1
|
Bozzuto G, Calcabrini A, Colone M, Condello M, Dupuis ML, Pellegrini E, Stringaro A. Phytocompounds and Nanoformulations for Anticancer Therapy: A Review. Molecules 2024; 29:3784. [PMID: 39202863 PMCID: PMC11357218 DOI: 10.3390/molecules29163784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Cancer is a complex disease that affects millions of people and remains a major public health problem worldwide. Conventional cancer treatments, including surgery, chemotherapy, immunotherapy, and radiotherapy, have limited achievements and multiple drawbacks, among which are healthy tissue damage and multidrug-resistant phenotype onset. Increasing evidence shows that many plants' natural products, as well as their bioactive compounds, have promising anticancer activity and exhibit minimal toxicity compared to conventional anticancer drugs. However, their widespread use in cancer therapy is severely restricted by limitations in terms of their water solubility, absorption, lack of stability, bioavailability, and selective targeting. The use of nanoformulations for plants' natural product transportation and delivery could be helpful in overcoming these limitations, thus enhancing their therapeutic efficacy and providing the basis for improved anticancer treatment strategies. The present review is aimed at providing an update on some phytocompounds (curcumin, resveratrol, quercetin, and cannabinoids, among others) and their main nanoformulations showing antitumor activities, both in vitro and in vivo, against such different human cancer types as breast and colorectal cancer, lymphomas, malignant melanoma, glioblastoma multiforme, and osteosarcoma. The intracellular pathways underlying phytocompound anticancer activity and the main advantages of nanoformulation employment are also examined. Finally, this review critically analyzes the research gaps and limitations causing the limited success of phytocompounds' and nanoformulations' clinical translation.
Collapse
Affiliation(s)
- Giuseppina Bozzuto
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Annarica Calcabrini
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Marisa Colone
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Maria Condello
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Maria Luisa Dupuis
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Evelin Pellegrini
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| |
Collapse
|
2
|
Goleij P, Sanaye PM, Babamohamadi M, Tabari MAK, Amirian R, Rezaee A, Mirzaei H, Kumar AP, Sethi G, Sadreddini S, Jeandet P, Khan H. Phytostilbenes in lymphoma: Focuses on the mechanistic and clinical prospects of resveratrol, pterostilbene, piceatannol, and pinosylvin. Leuk Res 2024; 138:107464. [PMID: 38422882 DOI: 10.1016/j.leukres.2024.107464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Lymphoma is a cancer affecting the lymphatic system that fights infections and diseases. In addition to surgery, radiotherapy, and chemotherapy, novel approaches have recently been investigated, such as phytostilbenes in treating lymphoma. Phytostilbenes are natural compounds present in various plants and have been shown to have different therapeutic effects, including anticancer properties. Resveratrol is a main phytostilbene with various derivates followed by pterostilbene and piceatannol. Studies have revealed that phytostilbenes can suppress the growth and proliferation of lymphoma cells by inducing apoptosis and inhibiting specific enzyme activity in cancer cell survival. The compounds also have antiinflammatory effects contributing to reducing lymphoma-associated inflammation. Additionally, phytostilbenes have been shown to increase the immune system's ability to fight cancer cells by activating immune cells (T-cells and natural killer cells). This review investigates the potential therapeutic effects of phytostilbenes, including resveratrol, pterostilbene, piceatannol, and pinosylvin, against lymphoma.
Collapse
Affiliation(s)
- Pouya Goleij
- Department of Genetics, Sana Institute of Higher Education, Sari, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Majma Sanaye
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran; School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehregan Babamohamadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran; Stem Cell and Regenerative Medicine Innovation Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran; USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Roshanak Amirian
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sarvin Sadreddini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Philippe Jeandet
- University of Reims Champagne-Ardenne, Research Unit "Induced Resistance and Plant Bioprotection", RIBP-USC INRA 1488, Reims 51100, France
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| |
Collapse
|
3
|
Bouyahya A, El Allam A, Aboulaghras S, Bakrim S, El Menyiy N, Alshahrani MM, Al Awadh AA, Benali T, Lee LH, El Omari N, Goh KW, Ming LC, Mubarak MS. Targeting mTOR as a Cancer Therapy: Recent Advances in Natural Bioactive Compounds and Immunotherapy. Cancers (Basel) 2022; 14:5520. [PMID: 36428613 PMCID: PMC9688668 DOI: 10.3390/cancers14225520] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a highly conserved serine/threonine-protein kinase, which regulates many biological processes related to metabolism, cancer, immune function, and aging. It is an essential protein kinase that belongs to the phosphoinositide-3-kinase (PI3K) family and has two known signaling complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Even though mTOR signaling plays a critical role in promoting mitochondria-related protein synthesis, suppressing the catabolic process of autophagy, contributing to lipid metabolism, engaging in ribosome formation, and acting as a critical regulator of mRNA translation, it remains one of the significant signaling systems involved in the tumor process, particularly in apoptosis, cell cycle, and cancer cell proliferation. Therefore, the mTOR signaling system could be suggested as a cancer biomarker, and its targeting is important in anti-tumor therapy research. Indeed, its dysregulation is involved in different types of cancers such as colon, neck, cervical, head, lung, breast, reproductive, and bone cancers, as well as nasopharyngeal carcinoma. Moreover, recent investigations showed that targeting mTOR could be considered as cancer therapy. Accordingly, this review presents an overview of recent developments associated with the mTOR signaling pathway and its molecular involvement in various human cancer types. It also summarizes the research progress of different mTOR inhibitors, including natural and synthetised compounds and their main mechanisms, as well as the rational combinations with immunotherapies.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Aicha El Allam
- Department of Immunology, Yale University School of Medicine, 333 Cedars Street, TAC S610, New Haven, CT 06519, USA
| | - Sara Aboulaghras
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnologies and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10100, Morocco
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Long Chiau Ming
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | | |
Collapse
|
4
|
Wu Z, Chen S, He Y, Zhang D, Zou S, Xie J, Zhou C. Connective tissue growth factor promotes cell-to-cell communication in human periodontal ligament stem cells via MAPK and PI3K pathway. J Periodontol 2021; 93:e60-e72. [PMID: 34532860 DOI: 10.1002/jper.21-0339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/26/2021] [Accepted: 09/10/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Cell-cell communication is an essential process to respond to biological stimuli and sustain the micro environmental homeostasis of human periodontal ligament stem cells (hPDLSCs). Connective tissue growth factor (CTGF), a critical secreted matrix protein, exhibits significant tasks in regulating the cell-cell and cell-matrix interactions. This study aimed to explore the relationship between CTGF and cell communication and the underlying mechanism. METHODS qRT-PCR was used to detect CCN family, connexin, and pannexin family expression in hPDLSCs. Stimulation with CTGF, cell migration assay was performed to examine the wound repair. The scrape loading/dye transfer assay was employed to access lucifer Yellow molecules transfer efficiency mediated by cell-cell communication. Connexin43 (Cx43), Pannexin1 (Panx1), MAPK, and the PI3K/Akt signaling pathway proteins were examined via Western blotting. Immunofluorescence was applied to visualize the localization of specific proteins within cells. Corresponding pathway inhibitors were applied to hPDLSCs to detect Cx43, Panx1 expression, and intercellular communication induced by CTGF. RESULTS Our result showed that CTGF was the second most expressed CCN family member in hPDLSCs. Cx43, and Panx1 were the most widely expressed gap junction hemichannels in hPDLSCs. CTGF enhanced hPDLSCs migration in a dose-dependent manner. CTGF promoted cell-cell communication by up-regulating Cx43 and Panx1. CTGF induced Akt, JNK, and p38 phosphorylation and subcellular relocation. Inhibiting corresponding pathways reduced Cx43 expression, thereby weakening CTGF-induced cell-cell communication. However, the Panx1 expression in CTGF-treated hPDLSCs mainly depended on PI3K/Akt signaling. CONCLUSION We provided novel evidence that CTGF promoted cell-cell communication in hPDLSCs through MAPK and PI3K pathway.
Collapse
Affiliation(s)
- Zuping Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sirui Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuying He
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Hu K, Li B, Ma R, Yi H, Xu Z, Peng Y, Yu D, Wu H, Cheng T, Lu Y, Zhang Y, Wei R, Yang G, Wu X, Zhu W, Shi J. Anti-DLBCL efficacy of DCZ0825 in vitro and in vivo: involvement of the PI3K‒AKT‒mTOR/JNK pathway. Acta Biochim Biophys Sin (Shanghai) 2021; 53:575-583. [PMID: 33821934 DOI: 10.1093/abbs/gmab031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 01/23/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma, characterized by high heterogeneity. The poor outcome of a portion of patients who suffer relapsing or resistant to conventional treatment impels the development of novel agents for DLBCL. DCZ0825 is a novel compound derived from pterostilbene and osalmide, whose antitumor activities have drawn our attention. In this study, we found that DCZ0825 exhibited high cytotoxicity toward DLBCL cell lines in a dose- and time-dependent manner, as revealed by cell counting kit-8 assay. Flow cytometry and western blot analysis results showed that DCZ0825 also promoted cell apoptosis via both extrinsic and intrinsic apoptosis pathways mediated by caspase. In addition, DCZ0825 induced cell cycle arrest in the G2/M phase by downregulating Cdc25C, CDK1, and Cyclin B1, thus interfering with cell proliferation. Further investigation showed the involvement of the phosphatidylinositol 3-kinase (PI3K)‒AKT‒mTOR/JNK pathway in the efficacy of DCZ0825 against DLBCL. Remarkably, DCZ0825 also exerted notable cytotoxic effects in vivo as well, with low toxicity to important internal organs such as the liver and kidney. Our results suggest that DCZ0825 may have the potential to become a novel anti-DLBCL agent or to replenish the conventional therapeutic scheme of DLBCL.
Collapse
Affiliation(s)
- Ke Hu
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Nanjing Medical University School of Clinical Medicine, Nanjing 211100, China
| | - Bo Li
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ruye Ma
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hongfei Yi
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yu Peng
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Dandan Yu
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Huiqun Wu
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Taofang Cheng
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yumeng Lu
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yong Zhang
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Rong Wei
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Guang Yang
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaosong Wu
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jumei Shi
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
6
|
Tong C, Wang Y, Li J, Cen W, Zhang W, Zhu Z, Yu J, Lu B. Pterostilbene inhibits gallbladder cancer progression by suppressing the PI3K/Akt pathway. Sci Rep 2021; 11:4391. [PMID: 33623100 PMCID: PMC7902850 DOI: 10.1038/s41598-021-83924-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
Gallbladder cancer is the most common malignant tumor of the biliary system and is characterized by difficulty to diagnose in early stages, a high degree of malignancy, and poor prognosis. Finding new drugs may improve the prognosis for this dismal cancer. Herein, we investigated the potential application of pterostilbene (PTS) against gallbladder cancer in vivo and in vitro. PTS potently inhibited cell proliferation, migration and invasion of gallbladder cancer cells. Moreover, PTS also had a function of inducing apoptosis in vitro. Meanwhile, PTS reversed EMT with a correlated inhibition of PI3K/Akt activation. Tumor xenograft models showed that PTS inhibited tumor growth and had low toxicity in vivo, which were consistent with the in vitro data. These findings indicate that PTS arrests cell growth through inhibition of PI3K/AKT signaling and is a potential drug for the therapy of gallbladder cancer.
Collapse
Affiliation(s)
- Chenhao Tong
- Department of Hepatobiliary Surgery, Shaoxing Hospital, Zhejiang University School of Medicine (Shaoxing People's Hospital), No. 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Yali Wang
- Department of Hepatobiliary Surgery, Shaoxing Hospital, Zhejiang University School of Medicine (Shaoxing People's Hospital), No. 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Jiandong Li
- Department of Hepatobiliary Surgery, Shaoxing Hospital, Zhejiang University School of Medicine (Shaoxing People's Hospital), No. 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Wenda Cen
- Shaoxing University School of Medicine, Shaoxing, China
| | - Weiguang Zhang
- Department of Molecular Medicine and Clinical Laboratory, Shaoxing Second Hospital, Shaoxing, China
| | - Zhiyang Zhu
- Department of Hepatobiliary Surgery, Shaoxing Hospital, Zhejiang University School of Medicine (Shaoxing People's Hospital), No. 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Jianhua Yu
- Department of Hepatobiliary Surgery, Shaoxing Hospital, Zhejiang University School of Medicine (Shaoxing People's Hospital), No. 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China. .,Shaoxing University School of Medicine, Shaoxing, China.
| | - Baochun Lu
- Department of Hepatobiliary Surgery, Shaoxing Hospital, Zhejiang University School of Medicine (Shaoxing People's Hospital), No. 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China. .,Shaoxing University School of Medicine, Shaoxing, China.
| |
Collapse
|
7
|
Lin WS, Leland JV, Ho CT, Pan MH. Occurrence, Bioavailability, Anti-inflammatory, and Anticancer Effects of Pterostilbene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12788-12799. [PMID: 32064876 DOI: 10.1021/acs.jafc.9b07860] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Supplementation with natural compounds found in fruits and vegetables has long been associated with a reduced risk of several types of cancer. Pterostilbene is a natural stilbenoid and a dimethylated analogue of resveratrol which is found primarily in blueberries. Pterostilbene exhibits a range of pharmacological properties, particularly anti-inflammatory and anticancer effects. Due to two methoxy groups in its skeleton, pterostilbene is more lipophilic than resveratrol and thus possesses higher intestinal permeability and cellular uptake and enhanced stability. Moreover, pterostilbene exhibits less toxicity and fewer adverse effects, providing it with superior potential in cancer chemoprevention and chemotherapy applications. Numerous research studies have demonstrated that pterostilbene possesses detoxification activities, mediating the anti-inflammation response, regulating the cell cycle, augmenting apoptosis, enhancing autophagy, and inhibiting tumor angiogenesis, invasion, and metastasis by modulating signal transduction pathways which block multiple stages of carcinogenesis. In this review, we illustrate that pterostilbene is a natural compound having bioavailability. The extensive metabolism of pterostilbene will be discussed. We also summarize recent research on pterostilbene's anti-inflammatory and anticancer properties in the multistage carcinogenesis process and related molecular mechanism and conclude that it should contribute to improved cancer management.
Collapse
Affiliation(s)
- Wei-Sheng Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901-8520, United States
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
8
|
Review of Natural Compounds for the Management and Prevention of Lymphoma. Processes (Basel) 2020. [DOI: 10.3390/pr8091164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lymphoma is a type of blood cancer that can be categorized into two types-Hodgkin lymphoma (HL) and Non-Hodgkin lymphoma (NHL). A total of 509,590 and 79,990 cases of NHL and HL were newly diagnosed in 2018, respectively. Although conventional therapy has stridden forward over recent decades, its adverse effects are still a hurdle to be solved. Thus, to help researchers develop better lymphoma treatment, this study aims to review the systematic anticancer data for natural products and their compounds. A variety of natural products showed anticancerous effects on lymphoma by regulation of intracellular mechanisms including apoptosis as well as cell cycle arrest. As these results shed light on the potential to substitute conventional therapy with natural products, it may become a promising strategy for lymphoma treatment in the near future.
Collapse
|
9
|
Arenas DJ, Floess K, Kobrin D, Pai RAL, Srkalovic MB, Tamakloe MA, Rasheed R, Ziglar J, Khor J, Parente SAT, Pierson SK, Martinez D, Wertheim GB, Kambayashi T, Baur J, Teachey DT, Fajgenbaum DC. Increased mTOR activation in idiopathic multicentric Castleman disease. Blood 2020; 135:1673-1684. [PMID: 32206779 PMCID: PMC7205815 DOI: 10.1182/blood.2019002792] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
Idiopathic multicentric Castleman disease (iMCD) is a rare and poorly understood hematologic disorder characterized by lymphadenopathy, systemic inflammation, cytopenias, and life-threatening multiorgan dysfunction. Interleukin-6 (IL-6) inhibition effectively treats approximately one-third of patients. Limited options exist for nonresponders, because the etiology, dysregulated cell types, and signaling pathways are unknown. We previously reported 3 anti-IL-6 nonresponders with increased mTOR activation who responded to mTOR inhibition with sirolimus. We investigated mTOR signaling in tissue and serum proteomes from iMCD patients and controls. mTOR activation was increased in the interfollicular space of iMCD lymph nodes (N = 26) compared with control lymph nodes by immunohistochemistry (IHC) for pS6, p4EBP1, and p70S6K, known effectors and readouts of mTORC1 activation. IHC for pS6 also revealed increased mTOR activation in iMCD compared with Hodgkin lymphoma, systemic lupus erythematosus, and reactive lymph nodes, suggesting that the mTOR activation in iMCD is not just a product of lymphoproliferation/inflammatory lymphadenopathy. Further, the degree of mTOR activation in iMCD was comparable to autoimmune lymphoproliferative syndrome, a disease driven by mTOR hyperactivation that responds to sirolimus treatment. Gene set enrichment analysis of serum proteomic data from iMCD patients (n = 88) and controls (n = 42) showed significantly enriched mTORC1 signaling. Finally, functional studies revealed increased baseline mTOR pathway activation in peripheral monocytes and T cells from iMCD remission samples compared with healthy controls. IL-6 stimulation augmented mTOR activation in iMCD patients, which was abrogated with JAK1/2 inhibition. These findings support mTOR activation as a novel therapeutic target for iMCD, which is being investigated through a trial of sirolimus (NCT03933904).
Collapse
Affiliation(s)
- Daniel J Arenas
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Katherine Floess
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Dale Kobrin
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ruth-Anne Langan Pai
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Maya B Srkalovic
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mark-Avery Tamakloe
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Rozena Rasheed
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jasira Ziglar
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Johnson Khor
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sophia A T Parente
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sheila K Pierson
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Gerald B Wertheim
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Taku Kambayashi
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Joseph Baur
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David T Teachey
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - David C Fajgenbaum
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
10
|
He W, Xu Z, Song D, Zhang H, Li B, Gao L, Zhang Y, Feng Q, Yu D, Hu L, Chen G, Tao Y, Wu X, Shi J, Zhu W. Antitumor effects of rafoxanide in diffuse large B cell lymphoma via the PTEN/PI3K/Akt and JNK/c-Jun pathways. Life Sci 2020; 243:117249. [PMID: 31926247 DOI: 10.1016/j.lfs.2019.117249] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/19/2019] [Accepted: 12/29/2019] [Indexed: 12/22/2022]
Abstract
AIMS Diffuse large B-cell lymphoma (DLBCL) is one of the most aggressive lymphoid malignancies, which remains incurable, thus warranting the development of new therapies. Our previous study determined that rafoxanide is very effective in treating multiple myeloma (MM). In the present study, we tried to evaluate the effects of rafoxanide on DLBCL, as well as the potential underlying molecular mechanisms. MAIN METHODS We used CCK-8 assay and flow cytometry to assess cell viability and apoptosis. The proteins and pathways associated with apoptosis and proliferation were evaluated through western blot, and xenograft mice were used as the experimental animal model. We also used the TUNEL assay and immunofluorescence for further analyses. KEY FINDINGS Treatment with different doses of rafoxanide significantly inhibited cell viability and apoptosis. Additionally, the compound induced cell cycle arrest, reduced mitochondrial membrane potential (Δψm), and stimulated reactive oxygen species (ROS) generation without the influence of normal peripheral blood monocytes (PBMCs). As expected, rafoxanide played a role in regulating these proteins and the PTEN/PI3K/AKT and JNK/c-Jun pathways. Furthermore, immunofluorescence and western blot results showed that rafoxanide upregulated H2AX phosphorylation and then inhibited DNA repair in DLBCL. In the xenograft mouse model, tumor volumes were reduced after intraperitoneal injection with rafoxanide. We also observed that TUNEL positive cells were remarkably increased in rafoxanide-treated tumor tissues. SIGNIFICANCE These results collectively provide a novel choice to regular treatment for DLBCL patients with poor prognosis.
Collapse
Affiliation(s)
- Wan He
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dongliang Song
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hui Zhang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Bo Li
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lu Gao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yong Zhang
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qilin Feng
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Dandan Yu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Liangning Hu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Gege Chen
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yi Tao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaosong Wu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jumei Shi
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
11
|
Raimondi V, Ciccarese F, Ciminale V. Oncogenic pathways and the electron transport chain: a dangeROS liaison. Br J Cancer 2019; 122:168-181. [PMID: 31819197 PMCID: PMC7052168 DOI: 10.1038/s41416-019-0651-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
Driver mutations in oncogenic pathways, rewiring of cellular metabolism and altered ROS homoeostasis are intimately connected hallmarks of cancer. Electrons derived from different metabolic processes are channelled into the mitochondrial electron transport chain (ETC) to fuel the oxidative phosphorylation process. Electrons leaking from the ETC can prematurely react with oxygen, resulting in the generation of reactive oxygen species (ROS). Several signalling pathways are affected by ROS, which act as second messengers controlling cell proliferation and survival. On the other hand, oncogenic pathways hijack the ETC, enhancing its ROS-producing capacity by increasing electron flow or by impinging on the structure and organisation of the ETC. In this review, we focus on the ETC as a source of ROS and its modulation by oncogenic pathways, which generates a vicious cycle that resets ROS levels to a higher homoeostatic set point, sustaining the cancer cell phenotype.
Collapse
Affiliation(s)
| | | | - Vincenzo Ciminale
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy. .,Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy.
| |
Collapse
|