1
|
Yu Y, Wu Y, Xie L, Chang C. The effect of water-soluble tomato concentrate on elevated serum cholesterol in the middle-aged and elderly Chinese individuals. Front Nutr 2024; 11:1410420. [PMID: 39323569 PMCID: PMC11422214 DOI: 10.3389/fnut.2024.1410420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/21/2024] [Indexed: 09/27/2024] Open
Abstract
Water-soluble tomato concentrate (WSTC) has demonstrated beneficial effect on blood flow in healthy populations. The prospective, randomized, double-blind, and placebo-controlled clinical trial was conducted to explore the impact of WSTC on individuals with elevated cholesterol levels. Sixty participants aged 35-65 with high cholesterol were enrolled and evenly divided into a treatment group (FFG) and a placebo group (PCG). Over a 60-day period comprising a 45-day treatment phase followed by a 15-day observational follow-up. Participants in the FFG received 300 mg daily of Fruitflow tablets, while the PCG were received placebos. The study showed that there were no significant differences in baseline parameters between the FFG and PCG (p > 0.05). Post-intervention, the FFG exhibited significant reductions in systolic blood pressure (SBP) and diastolic blood pressure (DBP) by 4.2% (SBP, p < 0.001) and 3.8% (DBP, p = 0.015), respectively, compared to the PCG (p = 0.041). These reductions were sustained during the follow-up period. In contrast, the PCG showed no significant changes in SBP and DBP (p > 0.05). Stratified analysis by hypertension status revealed a significant SBP reductions both hypertensive and non-hypertensive FFG subjects (p < 0.05), with a trend towards DBP reduction. No significant changes in SBP and DBP were observed in the PCG. Moreover, the FFG group showed a significant increase in high-density lipoprotein (HDL) cholesterol (p < 0.05), along with a marked reduction in both weight and body mass index (BMI) (p < 0.05). The FFG also showed decreased levels of homocysteine, high-sensitivity C-reactive protein, and fasting blood glucose compared to the PCG (p < 0.05). In conclusion, WSTC has the potential to lower blood pressure and cardiovascular risk profiles in hypercholesterolemic individuals, presenting a viable non-harmacological option for enhancing cardiovascular health. Clinical trial registration: https://www.chictr.org.cn/showproj.html?proj=27052, identifier ChiCTR1800015904.
Collapse
Affiliation(s)
- Yingxiang Yu
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine, Peking University, Beijing, China
| | - Yifan Wu
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine, Peking University, Beijing, China
| | - Lan Xie
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine, Peking University, Beijing, China
| | - Cuiqing Chang
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine, Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
| |
Collapse
|
2
|
Amjadi A, Alami F, Mohammadian MK, Mirshafaei SR, Azaryan F, Houshiar-Rad A, Esmaeili M, Shekari S, Abdollahi M, Khoshdooz S, Ajami M, Doaei S, Gholamalizadeh M. Association between ischemic heart disease and dietary intake of lycopene: a case-control study. Front Nutr 2024; 10:1281539. [PMID: 38264195 PMCID: PMC10804451 DOI: 10.3389/fnut.2023.1281539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/06/2023] [Indexed: 01/25/2024] Open
Abstract
Aim The effect of dietary lycopene on ischemic heart disease (IHD) is not clear. Hence, this study aimed to determine the association between dietary lycopene and IHD. Methods This case-control study was conducted on 443 patients with physician confirmed diagnosis of IHD as the case group and 443 healthy individuals as the control group. Data on demographic, medical history, anthropometric, and physical activity of the participants were collected. Food intake was evaluated using a 237-item semi-quantitative food frequency questionnaire (FFQ). The dietary intake of lycopene was assessed using Nutritionist IV software. Results A negative association was found between IHD and lycopene (OR: 0.98, CI 95%: 0.963-0.996, p = 0.02). The results remained significant after adjustment for age and sex, additional adjustment for dietary intake of calorie and fat, further adjustments for BMI, and additional adjustment for smoking, drinking alcohol, and physical activity. The risk of IHD in people with the highest quartile of dietary intake of lycopene was significantly lower than those with the lowest quartile (OR = 0.67, CI 95%: 0.46-0.97, p = 0.036). Conclusion There was a significant inverse relationship between intake of lycopene and IHD. Further prospective studies in different populations are required to elucidate the roles of lycopene against IHD.
Collapse
Affiliation(s)
- Arezoo Amjadi
- Department of Nutrition, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farkhondeh Alami
- Student Research Committee, Department of Nutrition, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Seyed Reza Mirshafaei
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Roudsar and Amlash Branch, Islamic Azad University, Roudsar, Iran
| | - Fatemeh Azaryan
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Anahita Houshiar-Rad
- Department of Nutrition Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Esmaeili
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute, School of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Shekari
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Morteza Abdollahi
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute; and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Khoshdooz
- Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Marjan Ajami
- Department of Food and Nutrition Policy and Planning, National Nutrition and Food Technology Research Institute, School of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Doaei
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Gholamalizadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
López-Yerena A, Padro T, de Santisteban Villaplana V, Muñoz-García N, Pérez A, Vilahur G, Badimon L. Vascular and Platelet Effects of Tomato Soffritto Intake in Overweight and Obese Subjects. Nutrients 2023; 15:5084. [PMID: 38140343 PMCID: PMC10745891 DOI: 10.3390/nu15245084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Tomatoes are known for their numerous health benefits, including antioxidants, anti-cancer, antimicrobial, anti-inflammatory, anti-neurodegenerative, antiplatelet, and cardio-protective properties. However, their potential health benefits in the Mediterranean diet's popular soffritto remain largely unexplored in scientific research. The objective was to evaluate the effects of soffritto intake on platelet activity, vascular endothelial function, weight, lipid profile, and blood parameters. In a prospective, controlled, randomized two-arm longitudinal cross-over trial, 40 overweight and obese individuals received 100 g/day of soffritto, or a control, for 42 days. The primary outcome was the effect on vascular endothelial function and platelet activity. As exploratory secondary outcomes, anthropometric measures, serum lipid profile, and hemogram profile were measured before and after a 6-week intervention with or without soffritto supplementation. Compared with the control group, soffritto supplementation for six weeks improved collagen-induced (-5.10 ± 3.06%) platelet aggregation (p < 0.05). In addition, after six weeks, a reduction in ADP-induced aggregation (-3.67 ± 1.68%) was also only observed in the soffritto group (p < 0.05). No significant effects of the soffritto intake were observed on vascular endothelial function, anthropometric measures, serum lipid profile, or blood parameters (p > 0.05). In conclusion, as a basic culinary technique, soffritto may have a role in the primary prevention of cardiovascular disease by reducing platelet activation, which could contribute to a reduction in thrombotic events.
Collapse
Affiliation(s)
- Anallely López-Yerena
- Cardiovascular Program-ICCC, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain; (A.L.-Y.); (T.P.); (V.d.S.V.); (N.M.-G.); (G.V.)
| | - Teresa Padro
- Cardiovascular Program-ICCC, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain; (A.L.-Y.); (T.P.); (V.d.S.V.); (N.M.-G.); (G.V.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Victoria de Santisteban Villaplana
- Cardiovascular Program-ICCC, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain; (A.L.-Y.); (T.P.); (V.d.S.V.); (N.M.-G.); (G.V.)
- Faculty of Pharmacy, University of Barcelona, 08036 Barcelona, Spain
| | - Natàlia Muñoz-García
- Cardiovascular Program-ICCC, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain; (A.L.-Y.); (T.P.); (V.d.S.V.); (N.M.-G.); (G.V.)
| | - Antonio Pérez
- Servicio de Endocrinología y Nutrición, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08041 Barcelona, Spain
| | - Gemma Vilahur
- Cardiovascular Program-ICCC, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain; (A.L.-Y.); (T.P.); (V.d.S.V.); (N.M.-G.); (G.V.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Lina Badimon
- Cardiovascular Program-ICCC, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain; (A.L.-Y.); (T.P.); (V.d.S.V.); (N.M.-G.); (G.V.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cardiovascular Research Chair, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| |
Collapse
|
4
|
Zuzunaga-Rosas J, González-Orenga S, Calone R, Rodríguez-Heredia R, Asaff-Torres A, Boscaiu M, Ibáñez-Asensio S, Moreno-Ramón H, Vicente O. Use of a Biostimulant to Mitigate the Effects of Excess Salinity in Soil and Irrigation Water in Tomato Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:1190. [PMID: 36904049 PMCID: PMC10005399 DOI: 10.3390/plants12051190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Global warming is linked to progressive soil salinisation, which reduces crop yields, especially in irrigated farmland on arid and semiarid regions. Therefore, it is necessary to apply sustainable and effective solutions that contribute to enhanced crop salt tolerance. In the present study, we tested the effects of a commercial biostimulant (BALOX®) containing glycine betaine (GB) and polyphenols on the activation of salinity defense mechanisms in tomato. The evaluation of different biometric parameters and the quantification of biochemical markers related to particular stress responses (osmolytes, cations, anions, oxidative stress indicators, and antioxidant enzymes and compounds) was carried out at two phenological stages (vegetative growth and the beginning of reproductive development) and under different salinity conditions (saline and non-saline soil, and irrigation water), using two formulations (different GB concentrations) and two doses of the biostimulant. Once the experiments were completed, the statistical analysis revealed that both formulations and doses of the biostimulant produced very similar effects. The application of BALOX® improved plant growth and photosynthesis and assisted osmotic adjustment in root and leaf cells. The biostimulant effects are mediated by the control of ion transport, reducing the uptake of toxic Na+ and Cl- ions and favoring the accumulation of beneficial K+ and Ca2+ cations, and a significant increase in leaf sugar and GB contents. BALOX® significantly reduced salt-induced oxidative stress and its harmful effects, as evidenced by a decrease in the concentration of oxidative stress biomarkers, such as malondialdehyde and oxygen peroxide, which was accompanied by the reduction of proline and antioxidant compound contents and the specific activity of antioxidant enzymes with respect to the non-treated plants.
Collapse
Affiliation(s)
- Javier Zuzunaga-Rosas
- Department of Plant Production, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain (H.M.-R.)
- Innovak Global S. A. de C. V., Blvd. Lombardo Toledano 6615, La Concordia, Chihuahua 31375, Mexico
| | - Sara González-Orenga
- Department of Plant Biology and Soil Science, Universidad de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Roberta Calone
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Council for Agricultural Research and Economics (CREA), Research Centre for Agriculture and Environment, I-40128 Bologna, I-00184 Rome, Italy
| | - Raúl Rodríguez-Heredia
- Innovak Global S. A. de C. V., Blvd. Lombardo Toledano 6615, La Concordia, Chihuahua 31375, Mexico
| | - Ali Asaff-Torres
- Innovak Global S. A. de C. V., Blvd. Lombardo Toledano 6615, La Concordia, Chihuahua 31375, Mexico
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A. C. Carretera Gustavo Enrique Astiazarán Rosas No. 46, La Victoria, Hermosillo 83304, Mexico
| | - Monica Boscaiu
- Mediterranean Agroforestry Institute (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Sara Ibáñez-Asensio
- Department of Plant Production, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain (H.M.-R.)
| | - Héctor Moreno-Ramón
- Department of Plant Production, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain (H.M.-R.)
| | - Oscar Vicente
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
5
|
Quintal Martínez JP, Segura Campos MR. Bioactive compounds and functional foods as coadjuvant therapy for thrombosis. Food Funct 2023; 14:653-674. [PMID: 36601778 DOI: 10.1039/d2fo03171j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death. The most common cardiovascular pathologies are thromboembolic diseases. Antithrombotic therapy prevents thrombus formation or dissolves that previously constituted. However, it presents a high rate of accidents such as gastric bleeding and cerebrovascular embolism. Plant foods and their secondary metabolites have been reported to regulate blood hemostasis. This review article aims to propose plant foods and their metabolites as adjuvant therapy for the management of thromboembolic diseases. Various databases were consulted, using antiplatelet, anticoagulant, and fibrinolytic as key terms. In total, 35 foods and 24 secondary metabolites, via in vitro, in vivo, and clinical studies, have been reported to regulate platelet aggregation, blood coagulation, and fibrinolysis. According to the studies presented in this review, plant foods with effects at concentrations less than 50 μg mL-1 and secondary metabolites with IC50 less than 100 μM can be considered agents with high antithrombotic potential. This review suggests that plant foods and their secondary metabolites should be used to develop foods, ingredients and nutraceuticals with functional properties. The evidence presented in this review shows that plant foods and their bioactive compounds could be used as adjuvants for the treatment and prevention of thrombotic complications. However, further in vivo and clinical trials are required to establish effective and safe doses.
Collapse
|
6
|
El-Baky NA, Amara AAAF, Redwan EM. Nutraceutical and therapeutic importance of clots and their metabolites. NUTRACEUTICALS 2023:241-268. [DOI: 10.1016/b978-0-443-19193-0.00009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
7
|
Rehman A, Tyree SM, Fehlbaum S, DunnGalvin G, Panagos CG, Guy B, Patel S, Dinan TG, Duttaroy AK, Duss R, Steinert RE. A water-soluble tomato extract rich in secondary plant metabolites lowers trimethylamine-n-oxide and modulates gut microbiota: a randomized, double-blind, placebo-controlled cross-over study in overweight and obese adults. J Nutr 2023; 153:96-105. [PMID: 36913483 DOI: 10.1016/j.tjnut.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/26/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Natural products rich in polyphenols have been shown to lower plasma trimethylamine-n-oxide (TMAO) known for its proatherogenic effects by modulating the intestinal microbiota. OBJECTIVES We aimed to determine the impact of Fruitflow, a water-soluble tomato extract, on TMAO, fecal microbiota, and plasma and fecal metabolites. METHODS Overweight and obese adults (n = 22, BMI 28-35 kg/m2) were included in a double-blind, placebo-controlled, cross-over study receiving 2×150 mg Fruitflow per day or placebo (maltodextrin) for 4 wk with a 6-week wash-out between interventions. Stool, blood, and urine samples were collected to assess changes in plasma TMAO (primary outcome) as well as fecal microbiota, fecal and plasma metabolites, and urine TMAO (secondary outcomes). In a subgroup (n = 9), postprandial TMAO was evaluated following a choline-rich breakfast (∼450 mg). Statistical methods included paired t-tests or Wilcoxon signed rank tests and permutational multivariate analysis of variance. RESULTS Fruitflow, but not placebo, reduced fasting levels of plasma (-1.5 μM, P ≤ 0.05) and urine (-19.1 μM, P ≤ 0.01) TMAO as well as plasma lipopolysaccharides (-5.3 ng/mL, P ≤ 0.05) from baseline to the end of intervention. However, these changes were significant only for urine TMAO levels when comparing between the groups (P ≤ 0.05). Changes in microbial beta, but not alpha, diversity paralleled this with a significant difference in Jaccard distance-based Principal Component (P ≤ 0.05) as well as decreases in Bacteroides, Ruminococccus, and Hungatella and increases in Alistipes when comparing between and within groups (P ≤ 0.05, respectively). There were no between-group differences in SCFAs and bile acids (BAs) in both faces and plasma but several changes within groups such as an increase in fecal cholic acid or plasma pyruvate with Fruitflow (P ≤ 0.05, respectively). An untargeted metabolomic analysis revealed TMAO as the most discriminant plasma metabolite between groups (P ≤ 0.05). CONCLUSIONS Our results support earlier findings that polyphenol-rich extracts can lower plasma TMAO in overweight and obese adults related to gut microbiota modulation. This trial was registered at clinicaltrials.gov as NCT04160481 (https://clinicaltrials.gov/ct2/show/NCT04160481?term= Fruitflow&draw= 2&rank= 2).
Collapse
Affiliation(s)
| | | | | | | | | | - Bertrand Guy
- DSM Nutritional Products, Kaiseraugst, Switzerland
| | | | - Timothy G Dinan
- Atlantia Clinical Trials, Cork, Ireland, APC Microbiome Ireland, Cork, Ireland, Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Nutrition, Faculty of Medicine, University of Oslo, Norway
| | - Ruedi Duss
- DSM Nutritional Products, Kaiseraugst, Switzerland
| | - Robert E Steinert
- DSM Nutritional Products, Kaiseraugst, Switzerland; Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
8
|
Effect of fruitflow on platelet function: A randomized placebo-controlled clinical trial in middle-aged and elderly subjects. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
9
|
Das D, Adhikary S, Das RK, Banerjee A, Radhakrishnan AK, Paul S, Pathak S, Duttaroy AK. Bioactive food components and their inhibitory actions in multiple platelet pathways. J Food Biochem 2022; 46:e14476. [PMID: 36219755 DOI: 10.1111/jfbc.14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2022] [Accepted: 09/27/2022] [Indexed: 01/14/2023]
Abstract
In addition to hemostasis and thrombosis, blood platelets are involved in various processes such as inflammation, infection, immunobiology, cancer metastasis, wound repair and angiogenesis. Platelets' hemostatic and non-hemostatic functions are mediated by the expression of various membrane receptors and the release of proteins, ions and other mediators. Therefore, specific activities of platelets responsible for the non-hemostatic disease are to be inhibited while leaving the platelet's hemostatic function unaffected. Platelets' anti-aggregatory property has been used as a primary criterion for antiplatelet drugs/bioactives; however, their non-hemostatic activities are not well known. This review describes the hemostatic and non-hemostatic function of human blood platelets and the modulatory effects of bioactive food components. PRACTICAL APPLICATIONS: In this review, we have discussed the antiplatelet effects of several food components. These bioactive compounds inhibit both hemostatic and non-hemostatic pathways involving blood platelet. Platelets have emerged as critical biological factors of normal and pathologic vascular healing and other diseases such as cancers and inflammatory and immune disorders. The challenge for therapeutic intervention in these disorders will be to find drugs and bioactive compounds that preferentially block specific sites implicated in emerging roles of platelets' complicated contribution to inflammation, tumour growth, or other disorders while leaving at least some of their hemostatic function intact.
Collapse
Affiliation(s)
- Diptimayee Das
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Shubhamay Adhikary
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Ranjit Kumar Das
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Arun Kumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Queretaro, Mexico
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Liu L, Xiao S, Wang Y, Wang Y, Liu L, Sun Z, Zhang Q, Yin X, Liao F, You Y, Zhang X. Water-soluble tomato concentrate modulates shear-induced platelet aggregation and blood flow in vitro and in vivo. Front Nutr 2022; 9:961301. [PMID: 36118749 PMCID: PMC9478107 DOI: 10.3389/fnut.2022.961301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Water-soluble tomato concentrate (WSTC), extracted from mature tomatoes, is the first health product in Europe that has been approved “to help maintain normal platelet activity to maintain healthy blood flow.” We hypothesized that WSTC might exert an influence on blood flow shear stress-induced platelet aggregation (SIPA) and in turn maintains healthy blood flow. We used a microfluidic system to measure the effects of WSTC on SIPA in vitro. We also used the strenuous exercise rat model and the κ-carrageenan-induced rat tail thrombosis model to demonstrate the effects of WSTC on blood flow. WSTC significantly inhibited platelet aggregation at pathological high shear rate of 4,000 s–1 and 8,000 s–1in vitro (P < 0.05 or P < 0.01). WSTC reduced the platelet adhesion rate and increased the rolling speed of platelets by inhibiting binding to Von Willebrand Factor (vWF) (P < 0.05 or P < 0.01). The oral administration of WSTC for 4 weeks in strenuous exercise rats alleviated hyper-reactivity of the platelets and led to a significant reduction in the plasma levels of catecholamine and IL-6. WSTC treatment also led to a reduction in black tail length, reduced blood flow pulse index (PI) and vascular resistance index (RI), and ameliorated local microcirculation perfusion in a rat model of thrombosis. WSTC exerted obvious inhibitory effects on the platelet aggregation induced by shear flow and alleviated the blood flow and microcirculation abnormities induced by an inflammatory reaction.
Collapse
Affiliation(s)
- Lu Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shunli Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yilin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yufang Wang
- Byhealth Institute of Nutrition and Health, Guangzhou, China
| | - Lei Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhengxiao Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaojie Yin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fulong Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yun You
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yun You,
| | - Xuguang Zhang
- Byhealth Institute of Nutrition and Health, Guangzhou, China
- Xuguang Zhang,
| |
Collapse
|
11
|
Water-Soluble Tomato Concentrate, a Potential Antioxidant Supplement, Can Attenuate Platelet Apoptosis and Oxidative Stress in Healthy Middle-Aged and Elderly Adults: A Randomized, Double-Blinded, Crossover Clinical Trial. Nutrients 2022; 14:nu14163374. [PMID: 36014880 PMCID: PMC9412583 DOI: 10.3390/nu14163374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Increased oxidative stress and platelet apoptotic in middle-aged and elderly adults are important risk factors for atherosclerotic cardiovascular disease (ASCVD). Therefore, it is of great significance to control the oxidative stress and platelet apoptosis in middle-aged and elderly adults. Previous acute clinical trials have shown that water-soluble tomato concentrate (WSTC) from fresh tomatoes could exert antiplatelet benefits after 3 h or 7 h, but its effects on platelet apoptosis and oxidative stress are still unknown, especially in healthy middle-aged and elderly adults. This current study aimed to examine the efficacies of WSTC on platelet apoptosis and oxidative stress in healthy middle-aged and elderly adults via a randomized double-blinded placebo-controlled crossover clinical trial (10 weeks in total). A total of 52 healthy middle-aged and elderly adults completed this trial. The results showed that WSTC could increase the serum total antioxidant capacity levels (p < 0.05) and decrease the serum malondialdehyde levels (p < 0.05) after a 4-week WSTC supplementation in healthy middle-aged and elderly adults. Platelet endogenous reactive oxygen species generation (p < 0.05), mitochondrial membrane potential dissipation (p < 0.05) and phosphatidylserine exposure (p < 0.05) were attenuated. In addition, our present study also found that WSTC could inhibit platelet aggregation and activation induced by collagen or ADP after intervention (p < 0.05), while having no effects on adverse events (p > 0.05). The results suggest that WSTC can inhibit oxidative stress and its related platelet apoptosis, which may provide a basis for the primary prevention of WSTC in ASCVD.
Collapse
|
12
|
Tian Z, Fan D, Li K, Zhao D, Liang Y, Ji Q, Gao X, Ma X, Zhao Y, Mao Y, Meng H, Yang Y. Four-Week Supplementation of Water-Soluble Tomato Extract Attenuates Platelet Function in Chinese Healthy Middle-Aged and Older Individuals: A Randomized, Double-Blinded, and Crossover Clinical Trial. Front Nutr 2022; 9:891241. [PMID: 35719156 PMCID: PMC9199899 DOI: 10.3389/fnut.2022.891241] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/25/2022] [Indexed: 12/19/2022] Open
Abstract
Background and Aims Platelets are linked to atherosclerotic development and pathological thrombosis. Single dose of water-soluble tomato extract (WTE) which is a natural extraction can exert anti-platelet effects after 3 or 7 h in British healthy people. However, the effects of WTE supplementation on platelet function in Chinese healthy middle-aged and older individuals have not been studied, and the effects or safety of 4-week WTE supplementation also remain unclear. The present study aims to determine the effects of WTE on platelet function, and explore the safety of 4-week WTE supplementation in Chinese healthy middle-aged and older individuals. Methods A randomized, double-blinded, and crossover clinical trial was conducted. Firstly, 105 individuals were randomly divided into two groups that received WTE (150 mg/day) or placebo for 4 weeks. Then, after a washout period of 2 weeks, two groups exchanged groups and continued for another 4-week intervention. Platelet aggregation, P-selectin, activated GPIIbIIIa, plasma platelet factor 4 (PF4), β-thromboglobulin (β-TG), and thromboxane B2 (TXB2) were tested at baseline, 4, 6, and 10 weeks. Results Compared with the placebo group, 150 mg/day WTE supplement for 4 weeks significantly reduced ADP-induced or collagen-induced platelet aggregation (−10.8 ± 1.8 or −3.9 ± 1.5%, P < 0.05), ADP-induced or collagen-induced platelet P-selectin expression (−6.9 ± 1.5 or −6.6 ± 1.3%, P < 0.05), ADP-induced or collagen-induced activated GPIIbIIIa (−6.2 ± 2.0 or −3.8 ± 2.0%, P < 0.05). Besides, 4-week intervention of 150 mg WTE per day also resulted in significant reductions in plasma PF4 (−120.6 ± 33.2 ng/mL, P < 0.05) and β-TG (−129.7 ± 27.5 ng/mL, P < 0.05) and TXB2 (−42.0 ± 4.0 ng/mL, P < 0.05), while had no effects on coagulation function and liver or renal function. Interestingly, 2-week washout period is enough to reverse the inhibitory effect of 4-week WTE supplementation on platelet function. Conclusion WTE supplementation for 4 weeks could moderately reduce platelet activation, aggregation, and granule secretion in Chinese healthy middle-aged and older individuals, and these effects are safe. After 2-week washout period, the inhibitory effect of 4-week WTE on platelet function can be eliminated. Clinical Trial Registration [http://www.chictr.org.cn/], identifier [ChiCTR-POR-17012927].
Collapse
Affiliation(s)
- Zezhong Tian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, China
| | - Die Fan
- Department of Clinical Nutrition, The General Hospital of Western Theater Command, Chengdu, China
| | - Kongyao Li
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Dan Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, China
| | - Ying Liang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, China
| | - Qiuhua Ji
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, China
| | - Xiaoli Gao
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xilin Ma
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, China
| | - Yimin Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, China
| | - Yuheng Mao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, China
| | - Huicui Meng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, China
- *Correspondence: Huicui Meng,
| | - Yan Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, China
- Yan Yang,
| |
Collapse
|
13
|
Valorization Potential of Tomato (Solanum lycopersicum L.) Seed: Nutraceutical Quality, Food Properties, Safety Aspects, and Application as a Health-Promoting Ingredient in Foods. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030265] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The tomato is a member of the Solanaceae family and is a crop that is widely cultivated around the world due to its sweet, sour, salty, juicy, and nutritious berries. The processing of tomatoes generates a significant amount of waste in the form of tomato pomace, which includes seeds and skin. Tomato seeds are reservoirs of various nutrients, such as proteins, carbohydrates, lipids, minerals, and vitamins. These components make tomato seeds an important ingredient for application in food matrices. This review discusses the functional food properties of tomato seeds and their scope of utilization as major ingredients in the functional food industry. In addition, this review describes the development of tomato seeds as a potential nutritional and nutraceutical ingredient, along with recent updates on research conducted worldwide. This is the first review that demonstrates the nutritional profile of tomato seeds along with its diverse functional food properties and application as a functional food ingredient.
Collapse
|
14
|
Cámara M, Fernández-Ruiz V, Sánchez-Mata MC, Cámara RM, Domínguez L, Sesso HD. Scientific Evidence of the Beneficial Effects of Tomato Products on Cardiovascular Disease and Platelet Aggregation. Front Nutr 2022; 9:849841. [PMID: 35369095 PMCID: PMC8965467 DOI: 10.3389/fnut.2022.849841] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular disease (CVD) includes a group of disorders of the heart and blood vessels that includes numerous problems, many of which are related to the process called atherosclerosis. The present work is aimed to analyze the most relevant studies examining the potentially beneficial effects of tomato products on both CVD prevention and antiplatelet aggregation as well as an European Food Safety Authority health claims evaluation on tomato and tomato products. To date, only one health claim has been approved for a concentrated extract of tomato soluble in water (WSTC) marketed under the patented name of Fruitflow® with two forms of presentation: WSTC I and II, with the following claim “helping to maintain normal platelet aggregation, which contributes to healthy blood flow.” Other studies also demonstrate similar beneficial effects for fresh tomatoes, tomato products and tomato pomace extracts.
Collapse
Affiliation(s)
- Montaña Cámara
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- *Correspondence: Montaña Cámara
| | - Virginia Fernández-Ruiz
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - María-Cortes Sánchez-Mata
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Rosa M. Cámara
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Laura Domínguez
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Howard D. Sesso
- Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
15
|
Tomatoes: An Extensive Review of the Associated Health Impacts of Tomatoes and Factors That Can Affect Their Cultivation. BIOLOGY 2022; 11:biology11020239. [PMID: 35205105 PMCID: PMC8869745 DOI: 10.3390/biology11020239] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary The research outlined in this review paper discusses potential health benefits associated with a diet enriched with tomatoes and tomato products. This includes details of previous studies investigating the anticancer properties of tomatoes, protection against cardiovascular and neurodegenerative diseases and diabetes, maintenance of a healthy gut microbiome, and improved skin health, fertility, immune response, and exercise recovery. The specific parts of a tomato fruit that contribute these health benefits are also outlined. The potential disadvantages to a tomato-rich diet are detailed, especially the consumption of supplements that contain compounds found in tomatoes, such as lycopene. This review also discusses how the cultivation of tomato plants can affect the nutritional value of the fruit harvested. Different environmental growing conditions such as light intensity, growing media, and temperature are explained in terms of the impact they have on the quality of fruit, its nutrient content, and hence the potential health benefits acquired from eating the fruit. Abstract This review outlines the health benefits associated with the regular consumption of tomatoes and tomato products. The first section provides a detailed account of the horticultural techniques that can impact the quality of the fruit and its nutritional properties, including water availability, light intensity, temperature, and growing media. The next section provides information on the components of tomato that are likely to contribute to its health effects. The review then details some of the health benefits associated with tomato consumption, including anticancer properties, cardiovascular and neurodegenerative diseases and skin health. This review also discusses the impact tomatoes can have on the gut microbiome and associated health benefits, including reducing the risk of inflammatory bowel diseases. Other health benefits of eating tomatoes are also discussed in relation to effects on diabetes, the immune response, exercise recovery, and fertility. Finally, this review also addresses the negative effects that can occur as a result of overconsumption of tomato products and lycopene supplements.
Collapse
|
16
|
Das RK, Datta T, Biswas D, Duss R, O'Kennedy N, Duttaroy AK. Evaluation of the equivalence of different intakes of Fruitflow in affecting platelet aggregation and thrombin generation capacity in a randomized, double-blinded pilot study in male subjects. BMC Nutr 2021; 7:80. [PMID: 34865648 PMCID: PMC8647412 DOI: 10.1186/s40795-021-00485-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The water-soluble tomato extract, Fruitflow® is a dietary antiplatelet which can be used to lower platelet aggregability in primary preventative settings. We carried out a pilot study to investigate the range of intakes linked to efficacy and to make an initial assessment of variability in response to Fruitflow®. METHODS Platelet response to adenosine diphosphate (ADP) agonist and thrombin generation capacity were monitored at baseline and 24 h after consuming 0, 30, 75, 150 or 300 mg of Fruitflow® in a randomized, double-blinded crossover study in male subjects 30-65 years of age (N = 12). Results were evaluated for equivalence to the standard 150 mg dose. RESULTS Results showed that the changes from baseline aggregation and thrombin generation observed after the 75 mg, 150 mg, and 300 mg supplements were equivalent. Aggregation was reduced from baseline by - 12.9 ± 17.7%, - 12.0 ± 13.9% and - 17.7 ± 15.7% respectively, while thrombin generation capacity fell by - 8.6 ± 4.1%, - 9.2 ± 3.1% and - 11.3 ± 2.3% respectively. Effects observed for 0 mg and 30 mg supplements were non-equivalent to 150 mg and not different from baseline (aggregation changed by 3.0 ± 5.0% and - 0.7 ± 10.2% respectively, while thrombin generation changed by 0.8 ± 3.0% and 0.8 ± 3.1% respectively). CONCLUSIONS The data suggest that the efficacious range for Fruitflow® lies between 75 mg and 300 mg, depending on the individual. It may be pertinent to personalize the daily intake of Fruitflow® depending on individual platelet response. TRIAL REGISTRATION ISRCTN53447583 , 24/02/2021.
Collapse
Affiliation(s)
- Ranjit K Das
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tanushree Datta
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Dipankar Biswas
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ruedi Duss
- DSM Nutritional Products Ltd, 4002, Basel, Switzerland
| | - Niamh O'Kennedy
- Provexis PLC, c/o The University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen, UK
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
17
|
Zhang S, Chen H, Li C, Chen B, Gong H, Zhao Y, Qi R. Water-Soluble Tomato Extract Fruitflow Alters the Phosphoproteomic Profile of Collagen-Stimulated Platelets. Front Pharmacol 2021; 12:746107. [PMID: 34646142 PMCID: PMC8502824 DOI: 10.3389/fphar.2021.746107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022] Open
Abstract
Platelet hyperactivity is a risk factor for cardiovascular disease and thrombosis. Recent studies reported that the tomato extract Fruitflow inhibited platelet function, but the molecular mechanism is still unclear. The present study used proteomics to quantitatively analyze the effect of fruitflow on the inhibition of collagen-stimulated platelets and validated the involvement of several signaling molecules. Fruitflow significantly inhibited human platelet aggregation and P-selectin expression that were induced by collagen. Proteomics analysis revealed that compared fruitflow-treated collagen-stimulated platelets with only collagen-stimulated platelets, 60 proteins were upregulated and 10 proteins were downregulated. Additionally, 66 phosphorylated peptides were upregulated, whereas 37 phosphorylated peptides were downregulated. Gene Ontology analysis indicated that fruitflow treatment downregulated phosphoinositide 3-kinase (PI3K)/protein kinase B and guanosine triphosphatase-mediated signal transduction in collagen-activated platelets. Biological validation indicated that fruitflow decreased Akt, glycogen synthase kinase 3β, p38 mitogen-activated protein kinase (MAPK), and heat shock protein (Hsp27) phosphorylation in collagen-stimulated platelets. Fruitflow recovered cyclic adenosine monophosphate levels in collagen-activated platelets and reduced protein kinase A substrate phosphorylation that was induced by collagen. These findings suggest that fruitflow is a functional food that can inhibit platelet function, conferring beneficial effects for people who are at risk for platelet hyperactivity-associated thrombosis.
Collapse
Affiliation(s)
- Shenghao Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Huilian Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chuanbao Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Beidong Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Huan Gong
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanyang Zhao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ruomei Qi
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Tian Z, Li K, Fan D, Zhao Y, Gao X, Ma X, Xu L, Shi Y, Ya F, Zou J, Wang P, Mao Y, Ling W, Yang Y. Dose-dependent effects of anthocyanin supplementation on platelet function in subjects with dyslipidemia: A randomized clinical trial. EBioMedicine 2021; 70:103533. [PMID: 34392146 PMCID: PMC8374375 DOI: 10.1016/j.ebiom.2021.103533] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Dyslipidemia induces platelet hyperactivation and hyper-aggregation, which are linked to thrombosis. Anthocyanins could inhibit platelet function in vitro and in mice fed high-fat diets with their effects on platelet function in subjects with dyslipidemia remained unknown. This study aimed to investigate the effects of different doses of anthocyanins on platelet function in individuals with dyslipidemia. METHODS A double-blind, randomized, controlled trial was conducted. Ninety-three individuals who were initially diagnosed with dyslipidemia were randomly assigned to placebo or 40, 80, 160 or 320 mg/day anthocyanin groups. The supplementations were anthocyanin capsules (Medox, Norway). Platelet aggregation by light aggregometry of platelet-rich plasma, P-selectin, activated GPⅡbⅢa, reactive oxygen species (ROS), and mitochondrial membrane potential were tested at baseline, 6 weeks and 12 weeks. FINDINGS Compared to placebo group, anthocyanins at 80 mg/day for 12 weeks reduced collagen-induced platelet aggregation (-3.39±2.36%) and activated GPⅡbⅢa (-8.25±2.45%) (P < 0.05). Moreover, compared to placebo group, anthocyanins at 320 mg/day inhibited collagen-induced platelet aggregation (-7.05±2.38%), ADP-induced platelet aggregation (-7.14±2.00%), platelet ROS levels (-14.55±1.86%), and mitochondrial membrane potential (7.40±1.56%) (P < 0.05). There were dose-response relationships between anthocyanins and the attenuation of platelet aggregation, mitochondrial membrane potential and ROS levels (P for trend <0.05). Furthermore, significantly positive correlations were observed between changes in collagen-induced (r = 0.473) or ADP-induced (r = 0.551) platelet aggregation and ROS levels in subjects with dyslipidemia after the 12-week intervention (P < 0.05). INTERPRETATION Anthocyanin supplementation dose-dependently attenuates platelet function, and 12-week supplementation with 80 mg/day or more of anthocyanins can reduce platelet function in individuals with dyslipidemia. FUNDING None.
Collapse
Affiliation(s)
- Zezhong Tian
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province 518106, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China; Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, Guangdong Province 510080, PR China
| | - Kongyao Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province 518106, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China; Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, Guangdong Province 510080, PR China
| | - Die Fan
- Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province 518107, PR China
| | - Yimin Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province 518106, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China; Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, Guangdong Province 510080, PR China
| | - Xiaoli Gao
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province 518033, PR China
| | - Xilin Ma
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province 518106, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China; Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, Guangdong Province 510080, PR China
| | - Lin Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province 518106, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China; Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, Guangdong Province 510080, PR China
| | - Yilin Shi
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China; Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, Guangdong Province 510080, PR China; Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, PR China
| | - Fuli Ya
- Institute of Preventive Medicine, School of Public Health, Dali University, Dali, Yunnan 671000, PR China
| | - Jinchao Zou
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province 518106, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China; Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, Guangdong Province 510080, PR China
| | - Ping Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province 518106, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China; Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, Guangdong Province 510080, PR China
| | - Yuheng Mao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province 518106, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China; Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, Guangdong Province 510080, PR China
| | - Wenhua Ling
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China; Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, Guangdong Province 510080, PR China; Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, PR China
| | - Yan Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province 518106, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China; Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, Guangdong Province 510080, PR China.
| |
Collapse
|
19
|
Dietary Antiplatelets: A New Perspective on the Health Benefits of the Water-Soluble Tomato Concentrate Fruitflow ®. Nutrients 2021; 13:nu13072184. [PMID: 34201950 PMCID: PMC8308204 DOI: 10.3390/nu13072184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
Our understanding of platelet functionality has undergone a sea change in the last decade. No longer are platelets viewed simply as regulators of haemostasis; they are now acknowledged to be pivotal in coordinating the inflammatory and immune responses. This expanded role for platelets brings new opportunities for controlling a range of health conditions, targeting platelet activation and their interactions with other vascular cells. Antiplatelet drugs may be of wider utility than ever expected but often cause platelet suppression too strong to be used out of clinical settings. Dietary antiplatelets represent a nutritional approach that can be efficacious while safe for general use. In this review, we discuss potential new uses for dietary antiplatelets outside the field of cardiovascular health, with specific reference to the water-soluble tomato extract Fruitflow®. Its uses in different aspects of inflammation and immune function are discussed, highlighting exercise-induced inflammation, mediating the effects of air pollution, and controlling thrombotic aspects of the immune response. Potential future developments in women’s health, erectile dysfunction, and the allergic response indicate how broad the utility of dietary antiplatelets can be.
Collapse
|
20
|
Rojas-Garbanzo C, Rodríguez L, Pérez AM, Mayorga-Gross AL, Vásquez-Chaves V, Fuentes E, Palomo I. Anti-platelet activity and chemical characterization by UPLC-DAD-ESI-QTOF-MS of the main polyphenols in extracts from Psidium leaves and fruits. Food Res Int 2021; 141:110070. [PMID: 33641960 DOI: 10.1016/j.foodres.2020.110070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 11/30/2022]
Abstract
In Costa Rica, two species of Psidium fruits, P. guajava and P. friedrichsthalianum, are widely consumed as food and used in folk medicine. Although studies have revealed the health effects of these fruits, there has been little research showing the antiplatelet activity of these species. This work evaluated the antiplatelet potential of aqueous extracts made from leaves and fruits of pink guava and Costa Rican guava. Platelet aggregation was induced by the platelet agonists ADP, TRAP-6, collagen and PMA. Platelet activation and secretion were studied using flow cytometry. The chemical profiles of the four extracts were characterized using UPLC-DAD-ESI-QTOF-MS. The studies revealed that the aqueous extracts of leaves and fruits of P. guajava and P. friedrichsthalianum inhibited platelet aggregation induced by ADP (4 µM), TRAP-6 (5 µM), collagen (1 µg mL-1) and PMA (100 nM), and the effect was dependent on the extract concentration. Extracts of leaves and fruits of pink guava and Costa Rican guava reduced secretion of P-selectin and activation of GP IIb/IIIa. The extracts of leaves and fruits of pink guava and Costa Rican guava proved to be a rich source of phenolic compounds, mainly quercetin aglycones and proanthocyanidins derived from (epi) catechin units. Other compounds such as ellagitannins, and benzophenones were also putatively identified. This research showed that P. guajava and P. friedrichsthalianum could potentially be used for the prevention of thrombotic events.
Collapse
Affiliation(s)
- Carolina Rojas-Garbanzo
- National Center of Food Science and Technology (CITA), University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Lyanne Rodríguez
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, University of Talca, 3460000 Talca, Chile.
| | - Ana M Pérez
- National Center of Food Science and Technology (CITA), University of Costa Rica, 11501-2060 San José, Costa Rica.
| | - Ana Lucía Mayorga-Gross
- National Center of Food Science and Technology (CITA), University of Costa Rica, 11501-2060 San José, Costa Rica.
| | - Víctor Vásquez-Chaves
- Research Center in Natural Products (CIPRONA), University of Costa Rica, 11501-2060 San José, Costa Rica.
| | - Eduardo Fuentes
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, University of Talca, 3460000 Talca, Chile.
| | - Iván Palomo
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, University of Talca, 3460000 Talca, Chile.
| |
Collapse
|
21
|
O'Kennedy N, Duttaroy AK. Platelet hyperactivity in COVID-19: Can the tomato extract Fruitflow® be used as an antiplatelet regime? Med Hypotheses 2021; 147:110480. [PMID: 33421690 PMCID: PMC7781513 DOI: 10.1016/j.mehy.2020.110480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-CoV-2 virus is now considered a global public health threat. The primary focus has been on reducing the viral spread and treating respiratory symptoms; as time goes on, the impact of COVID-19 on neurological and haemostatic systems becomes more evident. The clinical data suggest that platelet hyperactivity plays a role in the pathology of COVID-19 from its onset and that platelets may serve critical functions during COVID‐19 progression. Hyperactivation of blood platelets and the coagulation system are emerging as important drivers of inflammation and may be linked to the severity of the ‘cytokine storm’ induced in severe cases of COVID-19, in which disseminated intravascular coagulation, and platelet hyperactivity are associated with poor prognosis and increased risk of mortality. We propose that targeting platelet hyperactivity in the early stages of COVID-19 infection may reduce the immunothrombotic complications of COVID-19 and subdue the systemic inflammatory response. Lowering baseline platelet activity may be of particular importance for higher-risk groups. As an alternative to antiplatelet drugs, an inappropriate intervention in public health, we propose that the dietary antiplatelet agent Fruitflow®, derived from tomatoes, may be considered a suitable therapy. Fruitflow® contains antiplatelet and anti-inflammatory compounds that target the mechanisms of platelet activation specific to COVID-19 and can be considered a safe and natural antiplatelet regime.
Collapse
Affiliation(s)
- Niamh O'Kennedy
- Provexis PLC, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen, United Kingdom
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Biomedical Sciences, Faculty of Medicine, University of Oslo, Norway.
| |
Collapse
|
22
|
Concha-Meyer A, Palomo I, Plaza A, Gadioli Tarone A, Junior MRM, Sáyago-Ayerdi SG, Fuentes E. Platelet Anti-Aggregant Activity and Bioactive Compounds of Ultrasound-Assisted Extracts from Whole and Seedless Tomato Pomace. Foods 2020; 9:foods9111564. [PMID: 33126732 PMCID: PMC7694063 DOI: 10.3390/foods9111564] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022] Open
Abstract
Tomato paste production generates a residue known as tomato pomace, which corresponds to peels and seeds separated during tomato processing. Currently, there is an opportunity to use tomato pomace to obtain a functional extract with antithrombotic properties, such as platelet anti-aggregant activity. The aim of this study was to evaluate the yield and inhibitory activity of different extracts of tomato pomace on in vitro platelet aggregation, comparing this activity with commercial cardioprotective products, and quantify bioactive compounds. Aqueous or ethanolic/water (1:1) extracts of whole tomato pomace, seedless tomato pomace, tomato pomace supplemented with seeds (50% and 20%), and only seeds were obtained with different ultrasound-assisted extraction times. The inhibition of platelet aggregation was evaluated using a lumi-aggregometer. The quantification of bioactive compounds was determined by HPLC-MS. From 5 g of each type of tomato pomace sample, 0.023-0.22 g of a dry extract was obtained for the platelet aggregation assay. The time of sonication and extraction solvent had a significant role in platelet anti-aggregant activity of some extracts respect the control. Thus, the most active extracts decreased adenosine diphosphate (ADP)-induced platelet aggregation from 87 ± 6% (control) to values between 26 ± 6% and 34 ± 2% (p < 0.05). Furthermore, different ultrasound-assisted extraction conditions of tomato pomace fractions had varied concentration of flavonoids and nucleosides, and had an effect on extract yield.
Collapse
Affiliation(s)
- Anibal Concha-Meyer
- Facultad de Ciencias Agrarias, Universidad de Talca, Talca 3460000, Chile;
- Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001, Talca 3460000, Chile;
| | - Iván Palomo
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile
- Correspondence: (I.P.); (E.F.)
| | - Andrea Plaza
- Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001, Talca 3460000, Chile;
| | - Adriana Gadioli Tarone
- LANUM (Laboratory of Nutrition and Metabolism), FEA (School of Food Engineering), UNICAMP (University of Campinas), Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil; (A.G.T.); (M.R.M.J.)
| | - Mário Roberto Maróstica Junior
- LANUM (Laboratory of Nutrition and Metabolism), FEA (School of Food Engineering), UNICAMP (University of Campinas), Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil; (A.G.T.); (M.R.M.J.)
| | - Sonia G. Sáyago-Ayerdi
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico;
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile
- Correspondence: (I.P.); (E.F.)
| |
Collapse
|
23
|
Mendes TC, dos Reis Lívero FA, de Souza P, Gebara KS, Junior AG. Cellular and Molecular Mechanisms of Antithrombogenic Plants: A Narrative Review. Curr Pharm Des 2020; 26:176-190. [DOI: 10.2174/1381612825666191216125135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/02/2019] [Indexed: 02/08/2023]
Abstract
Heart attack, stroke, and deep vein thrombosis are among the conditions that alter blood coagulation
and are modulated by antithrombogenic drugs. Natural products are an important source of antithrombogenic
agents and have been considered remarkable alternatives with greater efficacy and usually with fewer side effects.
However, the efficacy and toxicity of many of these plants that are used in traditional medicine must be scientifically
tested. Despite a large number of published articles that report that plants or plant-derived components may
act as antithrombogenic agents, few studies have investigated the mechanism of action of medicinal plants. This
review presents the current knowledge about the major cellular and molecular mechanisms of antithrombogenic
plants and their main components. Many well-established mechanisms (e.g., platelet aggregation, coagulation
factors, and thrombolysis) are related to the antithrombogenic activity of many natural products. However, the
central pathways that are responsible for their activity remain unclear. Further studies are needed to clarify the
central role of each of these pathways in the pleiotropic response to these agents.
Collapse
Affiliation(s)
- Tatiane C. Mendes
- Laboratory of Preclinical Research of Natural Products, Graduate Program in Animal Science with Emphasis on Bioactive Products, Paranaense University, Umuarama, PR, Brazil
| | - Francislaine Aparecida dos Reis Lívero
- Laboratory of Preclinical Research of Natural Products, Graduate Program in Animal Science with Emphasis on Bioactive Products, Paranaense University, Umuarama, PR, Brazil
| | - Priscila de Souza
- Graduate Program in Pharmaceutical Sciences, Nucleus of Chemical- Pharmaceutical Investigations (NIQFAR), University of Vale do Itajaí, Itajaí, SC, Brazil
| | - Karimi S. Gebara
- Laboratory of Electrophysiology and Cardiovascular Pharmacology, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Arquimedes Gasparotto Junior
- Laboratory of Electrophysiology and Cardiovascular Pharmacology, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| |
Collapse
|
24
|
Poniedziałek B, Siwulski M, Wiater A, Komaniecka I, Komosa A, Gąsecka M, Magdziak Z, Mleczek M, Niedzielski P, Proch J, Ropacka-Lesiak M, Lesiak M, Henao E, Rzymski P. The Effect of Mushroom Extracts on Human Platelet and Blood Coagulation: In vitro Screening of Eight Edible Species. Nutrients 2019; 11:nu11123040. [PMID: 31842490 PMCID: PMC6950045 DOI: 10.3390/nu11123040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/29/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases remain the leading global cause of mortality indicating the need to identify all possible factors reducing primary and secondary risk. This study screened the in vitro antiplatelet and anticoagulant activities of hot water extracts of eight edible mushroom species (Agaricus bisporus, Auricularia auricularia-judae, Coprinuscomatus, Ganodermalucidum, Hericium erinaceus, Lentinulaedodes, Pleurotuseryngii, and Pleurotusostreatus) increasingly cultivated for human consumption, and compared them to those evoked by acetylsalicylic acid (ASA). The antioxidant capacity and concentration of polysaccharides, phenolic compounds, organic acids, ergosterol, macro elements, and trace elements were also characterized. The most promising antiplatelet effect was exhibited by A. auricularia-judae and P. eryngii extracts as demonstrated by the highest rate of inhibition of adenosine-5′-diphosphate (ADP)-induced and arachidonic acid (AA)-induced aggregation. The response to both extracts exceeded the one evoked by 140 µmol/L of ASA in the ADP test and was comparable to it in the case of the AA test. Such a dual effect was also observed for G. lucidum extract, even though it was proven to be cytotoxic in platelets and leukocytes. The extract of P. ostreatus revealed an additive effect on AA-induced platelet aggregation. None of the mushroom extracts altered the monitored coagulation parameters (prothrombin time, prothrombin ratio, and International Normalized Ratio). The effect of mushroom extracts on platelet function was positively related to their antioxidative properties and concentration of polysaccharides and ergosterol, and inversely related to zinc concentration. The study suggests that selected mushrooms may exert favorable antiplatelet effects, highlighting the need for further experimental and clinical research in this regard.
Collapse
Affiliation(s)
- Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Correspondence: (B.P.); (P.R.); Tel.: +48-61854-7604 (B.P. & P.R.)
| | - Marek Siwulski
- Department of Vegetable Crops, Poznan University of Life Sciences, 60-594 Poznan, Poland;
| | - Adrian Wiater
- Department of Industrial Microbiology, Maria Curie-Sklodowska University in Lublin, 20-033 Lublin, Poland;
| | - Iwona Komaniecka
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 20-033 Lublin, Poland;
| | - Anna Komosa
- 1st Department of Cardiology, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.K.); (M.L.)
| | - Monika Gąsecka
- Department of Chemistry, Poznan University of Life Sciences, 60-625 Poznań, Poland; (M.G.); (Z.M.); (M.M.)
| | - Zuzanna Magdziak
- Department of Chemistry, Poznan University of Life Sciences, 60-625 Poznań, Poland; (M.G.); (Z.M.); (M.M.)
| | - Mirosław Mleczek
- Department of Chemistry, Poznan University of Life Sciences, 60-625 Poznań, Poland; (M.G.); (Z.M.); (M.M.)
| | - Przemysław Niedzielski
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland; (P.N.); (J.P.)
| | - Jędrzej Proch
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland; (P.N.); (J.P.)
| | - Mariola Ropacka-Lesiak
- Department of Perinatology and Gynecology, Poznan University of Medical Sciences, 60-535 Poznan, Poland;
| | - Maciej Lesiak
- 1st Department of Cardiology, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.K.); (M.L.)
| | - Eliana Henao
- Department of Biology, Universidad del Valle, 100-00 Cali, Colombia;
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Correspondence: (B.P.); (P.R.); Tel.: +48-61854-7604 (B.P. & P.R.)
| |
Collapse
|
25
|
Concha-Meyer A, Fuentes E, Palomo I. Antiplatelet protocol: Effects of ingesting a tomato pomace extract on human platelet aggregation. MethodsX 2019; 6:1847-1853. [PMID: 31516846 PMCID: PMC6728829 DOI: 10.1016/j.mex.2019.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/12/2019] [Indexed: 11/15/2022] Open
Abstract
Consumption of tomato and tomato-based products is associated with risk reduction of cardiovascular disease (CVD). Protective effect of tomato is not clearly understood, but there is an interest in its ability to affect platelet aggregation (coagulation). Therefore, the aim of the present study is to describe the protocol of a single blind, parallel design (3-groups), placebo controlled trial, which will assess acute and "acute upon 5-day repeated dose" effects of ingesting a tomato pomace extract on platelet aggregation. Participants will be randomized to receive a flavoured water either with 1 g tomato pomace extract, 2.5 g tomato pomace extract or placebo negative control. A total of 99 people are required to complete (n = 33/group). Each group will ingest either a treatment or placebo once daily, for 5-days and blood samples will be taken to analyze platelet aggregation. For 14-days preceding the baseline assessment day and for the 5-day period of intervention, participants will have to exclude some foods/beverages from their diet, which are known to affect platelet function. The present study is expected to generate significant information about the effect of tomato pomace extract consumption on platelet function of volunteers.
Collapse
Affiliation(s)
- Aníbal Concha-Meyer
- Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001, Talca, Chile.,Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
| | - Eduardo Fuentes
- Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001, Talca, Chile.,Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, Talca, Chile
| | - Iván Palomo
- Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001, Talca, Chile.,Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, Talca, Chile
| |
Collapse
|
26
|
Bioinspired Zinc Oxide Nanoparticles Using Lycopersicon esculentum for Antimicrobial and Anticancer Applications. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01590-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Cámara M, Fernández-Ruiz V, Sánchez-Mata MC, Domínguez Díaz L, Kardinaal A, van Lieshout M. Evidence of antiplatelet aggregation effects from the consumption of tomato products, according to EFSA health claim requirements. Crit Rev Food Sci Nutr 2019; 60:1515-1522. [DOI: 10.1080/10408398.2019.1577215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Montaña Cámara
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University, Madrid, Spain
| | - Virginia Fernández-Ruiz
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University, Madrid, Spain
| | - María-Cortes Sánchez-Mata
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University, Madrid, Spain
| | - Laura Domínguez Díaz
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University, Madrid, Spain
| | | | | |
Collapse
|
28
|
Palomo I, Concha-Meyer A, Lutz M, Said M, Sáez B, Vásquez A, Fuentes E. Chemical Characterization and Antiplatelet Potential of Bioactive Extract from Tomato Pomace (Byproduct of Tomato Paste). Nutrients 2019; 11:nu11020456. [PMID: 30813256 PMCID: PMC6412684 DOI: 10.3390/nu11020456] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/08/2019] [Accepted: 02/15/2019] [Indexed: 11/16/2022] Open
Abstract
We examined the ability of tomato pomace extract (by-product) to affect platelet aggregation in healthy humans (clinical pilot study). In phase 1 the tolerance of participants (n = 15; 5 per dose level) ingesting tomato pomace extract across three dose levels (1, 2.5, and 10 g) was evaluated. Phase 2 was a single-blind, placebo-controlled, parallel design human (male, n = 99; 33 per group) pilot intervention trial investigating the acute and repeated dose effects (5 days) of different doses of tomato pomace extract (1 g, 2.5 g or placebo) on platelet aggregation ex vivo. Various flavonoids (coumaric acid, floridzin, floretin, procyanidin B₂, luteolin-7-O-glucoside, kaempferol, and quercitin) and nucleosides (adenosine, inosine, and guanosine) were identified in the tomato pomace extract. The clinical study showed that the daily consumption of 1 g of aqueous extract of tomato pomace for 5 days exerted an inhibitory activity on platelet aggregation.
Collapse
Affiliation(s)
- Ivan Palomo
- Thematic Task Force on Healthy Aging, CUECH Research Network, Universidad de Talca, Talca 3460000, Chile.
- Interdisciplinary Center on Aging, Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile.
- Centro de Estudios en Alimentos Procesados (CEAP), CONCIYT, Gore Maule, Talca 3460000, Chile.
| | - Anibal Concha-Meyer
- Centro de Estudios en Alimentos Procesados (CEAP), CONCIYT, Gore Maule, Talca 3460000, Chile.
- Faculty of Agricultural Sciences, Universidad de Talca, Talca 3460000, Chile.
| | - Mariane Lutz
- Thematic Task Force on Healthy Aging, CUECH Research Network, Universidad de Talca, Talca 3460000, Chile.
- Interdisciplinary Center for Health Studies, CIESAL, Faculty of Medicine, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2650000, Chile.
| | - Macarena Said
- Centro de Estudios en Alimentos Procesados (CEAP), CONCIYT, Gore Maule, Talca 3460000, Chile.
| | - Bárbara Sáez
- Centro de Estudios en Alimentos Procesados (CEAP), CONCIYT, Gore Maule, Talca 3460000, Chile.
| | - Adriana Vásquez
- Faculty of Health Sciences, School of Nursing, Universidad de Talca, Talca 3460000, Chile.
| | - Eduardo Fuentes
- Thematic Task Force on Healthy Aging, CUECH Research Network, Universidad de Talca, Talca 3460000, Chile.
- Interdisciplinary Center on Aging, Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile.
- Centro de Estudios en Alimentos Procesados (CEAP), CONCIYT, Gore Maule, Talca 3460000, Chile.
| |
Collapse
|
29
|
Salehi B, Sharifi-Rad R, Sharopov F, Namiesnik J, Roointan A, Kamle M, Kumar P, Martins N, Sharifi-Rad J. Beneficial effects and potential risks of tomato consumption for human health: An overview. Nutrition 2019; 62:201-208. [PMID: 30925445 DOI: 10.1016/j.nut.2019.01.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 12/20/2022]
Abstract
Tomato and its derived products have a very interesting nutritional value in addition to prominent antioxidant, anti-inflammatory, and anticancer activities. Tomatoes are generally quite safe to eat. However, overall consumption varies from individual to individual. Indeed, either beneficial or harmful effects of plants or their derived products are closely related to quality, including the presence of biologically active compounds. On the other hand, the synthesis and accumulation of these bioactive molecules depends on many other factors, such as environmental conditions. In this sense, this review briefly highlights the relationship between the chemistry of tomato and its derived products and their beneficial or harmful effects on human health, such as gastroesophageal reflux disease or heartburn, allergies, kidney and cardiovascular disorders, prostate cancer, irritable bowel syndrome, lycopenodermia, body aches, arthritis, and urinary problems.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Razieh Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Dushanbe, Tajikistan
| | - Jacek Namiesnik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Amir Roointan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Science, Shiraz, Iran
| | - Madhu Kamle
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Arunachal Pradesh, India
| | - Pradeep Kumar
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Arunachal Pradesh, India.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal; Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.
| | - Javad Sharifi-Rad
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan, Iran; Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.
| |
Collapse
|
30
|
You Y, Zhang Q, Zhang XG, Liu L, Zhang QL, Ding SL, Chen Y, Wang JY, Wang L, Liang RX, Liao FL, Wang YH. Effects of water-soluble tomato concentrate on platelet aggregation. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2019. [DOI: 10.4103/wjtcm.wjtcm_35_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
31
|
Krasinska B, Osińska A, Osinski M, Krasinska A, Rzymski P, Tykarski A, Krasiński Z. Standardised tomato extract as an alternative to acetylsalicylic acid in patients with primary hypertension and high cardiovascular risk - a randomised, controlled trial. Arch Med Sci 2018; 14:773-780. [PMID: 30002694 PMCID: PMC6040123 DOI: 10.5114/aoms.2017.69864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 08/16/2017] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Cardiovascular (CV) diseases remain a leading global cause of death. It has been proven that the use of acetylsalicylic acid (ASA) in secondary prevention reduces the CV risk, while the benefits of ASA in primary prevention have recently been debated. The aim of the study was to compare the antiplatelet effect of standardised tomato extract (STE) and ASA in hypertensive patients with high CV risk. MATERIAL AND METHODS The study involved high-risk patients with arterial hypertension (AH) randomly assigned to one of two groups: group 1 included 33 patients receiving ASA and group 2 included 32 patients receiving STE. The platelet aggregation was determined using the VerifyNow analyser. RESULTS After 4 weeks of ASA treatment in group 1, a statistically significant reduction in aspirin reaction units (ARU) was observed (p < 0.001). However, the obese subgroup using ASA (n = 18) did not reveal a significant decrease in ARU (p > 0.05). After 4 weeks of STE treatment in the obese subgroup (n = 14), significant declines in ARU by 8.6% (95% CI: -19.5 to -1.7%; p < 0.05) and in P2Y12 reaction units (PRU) by 7.5% (95% CI: -17.6 to 1.8%; p < 0.05) were observed. CONCLUSIONS The antiplatelet effect of STE in hypertensive patients may be weight dependent. The group with AH and obesity might have potentially benefitted from STE treatment.
Collapse
Affiliation(s)
- Beata Krasinska
- Department of Hypertension, Angiology and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Angelika Osińska
- Department of Hypertension, Angiology and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Maciej Osinski
- Department of Obstetrics, Gynaecology and Gynaecological Oncology, Division of Reproduction, Poznan University of Medical Sciences, Poznan Poland
| | - Aleksandra Krasinska
- Student Medical Faculty 1, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Andrzej Tykarski
- Department of Hypertension, Angiology and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Zbigniew Krasiński
- Department of General and Vascular Surgery, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
32
|
Uddin M, Biswas D, Ghosh A, O'Kennedy N, Duttaroy AK. Consumption of Fruitflow ® lowers blood pressure in pre-hypertensive males: a randomised, placebo controlled, double blind, cross-over study. Int J Food Sci Nutr 2017; 69:494-502. [PMID: 28918674 DOI: 10.1080/09637486.2017.1376621] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In order to investigate whether the angiotensin converting enzyme-inhibitory tomato extract Fruitflow® would lower blood pressure after consumption, we conducted a randomised, double-blinded, placebo-controlled human intervention study, involving 12 pre-hypertensive people in a crossover design. Consuming a single dose of 150 mg Fruitflow® resulted in a significant reduction in 24-hour average blood pressure as well as average wake-period and sleep-period SBP, compared to placebo. Other parameters related to blood pressure, such as 24-hour average mean arterial pressure, pulse pressure, heart rate, central aortic systolic pressure and radial augmentation index were also reduced. In addition, the platelet aggregation response to ADP, measured 24 hours after consuming Fruitflow®, fell significantly compared to baseline, and compared to placebo. This pilot study clearly shows the beneficial effects of Fruitflow® on two important cardiovascular risk factors, high blood pressure and platelet hyperactivity.
Collapse
Affiliation(s)
- Main Uddin
- a Department of Nutrition, Faculty of Medicine , Institute of Basic Medical Sciences, University of Oslo , Oslo , Norway
| | - Dipankar Biswas
- a Department of Nutrition, Faculty of Medicine , Institute of Basic Medical Sciences, University of Oslo , Oslo , Norway
| | - Abhik Ghosh
- b Department of Biostatistics, Faculty of Medicine , Institute of Basic Medical Sciences, University of Oslo , Oslo , Norway
| | - Niamh O'Kennedy
- c The Rowett Institute of Nutrition and Health, The University of Aberdeen , Aberdeen , Scotland
| | - Asim K Duttaroy
- a Department of Nutrition, Faculty of Medicine , Institute of Basic Medical Sciences, University of Oslo , Oslo , Norway
| |
Collapse
|
33
|
Sgarbieri VC, Pacheco MTB. Premature or pathological aging: longevity. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2017. [DOI: 10.1590/1981-6723.19416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Abstract The main objective of this literature review was to summarize and characterize the main factors and events that may negatively influence quality of life and human longevity. The factors that act on premature aging processes are essentially the same as those of natural or healthy aging, but in a more intense and uncontrolled manner. Such factors are: 1) genetic (genome); 2) metabolic (metabolome); 3) environmental (life conditions and style, including diet). Factors 1 and 2 are more difficult to control by individuals; once depending on socioeconomic, cultural and educational conditions. Differently of environmental factors that may be totally controlled by individuals. Unfamiliarity with these factors leads to chronic and/or degenerative diseases that compromise quality of life and longevity.
Collapse
|
34
|
Antiplatelet treatment in the primary prophylaxis of cardiovascular disease in patients with arterial hypertension. POLISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2017; 14:133-136. [PMID: 28747946 PMCID: PMC5519840 DOI: 10.5114/kitp.2017.68745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/13/2017] [Indexed: 11/17/2022]
Abstract
The benefits of using acetylsalicylic acid (ASA) in the primary prophylaxis of cardiovascular diseases may only slightly exceed the risk of serious bleeding. This warrants the search for alternative, safer preparations with antiaggregatory properties, which could be used in patients burdened with cardiovascular risk factors. Antiaggregatory compounds identified in water-soluble tomato extract include nucleosides, flavonoids, and phenolic acids. The action of standardized tomato extract is multidirectional, reversible, and weaker in comparison to ASA. The European Food Safety Authority (EFSA) has approved this preparation as a dietary agent with antiaggregatory properties. The use of standardized tomato extract appears beneficial in arterial hypertension patients with low or moderate cardiovascular risk and in patients in whom good pressure control cannot be achieved.
Collapse
|
35
|
O'Kennedy N, Crosbie L, Song HJ, Zhang X, Horgan G, Duttaroy AK. A randomised controlled trial comparing a dietary antiplatelet, the water-soluble tomato extract Fruitflow, with 75 mg aspirin in healthy subjects. Eur J Clin Nutr 2017; 71:723-730. [PMID: 27876806 PMCID: PMC5470100 DOI: 10.1038/ejcn.2016.222] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/31/2016] [Accepted: 09/21/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND/OBJECTIVES Increasing numbers of food ingredients are gaining acknowledgement, via regulated health claims, of benefits to human health. One such is a water-soluble tomato extract, Fruitflow (FF), a dietary antiplatelet. We examined relative platelet responses to FF and to 75 mg aspirin (ASA) in healthy subjects. SUBJECTS/METHODS A total of 47 healthy subjects completed a double-blinded randomised controlled trial following a crossover design. Acute and 7-day treatments with 75 mg ASA were compared with control with and without concomitant FF, over a 5-h timecourse. Platelet aggregation response agonist, platelet thromboxane A2 release, plasma clotting times and time to form a primary haemostatic clot (PFA-100 closure time, TTC) were measured. RESULTS Administration of all treatments lowered platelet function and thromboxane A2 generation, and extended the TTC, relative to baseline (P<0.001) and to control (P<0.001). Plasma clotting times were not affected. A single 75 mg dose of ASA showed approximately equal efficacy to a dose of FF, whereas daily 75 mg ASA was approximately three times as effective after 7 days (P=0.002). Platelet responses were heterogenous with distinct weak and strong responder groups. Weak ASA responders retained a functional platelet response to collagen agonist and were responsive to FF. Concomitant FF and ASA did not lead to significant additive effects. CONCLUSIONS The suppression of platelet function observed after consuming FF is approximately one-third that of daily 75 mg ASA. The reversible action of FF renders it less likely to overextend the time to form a primary haemostatic clot than ASA, an important safety consideration for primary prevention.
Collapse
Affiliation(s)
| | | | | | | | - G Horgan
- Bioinformatics and Statistics Scotland (BioSS), Dundee, UK
| | - A K Duttaroy
- Department of Nutrition, Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, Oslo, Norway
| |
Collapse
|
36
|
Sawardekar SB, Patel TC, Uchil D. Comparative evaluation of antiplatelet effect of lycopene with aspirin and the effect of their combination on platelet aggregation: An in vitro study. Indian J Pharmacol 2017; 48:26-31. [PMID: 26997718 PMCID: PMC4778201 DOI: 10.4103/0253-7613.174428] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Introduction: The objective was to compare antiplatelet effect of lycopene with aspirin and to study effect of combination of the two on platelet aggregation in vitro, using platelets from healthy volunteers. Materials and Methods: Platelets were harvested; platelet count of platelet-rich plasma adjusted to 2.5 Χ 105/μL. Aspirin (140 μmol/L) and lycopene (4, 6, 8, 10, and 12 μmol/L) were studied in vitro against adenosine-5’- diphosphate (ADP) (2.5 μM/L) and collagen Results: All the concentrations of lycopene (4–12 μmol/L) exhibited reduction in maximum platelet aggregation induced by aggregating agents ADP and collagen (P < 0.01 vs. vehicle) and were comparable with aspirin. Lycopene at concentration 10 μmol/L showed maximum platelet inhibition (47.05% ± 19.56%) against ADP, whereas lycopene at concentration 8 μmol/L showed maximum platelet inhibition (54.26% ± 30.71%) against collagen. Four μmol/L of lycopene combined with 140 μmol/L and 70 μmol/L aspirin showed greater inhibition of platelets as compared to aspirin 140 μmol/L alone, against both ADP and collagen. Conclusion: The study favorably compares lycopene and aspirin with respect to their antiplatelet activities against ADP and collagen. Lycopene can be considered as a potential target for modifying the thrombotic and pro-inflammatory events associated with platelet activation.
Collapse
Affiliation(s)
- Swapna B Sawardekar
- Department of Pharmacology and Therapeutics, Seth G.S. Medical College and K.E.M. Hospital, Mumbai, Maharashtra, India
| | - Tejal C Patel
- Department of Pharmacology and Therapeutics, Seth G.S. Medical College and K.E.M. Hospital, Mumbai, Maharashtra, India
| | - Dinesh Uchil
- Department of Pharmacology and Therapeutics, Seth G.S. Medical College and K.E.M. Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
37
|
O'Kennedy N, Raederstorff D, Duttaroy AK. Fruitflow ®: the first European Food Safety Authority-approved natural cardio-protective functional ingredient. Eur J Nutr 2016; 56:461-482. [PMID: 27388464 PMCID: PMC5334395 DOI: 10.1007/s00394-016-1265-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/28/2016] [Indexed: 12/26/2022]
Abstract
Hyperactive platelets, in addition to their roles in thrombosis, are also important mediators of atherogenesis. Antiplatelet drugs are not suitable for use where risk of a cardiovascular event is relatively low. It is therefore important to find alternative safe antiplatelet inhibitors for the vulnerable population who has hyperactive platelets in order to reduce the risk of cardiovascular disease. Potent antiplatelet factors were identified in water-soluble tomato extract (Fruitflow®), which significantly inhibited platelet aggregation. Human volunteer studies demonstrated the potency and bioavailability of active compounds in Fruitflow®. Fruitflow® became the first product in Europe to obtain an approved, proprietary health claim under Article 13(5) of the European Health Claims Regulation 1924/2006 on nutrition and health claims made on foods. Fruitflow® is now commercially available in different countries worldwide. In addition to its reduction in platelet reactivity, Fruitflow® contains anti-angiotensin-converting enzyme and anti-inflammatory factors, making it an effective and natural cardio-protective functional food.
Collapse
Affiliation(s)
- Niamh O'Kennedy
- Provexis PLC, Reading, UK.,Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | | | - Asim K Duttaroy
- Department of Nutrition, Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo, POB 1046, Blindern, 0316, Oslo, Norway.
| |
Collapse
|
38
|
El Haouari M, Rosado JA. Medicinal Plants with Antiplatelet Activity. Phytother Res 2016; 30:1059-71. [PMID: 27062716 DOI: 10.1002/ptr.5619] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/29/2016] [Accepted: 03/12/2016] [Indexed: 12/25/2022]
Abstract
Blood platelets play an essential role in the hemostasis and wound-healing processes. However, platelet hyperactivity is associated to the development and the complications of several cardiovascular diseases. In this sense, the search for potent and safer antiplatelet agents is of great interest. This article provides an overview of experimental studies performed on medicinal plants with antiplatelet activity available through literature with particular emphasis on the bioactive constituents, the parts used, and the various platelet signaling pathways modulated by medicinal plants. From this review, it was suggested that medicinal plants with antiplatelet activity mainly belong to the family of Asteraceae, Rutaceae, Fabaceae, Lamiaceae, Zygophyllaceae, Rhamnaceae, Liliaceae, and Zingiberaceae. The antiplatelet effect is attributed to the presence of bioactive compounds such as polyphenols, flavonoids, coumarins, terpenoids, and other substances which correct platelet abnormalities by interfering with different platelet signalization pathways including inhibition of the ADP pathway, suppression of TXA2 formation, reduction of intracellular Ca(2+) mobilization, and phosphoinositide breakdown, among others. The identification and/or structure modification of the plant constituents and the understanding of their action mechanisms will be helpful in the development of new antiplatelet agents based on medicinal plants which could contribute to the prevention of thromboembolic-related disorders by inhibiting platelet aggregation. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mohammed El Haouari
- Centre Régional des Métiers de l'Education et de la Formation de Taza (CRMEF - Taza), B.P. 1178, Taza Gare, Morocco.,Faculté Polydisciplinaire de Taza, Laboratoire des Matériaux, Substances Naturelles, Environnement et Modélisation (LMSNEM), Université Sidi Mohamed Ben Abdellah, B.P. 1223, Taza Gare, Morocco
| | - Juan A Rosado
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003, Cáceres, Spain
| |
Collapse
|
39
|
Extract from spent hop (Humulus lupulus L.) reduces blood platelet aggregation and improves anticoagulant activity of human endothelial cells in vitro. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.01.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
40
|
Rizzo V, Clifford MN, Brown JE, Siracusa L, Muratore G. Effects of processing on the polyphenol and phenolic acid content and antioxidant capacity of semi-dried cherry tomatoes (Lycopersicon esculentum M.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2040-2046. [PMID: 26089187 DOI: 10.1002/jsfa.7315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/08/2015] [Accepted: 06/13/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND This study was performed to test the effects of pre-treating cherry tomatoes with a solution containing citric acid-NaCl-CaCl2 (10:10:24 g L(-1)), followed by one of three different drying regimes (40, 60, 80 °C) on the antioxidant capacity of their aqueous extracts and the extent of phenolic compound degradation. RESULTS Chlorogenic acids, caffeic acid, ferulic acid, rutin and naringenin were all detected in the aqueous extracts. In fresh cherry tomatoes the predominant phenolic compound was rutin, followed by naringenin, which corresponded to 79% and 8% of the total phenolic compounds present, respectively. Pre-treatment was protective towards naringenin and had a modest protective effect on rutin and ferulic acid (0.1 > P > 0.05). Total phenolic content was similar in all samples, but there was a trend for the level of free polyphenols to be lower in treated tomatoes. The destruction of naringenin was confirmed by liquid chromatographic-mass spectrometric data. CONCLUSION A significant effect of temperature on the antioxidant capacity was observed. After this treatment the industry might introduce some advances in the processing of tomatoes, preserving the main nutritive characteristics and saving the products as semi-dried.
Collapse
Affiliation(s)
- Valeria Rizzo
- Di3A - Department of Agricultural, Food Nutrition and Environment, University of Catania, Via Santa Sofia 98, 95123 Catania, Italy
| | - Mike N Clifford
- Department of Nutritional Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Jonathan E Brown
- Department of Nutritional Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Laura Siracusa
- Istituto del CNR di Chimica Biomolecolare, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Giuseppe Muratore
- Di3A - Department of Agricultural, Food Nutrition and Environment, University of Catania, Via Santa Sofia 98, 95123 Catania, Italy
| |
Collapse
|
41
|
Tomato Aqueous Extract Modulates the Inflammatory Profile of Immune Cells and Endothelial Cells. Molecules 2016; 21:168. [PMID: 26840280 PMCID: PMC6273921 DOI: 10.3390/molecules21020168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/13/2016] [Accepted: 01/20/2016] [Indexed: 01/18/2023] Open
Abstract
Nutrients transiently or chronically modulate functional and biochemical characteristics of cells and tissues both in vivo and in vitro. The influence of tomato aqueous extract (TAE) on the in vitro inflammatory response of activated human peripheral blood leukocytes (PBLs) and macrophages was investigated. Its effect on endothelial dysfunction (ED) was analyzed in human umbilical vein endothelial cells (HUVECs). Murine macrophages (RAW264.7 cells), PBLs and HUVECs were incubated with TAE. They were activated with LPS or TNF-α in order to induce inflammatory processes and ED, respectively. Inflammatory mediators and adhesion molecules were measured by immune assay-based multiplex analysis. Gene expression was quantified by RT-PCR. TAE altered the production of interleukins (IL-1β, IL-6, IL-10, IL-12) and chemokines (CCL2/MCP-1, CCL3/MIP-1α, CCL5/RANTES, CXCL8/IL-8, CXCL10/IP-10) in PBLs. TAE reduced ED-associated expression of adhesion molecules (ICAM-1, VCAM-1) in endothelial cell. In macrophages, the production of nitric oxide, PGE2, cytokines and ILs (TNF-α, IL-1β, IL-6, IL-12), which reflects chronic inflammatory processes, was reduced. Adenosine was identified as the main bioactive of TAE. Thus, TAE had cell-specific and context-dependent effects. We infer from these in vitro data, that during acute inflammation TAE enhances cellular alertness and therefore the sensing of disturbed immune homeostasis in the vascular-endothelial compartment. Conversely, it blunts inflammatory mediators in macrophages during chronic inflammation. A novel concept of immune regulation by this extract is proposed.
Collapse
|
42
|
Goszcz K, Deakin SJ, Duthie GG, Stewart D, Leslie SJ, Megson IL. Antioxidants in Cardiovascular Therapy: Panacea or False Hope? Front Cardiovasc Med 2015; 2:29. [PMID: 26664900 PMCID: PMC4671344 DOI: 10.3389/fcvm.2015.00029] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/10/2015] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress is a key feature of the atherothrombotic process involved in the etiology of heart attacks, ischemic strokes, and peripheral arterial disease. It stands to reason that antioxidants represent a credible therapeutic option to prevent disease progression and thereby improve outcome, but despite positive findings from in vitro studies, clinical trials have failed to consistently show benefit. The aim of this review is to re-appraise the concept of antioxidants in the prevention and management of cardiovascular disease. In particular, the review will explore the reasons behind failed antioxidant strategies with vitamin supplements and will evaluate how flavonoids might improve cardiovascular function despite bioavailability that is not sufficiently high to directly influence antioxidant capacity. As well as reaching conclusions relating to those antioxidant strategies that might hold merit, the major myths, limitations, and pitfalls associated with this research field are explored.
Collapse
Affiliation(s)
- Katarzyna Goszcz
- Department of Diabetes and Cardiovascular Science, Centre for Health Science, University of the Highlands and Islands , Inverness , UK ; James Hutton Institute , Dundee , UK
| | - Sherine J Deakin
- Department of Diabetes and Cardiovascular Science, Centre for Health Science, University of the Highlands and Islands , Inverness , UK
| | - Garry G Duthie
- Rowett Institute of Health and Nutrition , Aberdeen , UK
| | - Derek Stewart
- James Hutton Institute , Dundee , UK ; School of Life Sciences, Heriot Watt University , Edinburgh , UK
| | - Stephen J Leslie
- Department of Diabetes and Cardiovascular Science, Centre for Health Science, University of the Highlands and Islands , Inverness , UK ; Cardiology Unit, Raigmore Hospital , Inverness , UK
| | - Ian L Megson
- Department of Diabetes and Cardiovascular Science, Centre for Health Science, University of the Highlands and Islands , Inverness , UK
| |
Collapse
|
43
|
Younesi E, Ayseli MT. An integrated systems-based model for substantiation of health claims in functional food development. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2014.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Zhang X, McGeoch SC, Megson IL, MacRury SM, Johnstone AM, Abraham P, Pearson DWM, Roos B, Holtrop G, O'Kennedy N, Lobley GE. Oat‐enriched diet reduces inflammatory status assessed by circulating cell‐derived microparticle concentrations in type 2 diabetes. Mol Nutr Food Res 2014; 58:1322-32. [DOI: 10.1002/mnfr.201300820] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/21/2014] [Accepted: 01/27/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Xuguang Zhang
- Obesity and Metabolic Health Division Rowett Institute of Nutrition & Health University of Aberdeen Aberdeen UK
- Provexis PLC, Rowett Institute of Nutrition & Health Aberdeen UK
| | | | - Ian L. Megson
- Department of Diabetes and Cardiovascular Science University of the Highlands and Islands Inverness UK
| | - Sandra M. MacRury
- Department of Diabetes and Cardiovascular Science University of the Highlands and Islands Inverness UK
| | - Alexandra M. Johnstone
- Obesity and Metabolic Health Division Rowett Institute of Nutrition & Health University of Aberdeen Aberdeen UK
| | | | | | - Baukje Roos
- Obesity and Metabolic Health Division Rowett Institute of Nutrition & Health University of Aberdeen Aberdeen UK
| | | | - Niamh O'Kennedy
- Provexis PLC, Rowett Institute of Nutrition & Health Aberdeen UK
| | - Gerald E. Lobley
- Obesity and Metabolic Health Division Rowett Institute of Nutrition & Health University of Aberdeen Aberdeen UK
| |
Collapse
|
45
|
Biswas D, Uddin MM, Dizdarevic LL, Jørgensen A, Duttaroy AK. Inhibition of angiotensin-converting enzyme by aqueous extract of tomato. Eur J Nutr 2014; 53:1699-706. [PMID: 24573416 DOI: 10.1007/s00394-014-0676-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 02/18/2014] [Indexed: 01/19/2023]
Abstract
PURPOSE To investigate the presence of anti-angiotensin converting enzyme (ACE) factors in aqueous extract of tomato. METHODS The bio-guided fractionation of the aqueous extract of tomato produced a sugar-free, heat-stable fraction with molecular mass <1,000 Da from tomatoes. The sugar-free tomato extract (TE) was tested for its anti-ACE activity using human plasma and rabbit lung pure ACE. In addition, its effect on human platelet aggregation induced by ADP, collagen or arachidonic acid was determined. The mechanism of platelet inhibitory action of TE was investigated by measuring platelet factor 4 (PF4) release and cAMP synthesis by platelets. RESULTS Typically, 100 g tomatoes produced 72.2 ± 4.7 mg of TE. This extract inhibited both platelet aggregation and plasma ACE activity in a dose-dependent manner. It inhibited platelet aggregation in response to ADP, collagen or arachidonic acid, and inhibitory action was mediated in part by reducing platelet PF4 release and by stimulating cAMP synthesis. The IC50 value of TE for ADP-induced platelet aggregation was 0.4 ± 0.02 mg/ml, whereas the IC50 value for ACE enzyme inhibition was 1.40 ± 0.04 mg/ml. Both the TE and commercially available sugar-free TE, Fruitflow(®)-2 had similar amount of catechin, and also had equal inhibitory potencies against platelet aggregation and plasma ACE activity. CONCLUSION Together these data indicate that aqueous extract of tomatoes contain anti-ACE factors in addition to previously described anti-platelet factors.
Collapse
Affiliation(s)
- Dipankar Biswas
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, PO Box 1046, Blindern, 0316, Oslo, Norway
| | | | | | | | | |
Collapse
|
46
|
Antiplatelet effects of natural bioactive compounds by multiple targets: Food and drug interactions. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.10.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
47
|
Rodríguez-Azúa R, Treuer A, Moore-Carrasco R, Cortacáns D, Gutiérrez M, Astudillo L, Fuentes E, Palomo I. Effect of tomato industrial processing (different hybrids, paste, and pomace) on inhibition of platelet function in vitro, ex vivo, and in vivo. J Med Food 2013; 17:505-11. [PMID: 24325459 DOI: 10.1089/jmf.2012.0243] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. Healthy eating is among its safeguards, especially the daily intake of fruits and vegetables. In this context it has been shown that tomato (Solanum lycopersicum) presents antiplatelet activity. In the present study, we evaluated in vitro antiplatelet activity of fresh hybrid tomato process (nine hybrids: Apt 410, H 9888, Bos 8066, Sun 6366, AB3, HMX 7883, H 9665, H 7709, and H 9997), paste and its by-product of industrial processes (pomace). We assessed antiplatelet activity ex vivo and bleeding time in rats that ingested 0.1 and 1.0 g/kg of pomace each day. In studies in vitro, no significant differences in antiplatelet activity was observed in fresh tomato hybrids. Furthermore, the agro-industrial process did not affect the antiplatelet activity of paste and pomace. Likewise, pomace intake of 1.0 g/kg per day prolonged bleeding time and reduced ex vivo platelet aggregation in rats. The data obtained indicate that tomato has one or more compounds that caused antiplatelet activity. Regular consumption of tomato and its industrial derivatives could be part of a CVD prevention regimen.
Collapse
Affiliation(s)
- Rosio Rodríguez-Azúa
- 1 Center for Studies in Processed Foods (CEAP) , National Commission for Scientific and Technological Research (CONICYT)-Regional, Gore Maule, Talca, Chile
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Fuentes E, Fuentes F, Palomo I. Mechanism of the anti-platelet effect of natural bioactive compounds: Role of peroxisome proliferator-activated receptors activation. Platelets 2013; 25:471-9. [DOI: 10.3109/09537104.2013.849334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Dizdarevic LL, Biswas D, Uddin MDM, Jørgenesen A, Falch E, Bastani NE, Duttaroy AK. Inhibitory effects of kiwifruit extract on human platelet aggregation and plasma angiotensin-converting enzyme activity. Platelets 2013; 25:567-75. [PMID: 24219176 DOI: 10.3109/09537104.2013.852658] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Previous human studies suggest that supplementation with kiwifruits lowers several cardiovascular risk factors such as platelet hyperactivity, blood pressure and plasma lipids. The cardiovascular health benefit of fruit and vegetables is usually attributed to the complex mixture of phytochemicals therein; however, kiwifruit's cardioprotective factors are not well studied. In this study, we investigated the effects of kiwifruit extract on human blood platelet aggregation and plasma angiotensin-converting enzyme (ACE) activity. A sugar-free, heat-stable aqueous extract with molecular mass less than 1000 Da was prepared from kiwifruits. Typically, 100 g kiwifruits produced 66.3 ± 5.8 mg (1.2 ± 0.1 mg CE) of sugar-free kiwifruit extract (KFE). KFE inhibited both human platelet aggregation and plasma ACE activity in a dose-dependent manner. KFE inhibited platelet aggregation in response to ADP, collagen and arachidonic acid, and inhibitory action was mediated in part by reducing TxA2 synthesis. The IC50 for ADP-induced platelet aggregation was 1.6 ± 0.2 mg/ml (29.0 ± 3.0 μg CE/ml), whereas IC50 for serum ACE was 0.6 ± 0.1 mg/ml (11.0 ± 1.2 μg CE/ml). Consuming 500 mg of KFE (9.0 mg CE) in 10 g margarine inhibited ex vivo platelet aggregation by 12.7%, 2 h after consumption by healthy volunteers (n = 9). All these data indicate that kiwifruit contains very potent antiplatelet and anti-ACE components. Consuming kiwifruits might be beneficial as both preventive and therapeutic regime in cardiovascular disease.
Collapse
Affiliation(s)
- Lili L Dizdarevic
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo , Oslo , Norway and
| | | | | | | | | | | | | |
Collapse
|
50
|
Protective Mechanisms of S. lycopersicum Aqueous Fraction (Nucleosides and Flavonoids) on Platelet Activation and Thrombus Formation: In Vitro, Ex Vivo and In Vivo Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:609714. [PMID: 24159349 PMCID: PMC3789491 DOI: 10.1155/2013/609714] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/14/2013] [Accepted: 08/08/2013] [Indexed: 12/20/2022]
Abstract
The purpose of this research was to investigate mechanisms of antiplatelet action of bioactive principle from S. lycopersicum. Aqueous fraction had a high content of nucleosides (adenosine, guanosine, and adenosine 5′-monophosphate) by HPLC analysis. Also aqueous fraction presented flavonoids content. Aqueous fraction inhibited platelet activation by 15 ± 6% (P < 0.05). Fully spread of human platelets on collagen in the presence of aqueous fraction was inhibited from 15 ± 1 to 9 ± 1 μm2 (P < 0.001). After incubation of whole blood with aqueous fraction, the platelet coverage was inhibited by 55 ± 12% (P < 0.001). Platelet ATP secretion and aggregation were significantly inhibited by the aqueous fraction. At the same concentrations that aqueous fraction inhibits platelet aggregation, levels of sCD40L significantly decreased and the intraplatelet cAMP levels increased. In addition, SQ22536, an adenylate cyclase inhibitor, attenuated the effect of aqueous fraction toward ADP-induced platelet aggregation and intraplatelet level of cAMP. Platelet aggregation ex vivo (human study) and thrombosis formation in vivo (murine model) were inhibited by aqueous fraction. Finally, aqueous fraction may be used as a functional ingredient adding antiplatelet activities (nucleosides and flavonoids) to processed foods.
Collapse
|