Siddique A, Park YW. Effect of iron fortification on microstructural, textural, and sensory characteristics of caprine milk Cheddar cheeses under different storage treatments.
J Dairy Sci 2019;
102:2890-2902. [PMID:
30738674 DOI:
10.3168/jds.2018-15427]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/09/2018] [Indexed: 12/20/2022]
Abstract
In this study, we manufactured 3 types of caprine milk Cheddar cheese: a control cheese (unfortified) and 2 iron-fortified cheeses, one of which used regular ferrous sulfate (RFS) and the other used large microencapsulated ferrous sulfate (LMFS). We then compared the iron recovery rates and the microstructural, textural, and sensory properties of the 3 cheeses under different storage conditions (temperature and duration). Compositional analysis included fat, protein, ash, and moisture contents. The RFS (FeSO4·7H2O) and LMFS (with 700- to 800-μm large particle ferrous sulfate encapsulated in nonhydrogenated vegetable fat) were added to cheese curds after whey draining and were thoroughly mixed before hooping and pressing the cheese. Three batches of each type of goat cheese were stored at 2 temperatures (4°C and -18°C) for 0, 2, and 4 mo. We analyzed the microstructure of cheese using scanning electron microscopy and image analysis software. A sensory panel (n = 8) evaluated flavors and overall acceptability of cheeses using a 10-point intensity score. Results showed that the control, RFS, and LMFS cheeses contained 0.0162, 0.822, and 0.932 mg of Fe/g of cheese, respectively, with substantially higher iron levels in both fortified cheeses. The iron recovery rates of RFS and LMFS were 71.9 and 73.5%, respectively. Protein, fat, and ash contents (%) of RFS and LMFS cheeses were higher than those of the control. Scanning electron microscopy analyses revealed that LMFS cheese contained smaller and more elongated sharp-edged iron particles, whereas RFS cheese had larger-perimeter rectangular iron crystals. Iron-fortified cheeses generally had higher hardness and gumminess scores than the control cheese. The higher hardness in iron-fortified cheeses compared with the control may be attributed to proteolysis of the protein matrix and its binding with iron crystals during storage. Control cheese had higher sensory scores than the 2 iron-fortified cheeses, and LMFS cheese had the lowest scores for all tested sensory properties.
Collapse