenchymal stem cell proliferation and migration in the treatment of acute lung injury. J Cell Mol Med 2023; 27:3980-3994. [PMID: 37855260 PMCID: PMC10746951 DOI: 10.1111/jcmm.17976] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 08/22/2023] [Accepted: 09/16/2023] [Indexed: 10/20/2023] Open
Abstract
Co-transplantation of mesenchymal stem cells (MSCs) with telocytes (TCs) was found to have therapeutic effects, although the mechanism of intercellular communication is still unknown. Our current studies aim at exploring the potential molecular mechanisms of TCs interaction and communication with MSCs with a focus on integrin beta1 (ITGB1) in TCs. We found that the co-culture of MSCs with ITGB1-deleted TCs (TCITGB1-ko ) changed the proliferation, differentiation and growth dynamics ability of MSC in responses to LPS or PI3K inhibitor. Changes of MSC proliferation and apoptosis were accompanied with the dysregulation of cytokine mRNA expression in MSCs co-cultured with TCITGB1-ko during the exposure of PI3Kα/δ/β inhibitor, of which IL-1β, IL-6 and TNF-α increased, while IFN-γ, IL-4 and IL-10 decreased. The responses of PI3K p85, PI3K p110 and pAKT of MSCs co-cultured with TCITGB1-ko to LPS or PI3K inhibitor were opposite to those with ITGB1-presented TCs. The intraperitoneal injection of TCITGB1-ko , TCvector or MSCs alone, as well as the combination of MSCs with TCITGB1-ko or TCvector exhibited therapeutic effects on LPS-induced acute lung injury. Thus, our data indicate that telocyte ITGB1 contributes to the interaction and intercellular communication between MSCs and TCs, responsible for influencing other cell phenomes and functions.
Collapse
Affiliation(s)
- Ruixue Qi
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan HospitalFudan University Shanghai Medical SchoolShanghaiChina
| | - Jiayun Hou
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Institute of Clinical ScienceFudan University Shanghai Medical SchoolShanghaiChina
- Shanghai Engineering Research Center of AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
- Department of Pulmonary MedicineShanghai Xuhui Central Hospital, Fudan UniversityShanghaiChina
| | - Ying Yang
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan HospitalFudan University Shanghai Medical SchoolShanghaiChina
| | - Zhicheng Yang
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan HospitalFudan University Shanghai Medical SchoolShanghaiChina
| | - Lihong Wu
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan HospitalFudan University Shanghai Medical SchoolShanghaiChina
| | - Tiankui Qiao
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan HospitalFudan University Shanghai Medical SchoolShanghaiChina
| | - Xiangdong Wang
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan HospitalFudan University Shanghai Medical SchoolShanghaiChina
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Institute of Clinical ScienceFudan University Shanghai Medical SchoolShanghaiChina
- Shanghai Engineering Research Center of AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
- Department of Pulmonary MedicineShanghai Xuhui Central Hospital, Fudan UniversityShanghaiChina
| | - Dongli Song
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Institute of Clinical ScienceFudan University Shanghai Medical SchoolShanghaiChina
- Shanghai Engineering Research Center of AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
- Department of Pulmonary MedicineShanghai Xuhui Central Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
6
|
Babadag S, Çelebi-Saltik B. A cellular regulator of the niche: telocyte. Tissue Barriers 2023; 11:2131955. [PMID: 36218299 PMCID: PMC10606812 DOI: 10.1080/21688370.2022.2131955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 10/17/2022] Open
Abstract
Interstitial cells are present in the environment of stem cells in order to increase stem cell proliferation and differentiation and they are important to increase the efficiency of their transplantation. Telocytes (TCs) play an important role both in the preservation of tissue organ integrity and in the pathophysiology of many diseases, especially cancer. They make homo- or heterocellular contacts to form the structure of 3D network through their telopodes and deliver signaling molecules via a juxtacrine and/or paracrine association by budding shed vesicles into the vascular, nervous and endocrine systems. During this interaction, along with organelles, mRNA, microRNA, long non-coding RNA, and genomic DNA are transferred. This review article not only specifies the properties of TCs and their roles in the tissue organ microenvironment but also gives information about the factors that play a role in the transport of epigenetic information by TCs.
Collapse
Affiliation(s)
- Sena Babadag
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Sihhiye, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Sihhiye, Turkey
| | - Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Sihhiye, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Sihhiye, Turkey
| |
Collapse
|
7
|
Dama G, Hu X, Yan Y, Li Y, Li H, Yang F, Liu Y, Lin J. Identification and protective role of CD34 + stromal cells/telocytes in experimental autoimmune encephalomyelitis (EAE) mouse spleen. Histochem Cell Biol 2023:10.1007/s00418-023-02186-5. [PMID: 37014442 DOI: 10.1007/s00418-023-02186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 04/05/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a classical animal model of human multiple sclerosis (MS) that is most commonly used to study the neuropathology and therapeutic effects of the disease. Telocytes (TCs) are a specialized type of interstitial or mesenchymal cell first identified by Popescu in various tissues and organs. However, the existence, distribution and role of CD34+ stromal cells (SCs)/TCs in the EAE-induced mouse spleen remain to be elucidated. We conducted immunohistochemistry, immunofluorescence (double staining for CD34 and c-kit, vimentin, F4/80, CD163, Nanog, Sca-1, CD31 or tryptase) and transmission electron microscopy experiments to investigate the existence, distribution and role of CD34+ SCs/TCs in the EAE-induced mouse spleen. Interestingly, immunohistochemistry, double-immunofluorescence, and transmission electron microscopy results revealed that CD34+ SCs/TCs were significantly upregulated in the EAE mouse spleen. Immunohistochemical or double-immunofluorescence staining of CD34+ SCs/TCs showed positive expression for CD34, c-kit, vimentin, CD34/vimentin, c-kit/vimentin and CD34/c-kit, and negative expression for CD31 and tryptase. Transmission electron microscopy (TEM) results demonstrated that CD34+ SCs/TCs established close connections with lymphocytes, reticular cells, macrophages, endothelial cells and erythrocytes. Furthermore, we also found that M1 (F4/80) or M2 (CD163) macrophages, and haematopoietic, pluripotent stem cells were markedly increased in EAE mice. Our results suggest that CD34+ SCs/TCs are abundant and may play a contributing role in modulating the immune response, recruiting macrophages and proliferation of haematopoietic and pluripotent stem cells following injury to promote tissue repair and regeneration in EAE mouse spleens. This suggests that their transplantation combined with stem cells might represent a promising therapeutic target for the treatment and prevention of multiple autoimmune and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Ganesh Dama
- Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road #601, Xinxiang City, 453003, Henan Province, China
- Department of Community Health, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Xiaoxi Hu
- College of Life Sciences and Technology, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road # 601, Xinxiang, 453003, China
| | - Yushan Yan
- College of Life Sciences and Technology, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road # 601, Xinxiang, 453003, China
| | - Yonghai Li
- College of Life Sciences and Technology, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road # 601, Xinxiang, 453003, China
| | - Han Li
- College of Life Sciences and Technology, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road # 601, Xinxiang, 453003, China
| | - Fen Yang
- Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road #601, Xinxiang City, 453003, Henan Province, China
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yanli Liu
- Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road #601, Xinxiang City, 453003, Henan Province, China.
- College of Life Sciences and Technology, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road # 601, Xinxiang, 453003, China.
| | - Juntang Lin
- Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road #601, Xinxiang City, 453003, Henan Province, China.
- College of Life Sciences and Technology, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road # 601, Xinxiang, 453003, China.
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
8
|
Tang L, Song D, Qi R, Zhu B, Wang X. Roles of pulmonary telocytes in airway epithelia to benefit experimental acute lung injury through production of telocyte-driven mediators and exosomes. Cell Biol Toxicol 2023; 39:451-465. [PMID: 34978009 PMCID: PMC8720540 DOI: 10.1007/s10565-021-09670-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Telocytes (TCs) are experimentally evidenced as an alternative of cell therapies for organ tissue injury and repair. The aims of the present studies are to explore direct roles of TCs and the roles of TC-derived exosomes in support of experimental acute lung injury (ALI) in vivo or in vitro. MATERIALS AND METHODS The roles of TCs in experimental ALI were firstly estimated. Phosphoinositide 3-kinase (PI3K) p110δ and α/δ/β isoform inhibitors were used in study dynamic alterations of bio-behaviors, and in expression of functional factors of TCs per se and TC-co-cultured airway epithelial cells during the activation with lipopolysaccharide (LPS). TC-driven exosomes were furthermore characterized for intercellular communication by which activated or non-activated TCs interacted with epithelia. RESULTS Our results showed that TCs mainly prevented from lung tissue edema and hemorrhage and decreased the levels of VEGF-A and MMP9 induced by LPS. Treatment with CAL101 (PI3K p110δ inhibitor) and LY294002 (PI3Kα/δ/β inhibitor) could inhibit TC movement and differentiation and increase the number of dead TCs. The expression of Mtor, Hif1α, Vegf-a, or Mmp9 mRNA increased in TCs challenged with LPS, while Mtor, Hif1α, and Vegf-a even more increased after adding CAL101 or Mtor after adding LY. The rate of epithelial cell proliferation was higher in co-culture of human bronchial epithelial (HBE) and TCs than that in HBE alone under conditions with or without LPS challenge or when cells were treated with LPS and CAL101 or LY294002. The levels of mTOR, HIF1α, or VEGF-A significantly increased in mono-cultured or co-cultured cells, challenged with LPS as compared with those with vehicle. LPS-pretreated TC-derived exosomes upregulated the expression of AKT, p-AKT, HIF1α, and VEGF-A protein of HBE. CONCLUSION The present study demonstrated that intraperitoneal administration of TCs ameliorated the severity of lung tissue edema accompanied by elevated expression of VEGF-A. TCs could nourish airway epithelial cells through nutrients produced from TCs, increasing epithelial cell proliferation, and differentiation as well as cell sensitivity to LPS challenge and PI3K p110δ and α/δ/β inhibitors, partially through exosomes released from TCs.
Collapse
Affiliation(s)
- Li Tang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital; Institute for Clinical Science Shanghai Institute of Clinical Bioinformatics Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Fudan University Shanghai Medical College, Shanghai, China
| | - Dongli Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital; Institute for Clinical Science Shanghai Institute of Clinical Bioinformatics Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Fudan University Shanghai Medical College, Shanghai, China.
| | - Ruixue Qi
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital; Institute for Clinical Science Shanghai Institute of Clinical Bioinformatics Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Fudan University Shanghai Medical College, Shanghai, China
| | - Bijun Zhu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital; Institute for Clinical Science Shanghai Institute of Clinical Bioinformatics Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Fudan University Shanghai Medical College, Shanghai, China
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital; Institute for Clinical Science Shanghai Institute of Clinical Bioinformatics Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Fudan University Shanghai Medical College, Shanghai, China.
| |
Collapse
|
9
|
Soliman SA, Abd-Elhafeez HH, Abou-Elhamd AS, Kamel BM, Abdellah N, Mustafa FEZA. Role of Uterine Telocytes During Pregnancy. MICROSCOPY AND MICROANALYSIS 2023; 29:283-302. [DOI: 10.1093/micmic/ozac001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Endometrial remolding and angiogenesis are critical events that occur during pregnancy in order to establish uteroplacental vascular communication. This study investigated the role of uterine telocytes (TCs) in pregnancy. We analyzed the distribution of TCs and morphological changes in the endometrium of the gravid rabbit uterus at different stages of pregnancy: after ovulation, pre-implantation (day 7), post-implantation (days 8 and 9), and mid-pregnancy (day 14) and late (days 21–28) pregnancy. TCs gradually increased with the progression of pregnancy. They had distinctive telopodes (TPs) and podoms, with intranucleolar chromatin. The TCs established contact with decidual cells, growing a glandular epithelium, blood vessels, and immune cells, such as lymphocytes, neutrophils, and macrophages. The TCs underwent morphological changes at the post-implantation phase. They acquired thick and voluminous TPs, formed an extensive three-dimensional (3D) labyrinth at mid-pregnancy, and exhibited irregular-shaped nuclei and a dilated rough endoplasmic reticulum at late pregnancy. They also acquired a convoluted contour-formed complex network. Scanning electron microscopy (SEM) showed an extensive 3D network in the endometrium, forming a condensed sheath at late pregnancy. Transmission electron microscopy and SEM detected fenestrated TPs, and TCs were identified by CD34 and vascular endothelial growth factor expression. TCs also expressed matrix metalloproteinase-9 and transforming growth factor beta-1. Results suggested that TCs might play an essential role in maternal placenta formation, especially decidualization, regulation of uterine gland development, and neovascularization of maternal uterine blood vessels.
Collapse
Affiliation(s)
- Soha A Soliman
- Department of Histology, Faculty of Veterinary Medicine, South Valley University , Qena , Egypt
| | - Hanan H Abd-Elhafeez
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University , Assiut 71526 , Egypt
| | - Alaa S Abou-Elhamd
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University , Assiut 71526 , Egypt
- Department of Respiratory Therapy, Faculty of Applied Medical Sciences, Jazan University , Jazan , Saudi Arabia
| | - Basma Mohamed Kamel
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, University of Sadat City , Sadat City 32897 , Egypt
| | - Nada Abdellah
- Department of Histology, Faculty of Veterinary Medicine, Sohag University , Sohag 82524 , Egypt
| | - Fatma El-Zahraa A Mustafa
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University , Assiut 71526 , Egypt
| |
Collapse
|
10
|
Meng X, Ding B, Zhu Z, Ma Q, Wang Q, Feng Y, Liu Y, Wang J, Yang P. Evaluation of the Plasticity of Novel Regulatory Cells-Telocytes-in the Gonad of the Male Chinese Soft-Shelled Turtle ( Pelodiscus sinensis) Associated with Seasonal Reproductive Activity. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-9. [PMID: 36204971 DOI: 10.1017/s1431927622012302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Telocyte (TC)—a new type of interstitial cell with long telopodes, can form cellular junctions with various tissues or cells to participate in the regulation of multitudes of physiological activities and diseases. This study aimed to characterize the morphology, molecular features, and potential functions of hormone regulation in Chinese soft-shelled turtle (Pelodiscus sinensis) testis TCs at different reproductive stages by histological evaluation, immunohistochemistry (IHC), immunofluorescence (IF), and transmission electron microscopy. During hibernation, TCs were widely distributed in the interstitial tissue. In contrast, during reproductive activity, TCs were noted to be in close proximity with peritubular myoid cells surrounding the seminiferous tubule. Moreover, formed cell–cell junctions were observed between TCs and PTMs. The results of IHC and IF showed that the immunophenotype of testicular TCs in hibernating Chinese soft-shelled turtles is CD34+Vimentin−, while the reproductive telopodes (Tps) show low expression of vimentin. The androgen receptor is expressed in Tps of TCs of testis during hibernation. Our results showed also that TCs in seasonal breeding animals regulate the activity of neighboring cells by releasing extracellular microvesicles (EXMVs), thus influencing the activity of spermatogenesis and steroidogenesis. Consideration of our novel and interesting results indicate that the whole area warrants further research.
Collapse
Affiliation(s)
- Xiangfei Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Baitao Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoxuan Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qianhui Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongchao Feng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Soliman SA, Sobh A, Ali LA, Abd-Elhafeez HH. Two distinctive types of telocytes in gills of fish: A light, immunohistochemical and ultra-structure study. Microsc Res Tech 2022; 85:3653-3663. [PMID: 35920019 DOI: 10.1002/jemt.24218] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/13/2022] [Accepted: 06/29/2022] [Indexed: 11/06/2022]
Abstract
Telocytes (TCs) are a vital constituent of interstitial tissue. They contribute to regulating cell function in heterotypic connections via direct contact or paracrine singling. Few studies mentioned intraepithelial TCs; however, they have been identified with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In this study, we investigated the intraepithelial and interstitial TCs using immunohistochemistry (IHC) and TEM. TCs can be identified by their distinctive telopodes (TPs), which consist of podoms and podomere, using TEM and immunohistochemical staining with CD34, CD117, and VEGF antibodies. Intraepithelial TCs established heterocontact with the lamellar capillary and interstitial TCs connected with the blood vessel in lamina propria. Intraepithelial TCs established direct contact with epithelial cells, which formed the lymph space while interstitial TCs connected with the secondary vascular vessels. The study provides evidence for TCs' heterocontact with lamellar blood capillaries, the blood vessels, chloride cells, and immune cells, such as rodlet cells and lymphocytes. In conclusion, TCs have a role in regulating respiratory activities, maintaining osmotic pressure, modulating the immune response, and conducting immunosurveillance. RESEARCH HIGHLIGHTS: We investigated the intraepithelial and interstitial TCs using immunohistochemistry (IHC) and TEM. TCs can be identified by their distinctive telopodes (TPs), which consist of podoms and podomere, using TEM and immunohistochemical staining with CD34, CD117, and VEGF antibodies. Intraepithelial TCs established heterocontact with the lamellar capillary and interstitial TCs connected with the blood vessel in lamina propria.
Collapse
Affiliation(s)
- Soha A Soliman
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Ashraf Sobh
- Biology Department, Faculty of Science, Jazan University, Jizan, Kingdom of Saudi Arabia
| | - Lobna A Ali
- Cell Biology and Histochemistry, Zoology Department, Faculty of Science, South Valley University, Qena, Egypt
| | - Hanan H Abd-Elhafeez
- Department of cell and tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
12
|
Wrona A, Aleksandrovych V, Bereza T, Basta P, Gil A, Ulatowska-Białas M, Mazur-Laskowska M, Pityński K, Gil K. Oviductal Oxygen Homeostasis in Patients with Uterine Myoma: Correlation between Hypoxia and Telocytes. Int J Mol Sci 2022; 23:6155. [PMID: 35682833 PMCID: PMC9181375 DOI: 10.3390/ijms23116155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Oxygen balance is crucial for angiogenesis, immunity, and tissue repair. The human oviduct is essential for reproductive function, and any imbalance in homeostasis leads to fertility disturbances and might be a reason for ectopic pregnancy development. Uterine myoma is a widespread benign tumour, which is often accompanied by infertility. Telocytes have been discussed in the contexts of motility, fibrosis development, and angiogenesis. We observed the oviducts from patients with and without uterine myoma, comparing the expression of HIF-1, HO, VEGF and its receptor, NOS, oestrogen, and progesterone receptors by immunolabeling. The myometrial and oviductal telocytes were also compared in both groups. Biochemical analyses were conducted for FSH, LH, AMH, sFlt, oestrogen, and progesterone in blood samples. Patients with uterine myoma have different expressions of sex steroid receptors and an increased number of telocytes. The decreasing VEFG expression was compensated by the rise in the HIF-1 and NOS expression. Blood biochemical analyses revealed a higher progesterone level and lower AMH in patients with uterine myoma. No differences in sFlt, FSH, and LF were observed. Uterine myoma impacts oviduct oxygen homeostasis and might cause fertility disturbances (uterine and oviductal infertility factors).
Collapse
Affiliation(s)
- Anna Wrona
- Gynecology and Obstetrics Ward with Gynecologic Oncology Subdivision, J. Śniadecki’s Specialistic Hospital, 33-300 Nowy Sącz, Poland;
| | - Veronika Aleksandrovych
- Department of Pathophysiology, Jagiellonian University Medical College, 31-121 Krakow, Poland;
| | - Tomasz Bereza
- Department of Anatomy, Jagiellonian University Medical College, 31-034 Krakow, Poland; (T.B.); (A.G.)
| | - Paweł Basta
- Department of Gynecology and Oncology, Jagiellonian University Medical College, 30-688 Krakow, Poland; (P.B.); (K.P.)
| | - Anna Gil
- Department of Anatomy, Jagiellonian University Medical College, 31-034 Krakow, Poland; (T.B.); (A.G.)
| | | | | | - Kazimierz Pityński
- Department of Gynecology and Oncology, Jagiellonian University Medical College, 30-688 Krakow, Poland; (P.B.); (K.P.)
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, 31-121 Krakow, Poland;
| |
Collapse
|
13
|
Zhu X, Wang Q, Pawlicki P, Wang Z, Pawlicka B, Meng X, Feng Y, Yang P. Telocytes and Their Structural Relationships With the Sperm Storage Tube and Surrounding Cell Types in the Utero-Vaginal Junction of the Chicken. Front Vet Sci 2022; 9:852407. [PMID: 35400114 PMCID: PMC8987988 DOI: 10.3389/fvets.2022.852407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/24/2022] [Indexed: 11/14/2022] Open
Abstract
Telocytes (TCs) are a new type of mesenchymal cells that have been discovered recently in many organs and tissues. However, studies of TCs in the avian reproductive system are still at the beginning. Chickens are one of the world's most popular domesticated animals, providing inexpensive but valuable proteins and nutrients from chickens and eggs to nourish the human bodies. Chickens have important scientific value; thus, understanding the reproductive system regulations seems to be important. The utero-vaginal junction is involved in the regulation of sperm storage. The sperm storage tube (SST) in the utero-vaginal junction stores sperm. The purpose of this study was to investigate the existence of TCs in the utero-vaginal junction of the chicken, and their structural relationships with the sperm storage tube and surrounding cell types. We studied the morphology, ultrastructure, and immune characterization of TCs.
Collapse
Affiliation(s)
- Xudong Zhu
- College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qi Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Piotr Pawlicki
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, Krakow, Poland
| | - Ziyu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Bernadetta Pawlicka
- Laboratory of Genetics and Evolutionism, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Xiangfei Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yongchao Feng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ping Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Ping Yang
| |
Collapse
|
14
|
Telocytes reduce oxidative stress by downregulating DUOX2 expression in inflamed lungs of mice. Acta Biochim Biophys Sin (Shanghai) 2022; 54:574-582. [PMID: 35607956 PMCID: PMC9828416 DOI: 10.3724/abbs.2022017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Telocytes (TCs), a novel type of interstitial cells, have been found to participate in tissue protection and repair. In this study, we investigated the antioxidative effects of TCs in inflamed lungs of mice. Acute respiratory distress syndrome (ARDS) mice were used as models of inflamed lungs of mice. Gene sequencing was used to screen the differentially expressed miRNAs in TCs after lipopolysaccharide (LPS) stimulation. AntagomiR-146a-5p-pretreated TCs were first injected into mice, and antioxidant activity of TCs was estimated. TCs, RAW264.7 cells, and MLE-12 cells were collected for the detection of expressions of NOX1-4, DUOX1-2, SOD1-3, GPX1-2, CAT, Nrf2, miR-146a-5p, and miR-21a-3p after LPS stimulation. Silencing miRNAs were delivered to examine the involved signaling pathways. Oxidative stress was examined by measuring malondialdehyde (MDA) levels. We found that microRNA-146a-5p and microRNA-21a-3p were upregulated in TCs after LPS stimulation. ARDS mice that were preinfused with TCs had lower lung tissue injury scores, lung wet-dry ratios, white blood cell counts in alveolar lavage fluid and lower MDA concentrations in lung tissue. However, in antagomiR-146a-5p-pretreated ARDS mice, the infusion of TCs caused no corresponding changes. After LPS stimulation, DUOX2 and MDA concentrations were downregulated in TCs, while DUOX2 was restored by antagomiR-146a-5p in TCs. Dual-luciferase reporter assay confirmed that CREB1 was downregulated by miR-146a-5p, while DUOX2 was downregulated by CREB1, which was confirmed by treating TCs with a specific CREB1 inhibitor. This study demonstrates that LPS stimulation upregulates miR-146a-5p in TCs, which downregulates the CREB1/DUOX2 pathway, resulting in a decrease in oxidative stress in cultured TCs. TCs reduce LPS-induced oxidative stress by decreasing DUOX2 in inflamed lungs of mice.
Collapse
|
15
|
Wei XJ, Chen TQ, Yang XJ. Telocytes in Fibrosis Diseases: From Current Findings to Future Clinical Perspectives. Cell Transplant 2022; 31:9636897221105252. [PMID: 35748420 PMCID: PMC9235300 DOI: 10.1177/09636897221105252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Telocytes (TCs), a distinct type of interstitial (stromal) cells, have been discovered in many organs of human and mammal animals. TCs, which have unique morphological characteristics and abundant paracrine substance, construct a three-dimensional (3D) interstitial network within the stromal compartment by homocellular and heterocellular communications which are important for tissue homeostasis and normal development. Fibrosis-related diseases remain a common but challenging problem in the field of medicine with unclear pathogenesis and limited therapeutic options. Recently, increasing evidences suggest that where TCs are morphologically or numerically destructed, many diseases continuously develop, finally lead to irreversible interstitial fibrosis. It is not difficult to find that TCs are associated with chronic inflammation and fibrosis. This review mainly discusses relationship between TCs and the occurrence of fibrosis in various diseases. We analyzed in detail the potential roles and speculated mechanisms of TCs in onset and progression of systemic fibrosis diseases, as well as providing the most up-to-date research on the current therapeutic roles of TCs and involved related pathways. Only through continuous research and exploration in the future can we uncover its magic veil and provide strategies for treatment of fibrosis-related disease.
Collapse
Affiliation(s)
- Xiao-jiao Wei
- Department of Obstetrics and
Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, P.R.
China
| | - Tian-quan Chen
- Department of Obstetrics and
Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, P.R.
China
| | - Xiao-jun Yang
- Department of Obstetrics and
Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, P.R.
China
| |
Collapse
|
16
|
Sanches BDA, Maldarine JDS, Tamarindo GH, Da Silva ADT, Lima MLD, Rahal P, Góes RM, Taboga SR, Carvalho HF. Explant culture: A relevant tool for the study of telocytes. Cell Biol Int 2020; 44:2395-2408. [PMID: 32813303 DOI: 10.1002/cbin.11446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/15/2020] [Indexed: 12/12/2022]
Abstract
Telocytes are cells present in the stroma of various tissues including the prostate. The detection of telocytes is still very much dependent on obtaining ultrastructural data that show the presence of telopodes, which are cytoplasmic projections that alternate between dilated regions, the podoms, and thin segments, the podomers. These structures are the distinctive characteristics of the telocytes. Thus, in vitro assays are important for the study of telocytes, which are more easily identified in culture, which also enables the experimental manipulation of these cells. The isolation of telocytes per se does not allow the analysis of the behavior of these cells in relation to other cell types in a given organ. In this sense, in the prostate, explants could be a useful tool for the study of telocytes. The present study obtained prostatic explants and evaluated the influence of recombinant proteins, scattering factor (SCF) and stromal-derived factor 1 (SDF-1), which could impact on the migration of CD34-positive cells. Telocytes migrate out of explants and SDF-1 stimulates the proliferation and formation of telocyte networks in vitro. Telocytes are not smooth muscle cell progenitors in the prostate; on the contrary, they are CD90- and CD44-negative cells and, hence, have limited progenitor capacity. The present study demonstrated that explants are useful tools to elucidate the nature of telocytes and their functions.
Collapse
Affiliation(s)
- Bruno D A Sanches
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - Juliana D S Maldarine
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - Guilherme H Tamarindo
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - Alana D T Da Silva
- Department of Biology, Laboratory of Microscopy and Microanalysis, São Paulo State University (UNESP), São Paulo, Brazil
| | - Maria L D Lima
- Department of Biology, Laboratory of Genome Studies, São Paulo State University (UNESP), São Paulo, Brazil
| | - Paula Rahal
- Department of Biology, Laboratory of Genome Studies, São Paulo State University (UNESP), São Paulo, Brazil
| | - Rejane M Góes
- Department of Biology, Laboratory of Microscopy and Microanalysis, São Paulo State University (UNESP), São Paulo, Brazil
| | - Sebastião R Taboga
- Department of Biology, Laboratory of Microscopy and Microanalysis, São Paulo State University (UNESP), São Paulo, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil
| |
Collapse
|
17
|
Wang L, Song D, Wei C, Chen C, Yang Y, Deng X, Gu J. Telocytes inhibited inflammatory factor expression and enhanced cell migration in LPS-induced skin wound healing models in vitro and in vivo. J Transl Med 2020; 18:60. [PMID: 32028987 PMCID: PMC7003342 DOI: 10.1186/s12967-020-02217-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background Cell proliferation and death are key components of wound healing and tissue repair. Telocytes (TCs) represent a newly discovered cell type that can protect tissue from acute injury via cell–cell communication with adjacent cells. The aim of this study was to use a mouse model of skin wound healing and lipopolysaccharide (LPS)-induced cell injury to evaluate the effects of TCs on skin wound healing in vivo and in vitro. Material/methods Immunohistochemical staining was performed to evaluate the alteration of TCs in tissues from normal and chronic wound patients. Then, a male C57BL/6 mouse wound model of the back was established. The mice were divided randomly into three groups, and wound healing was estimated according to the wound healing rate and histology. An LPS-induced co-culture model of a mouse lung telocyte cell line (TCs) with human keratinocyte (HaCaT), human dermal microvascular endothelial cell (HDMEC) or murine fibroblast (L929) cell lines was established to analyse the effects of TCs on constitutive cell types of the skin. Cell proliferation, migration and apoptosis were examined, and reactive oxygen species (ROS) and inflammatory factors in HaCaT cells, HDMECs, and L929 cells were detected to study the mechanisms involved in TC protection in skin wounds. Results TCs were significantly increased in tissues from chronic wound patients compared with healthy controls. Wound healing was significantly improved in wound mouse models treated with exogenous TCs compared with LPS-induced models. TCs reversed the LPS-induced inhibition of HaCaT cells and HDMECs and reduced the LPS-induced apoptosis of HaCaT cells and the death ratios of HDMECs and L929 cells. TCs reversed LPS-induced ROS in HDMECs and L929 cells and decreased inflammatory factor mRNA levels in HaCaT cells, HDMECs and L929 cells. Conclusions TCs reduce wound healing delay, and inflammatory responses caused by LPS might be mediated by inflammatory inhibition, thus restricting apoptosis and promoting migration of the main component cell types in the skin.
Collapse
Affiliation(s)
- Lu Wang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Dongli Song
- Zhongshan Hospital Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chuanyuan Wei
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Cheng Chen
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yanwen Yang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xinyi Deng
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jianying Gu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
18
|
Zhou Y, Yang Y, Liang T, Hu Y, Tang H, Song D, Fang H. The regulatory effect of microRNA-21a-3p on the promotion of telocyte angiogenesis mediated by PI3K (p110α)/AKT/mTOR in LPS induced mice ARDS. J Transl Med 2019; 17:427. [PMID: 31878977 PMCID: PMC6933909 DOI: 10.1186/s12967-019-02168-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
Background Telocytes (TCs) are newly identified interstitial cells that participate in tissue protection and repair. The present study investigated the mechanisms underlying the protective effect of TCs in a mouse model of respiratory distress. Methods The mouse model of acute respiratory distress syndrome (ARDS) was established by intratracheal instillation of lipopolysaccharide (LPS). After instillation of TCs culture medium, lung injury was assessed, and angiogenesis markers, including CD31 and endothelial nitric oxide synthase (eNOS), were detected by immunofluorescence. Bioinformatics analysis was used to screen significantly differentially expressed microRNAs (miRNAs) in cultured TCs stimulated with LPS, and the regulation of downstream angiogenesis genes by these miRNAs was analysed and verified. PI3K subunits and pathways were evaluated by using a PI3K p110α inhibitor to study the involved mechanisms. Results In ARDS mice, instillation of TCs culture medium ameliorated LPS-induced inflammation and lung injury and increased the protein levels of CD31 and eNOS in the injured lungs. A total of 7 miRNAs and 1899 mRNAs were differentially regulated in TCs stimulated with LPS. Functional prediction analysis showed that the differentially expressed mRNAs were enriched in angiogenesis-related processes, which were highly correlated with miR-21a-3p. Culture medium from TCs with miR-21a-3p inhibition failed to promote angiogenesis in mouse models of LPS-induced ARDS. In cultured TCs, LPS stimulation upregulated the expression of miR-21a-3p, which further targeted the transcription factor E2F8 and decreased Notch2 protein expression. TCs culture medium enhanced hemangioendothelioma endothelial cells (EOMA cells) proliferation, which was blocked by the miR-21a-3p inhibitor. The PI3K p110α inhibitor decreased vascular endothelial growth factor levels in LPS-stimulated TCs and reversed the enhancing effect of TCs culture medium on EOMA cells proliferation. Conclusions TCs exerted protective effects under inflammatory conditions by promoting angiogenesis via miR-21a-3p. The PI3K p110α subunit and transcriptional factor E2F8 could be involved in this process.
Collapse
Affiliation(s)
- Yile Zhou
- Department of Anaesthesiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Yajie Yang
- Department of Anaesthesiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Tao Liang
- Department of Anaesthesiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Yan Hu
- Department of Anaesthesiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China.,Department of Anaesthesiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Haihong Tang
- Department of Anaesthesiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Dongli Song
- Zhongshan Hospital Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Hao Fang
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China. .,Department of Anaesthesiology, Minhang Branch, Zhongshan Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, People's Republic of China.
| |
Collapse
|
19
|
Morphological changes of telocytes in camel efferent ductules in response to seasonal variations during the reproductive cycle. Sci Rep 2019; 9:4507. [PMID: 30872789 PMCID: PMC6418092 DOI: 10.1038/s41598-019-41143-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/27/2019] [Indexed: 01/15/2023] Open
Abstract
Telocytes (TCs) are a distinct stromal cell type described in many organs. The present study investigated the existence of TCs within the efferent ductules in camel and the changes that occur in their morphology and activity during active and inactive reproductive seasons. TCs in the camel had a cell body and multiple telopodes (TPs), and most TCs had indented nuclei that exhibited prominent intranucleolar chromatin. TCs exhibited seasonal differences which were evaluated by histochemistry, immunohistochemistry (IHC), Transimition electron microscopy (TEM) and scanning electron microscopy (SEM). The presence of TCs in camel efferent ductules has been confirmed by CD34 positive immunostaing. In addition to the expression of the vascular endothelial growth factor (VEGF) which was stronger in the summer season. TCs exhibited stronger immunoreactivity for progesterone and oestrogen alpha receptors (ESR1) in the spring than in the summer. In addition, TCs showed strong positive immunostaining for both vimentin and androgen receptor (AR). Several ultrastructural changes were observed in TCs during the two seasons. TPs in the summer season had delicate ramifications whereas, in the spring, TPs displayed fine arborization and became more corrugated. TCs acquired signs of exaggerated secretory activities in the spring; TPs became expanded and packed with secretory vesicles. Thus, we conclude that, hormonal alterations during the reproductive cycle impact the morphology and secretory behavior of TCs.
Collapse
|
20
|
Hong XY, Hong X, Gu WW, Lin J, Yin WT. Cardioprotection and improvement in endothelial-dependent vasodilation during late-phase of whole body hypoxic preconditioning in spontaneously hypertensive rats via VEGF and endothelin-1. Eur J Pharmacol 2018; 842:79-88. [PMID: 30401629 DOI: 10.1016/j.ejphar.2018.10.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/17/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022]
Abstract
The present study was designed to investigate the effect of late phase of whole body hypoxic preconditioning on endothelial-dependent vasorelaxation and cardioprotection from ischemia-reperfusion injury in spontaneously hypertensive rats (SHR). Hypoxic preconditioning was performed by subjecting rats to four episodes of alternate exposure to low O2 (8%) and normal air O2 of 10 min each. After 24 h, the mesenteric arteries and hearts were isolated to determine the vascular function and cardioprotection from ischemia-reperfusion (I/R) injury on the Langendorff apparatus. There was a significant impairment in acetylcholine-induced relaxation in norepinephrine precontracted arteries (endothelium-dependent function) and increase in I/R-induced myocardial injury in SHR in comparison to Wistar Kyoto rats (WKY). However, hypoxic preconditioning significantly restored endothelium-dependent relaxation in SHR and attenuated I/R injury in both SHR and WKY. Hypoxic preconditioning also led to an increase in the levels of endothelin-1 (not endothelin-2 or -3), vascular endothelial growth factor-A (VEGF-A) and HIF-1α levels. Pretreatment with bevacizumab (anti-VEGF-A) and bosentan (endothelin receptor blocker) significantly attenuated hypoxic preconditioning-induced restoration of endothelium-dependent relaxation and cardioprotection from I/R injury. These interventions also attenuated the levels of VEGF-A and HIF-1α without modulating the endothelin-1 levels. It may be concluded that an increase in the endothelin-1 levels with a subsequent increase in HIF-1α and VEGF expression may possibly contribute in improving endothelium-dependent vasorelaxation and protecting hearts from I/R injury in SHR during late phase of whole body hypoxic preconditioning.
Collapse
Affiliation(s)
- Xing-Yu Hong
- Department of Vascular Surgery, China-Japan Union Hospital of JiLin University, ChangChun 130031, China.
| | - Xin Hong
- Department of Vascular Surgery, China-Japan Union Hospital of JiLin University, ChangChun 130031, China.
| | - Wei-Wei Gu
- Department of Hepatopancreatobility Surgery, China-Japan Union Hospital of JiLin University, ChangChun 130031, China.
| | - Jie Lin
- Department of Vascular Surgery, China-Japan Union Hospital of JiLin University, ChangChun 130031, China.
| | - Wei-Tian Yin
- Department of Hand Surgery, China-Japan Union Hospital of JiLin University, ChangChun 130031, China.
| |
Collapse
|