1
|
Hsu P, Pokharel A, Scott CK, Wu F. Aflatoxin M1 in milk and dairy products: The state of the evidence for child growth impairment. Food Chem Toxicol 2024; 193:115008. [PMID: 39304086 DOI: 10.1016/j.fct.2024.115008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/02/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Aflatoxin M1 (AFM1) is a metabolite of the more toxic aflatoxin B1 (AFB1) a mycotoxin produced by the fungi Aspergillus flavus and A. parasiticus; which contaminates maize, peanuts, tree nuts, and oilseeds, among other crops in warm regions of the world. When mammals consume AFB1 in these foods, they secrete AFM1 in milk. A recent analysis indicated negligible cancer risk associated with AFM1 exposure, but whether AFM1 impairs children's growth is important to understand because children consume relatively more milk than adults worldwide. Our paper reviews the evidence on the link between AFM1 exposure and child growth impairment. We find that the existing studies are contradictory and necessitates further studies on this question; in particular, those that control for potentially confounding factors such as household socioeconomic status, children's overall diets, hygienic factors, and agroecological zone. Though many nations have policies for maximum AFM1 limits in dairy foods, they are not based on an explicit health risk analysis of AFM1 but on conversion rates of AFB1 levels to AFM1 in dairy products. Future studies on AFM1's potential harmful effects on child growth will help to better inform policies on maximum allowable AFM1 in milk and other dairy products.
Collapse
Affiliation(s)
- Patricia Hsu
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Ashish Pokharel
- Department of Agricultural, Food, and Resource Economics, Michigan State University, East Lansing, MI, USA
| | - Christian Kelly Scott
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Felicia Wu
- Department of Agricultural, Food, and Resource Economics, Michigan State University, East Lansing, MI, USA; Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
2
|
Monger A, Mongar P, Dorji T, Chhetri V. The occurrence and human health risk assessment of total and aflatoxin B 1 in selected food commodities in Bhutan. Sci Rep 2024; 14:16258. [PMID: 39009623 PMCID: PMC11251174 DOI: 10.1038/s41598-024-63677-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/31/2024] [Indexed: 07/17/2024] Open
Abstract
Aflatoxins are mycotoxins that contaminate staple foods globally and pose a significant health risk. To the best of our knowledge, information on the occurrence of aflatoxins in Bhutanese diets is scarce. This study aimed to estimate the aflatoxin levels in selected foodstuffs in Bhutan and determine the health risk associated with aflatoxin exposure. Ten different types of food commodities were randomly collected from farmers' markets, shelves of supermarkets, and wholesale and retail shops from 20 districts of the country. The samples were subjected to analysis by an enzyme-linked immunosorbent assay for both total aflatoxins (B1, B2, G1 and G2) and aflatoxin B1. Among the 315 samples included, 48.81% and 79.35% were positive for total aflatoxins and aflatoxin B1, respectively. The overall mean total aflatoxin concentration was 11.49 ± 12.83 µg/kg, and that for B1 was 17.62 ± 23.99 µg/kg. The most prevalent food commodity with the highest aflatoxin contamination was chili products. In addition, the estimated daily intake and margin of exposure to aflatoxin B1 via the consumption of chili products ranged from 0.98 to 5.34 ng kg-1 bw day-1 and from 74.90 to 408.10, indicating a risk for public health. The liver cancer risk was estimated to be 0.01 and 0.007 cancers per year per 100,000 population resulting from the consumption of chili products. The present findings revealed the presence of total aflatoxins and aflatoxin B1 in the selected samples. The margin of exposure values was exorbitant, demanding a stringent public health measure. Notably, these results suggest the need for routine monitoring of aflatoxin contamination in the region and stress rigorous safety management strategies to reduce exposure.
Collapse
Affiliation(s)
- Adeep Monger
- Royal Centers for Disease Control, Ministry of Health, Thimphu, Bhutan.
| | - Pooja Mongar
- Royal Centers for Disease Control, Ministry of Health, Thimphu, Bhutan
| | - Tshering Dorji
- Royal Centers for Disease Control, Ministry of Health, Thimphu, Bhutan
| | - Vishal Chhetri
- Royal Centers for Disease Control, Ministry of Health, Thimphu, Bhutan
| |
Collapse
|
3
|
Sultana T, Malik K, Raja NI, Mashwani ZUR, Hameed A, Ullah R, Alqahtani AS, Sohail. Aflatoxins in Peanut ( Arachis hypogaea): Prevalence, Global Health Concern, and Management from an Innovative Nanotechnology Approach: A Mechanistic Repertoire and Future Direction. ACS OMEGA 2024; 9:25555-25574. [PMID: 38911815 PMCID: PMC11190918 DOI: 10.1021/acsomega.4c01316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024]
Abstract
Arachis hypogaea is the most significant oilseed nutritious legume crop in agricultural trade across the world. It is recognized as a valued crop for its contributions to nourishing food, as a cooking oil, and for meeting the protein needs of people who are unable to afford animal protein. Currently, its production, marketability, and consumption are hindered because of Aspergillus species infection that consequently contaminates the kernels with aflatoxins. Regarding health concerns, humans and animals are affected by acute and chronic aflatoxin toxicity and millions of people are at high risk of chronic levels. Most methods used to store peanuts are traditional and serve effectively for short-term storage. Now the question for long-term storage has been raised, and this promptly finds potential approaches to the issue. It is imperative to reduce the aflatoxin levels in peanuts to a permissible level by introducing detoxifying innovations. Most of the detoxification reports mention physical, chemical, and biological techniques. However, many current approaches are impractical because of time consumption, loss of nutritional quality, or weak detoxifying efficiency. Therefore, it is crucial to investigate practical, economical, and green methods to control Aspergillus flavus that address current global food security problems. Herein, a green and economically revolutionary way is a nanotechnology that has demonstrated its potential to connect farmers to markets, elevate international marketability, improve human and animal health conditions, and enhance food quality and safety by the management of fungal diseases. Due to the antimicrobial potential of nanoparticles, they act as nanofungicides and have an incredible role in the control of aflatoxins. Nanoparticles have ultrasmall sizes and therefore penetrate the fungal body and invade the pathogen machinery, leading to fungal cell death by ROS production, mutation in DNA, disruption of organelles, and membrane leakage. This is the first mechanistic overview that unveils a comprehensive insight into aflatoxin contamination in peanuts, its prevalence, health effects, and management in addition to nanotechnological interventions that serve as a triple defense approach to detoxify aflatoxins. The optimum use of nanofungicides ensures food safety and the development of goals, especially "zero hunger".
Collapse
Affiliation(s)
- Tahira Sultana
- Department
of Botany, PMAS, Arid Agriculture University
Rawalpindi, Rawalpindi 46000, Pakistan
| | - Khafsa Malik
- Department
of Botany, PMAS, Arid Agriculture University
Rawalpindi, Rawalpindi 46000, Pakistan
| | - Naveed Iqbal Raja
- Department
of Botany, PMAS, Arid Agriculture University
Rawalpindi, Rawalpindi 46000, Pakistan
| | - Zia-Ur-Rehman Mashwani
- Department
of Botany, PMAS, Arid Agriculture University
Rawalpindi, Rawalpindi 46000, Pakistan
| | - Asma Hameed
- Department
of Botany, PMAS, Arid Agriculture University
Rawalpindi, Rawalpindi 46000, Pakistan
| | - Riaz Ullah
- Medicinal
Aromatic and Poisonous Plants Research Center College of Pharmacy King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali S. Alqahtani
- Medicinal
Aromatic and Poisonous Plants Research Center College of Pharmacy King Saud University, Riyadh 11451, Saudi Arabia
| | - Sohail
- College
of Bioscience and Biotechnology, Yangzhou
University, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
4
|
Wu H, Xu Y, Gong YY, Huntriss J, Routledge MN. Effects of aflatoxin and fumonisin on gene expression of growth factors and inflammation-related genes in a human hepatocyte cell line. Mutagenesis 2024; 39:181-195. [PMID: 38468450 DOI: 10.1093/mutage/geae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/07/2024] [Indexed: 03/13/2024] Open
Abstract
Aflatoxin B1 (AFB1) and fumonisin B1 (FB1) are mycotoxins widely distributed in maize and maized-based products, often occurring together. The implications of co-exposure to aflatoxin and fumonsin for human health are numerous, but a particular concern is the potential of FB1 to modulate AFB1 hepatotoxicity. This study evaluated the toxicity of these mycotoxins, alone or combined, in a human non-tumorigenic liver cell line, HHL-16 cells, and assessed the effects of AFB1 and FB1 on expression of genes involved in immune and growth factor pathways. The results demonstrated that in HHL-16 cells, both AFB1 and FB1 had dose-dependent and time-dependent toxicity, and the combination of them showed a synergistic toxicity in the cells. Moreover, AFB1 caused upregulation of IL6, CCL20, and BMP2, and downregulation of NDP. In combination of AFB1 with FB1, gene expression levels of IL6 and BMP2 were significantly higher compared to individual FB1 treatment, and had a tendency to be higher than individual AFB1 treatment. This study shows that FB1 may increase the hepatoxicity of AFB1 through increasing the inflammatory response and disrupting cell growth pathways.
Collapse
Affiliation(s)
- Hang Wu
- School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Ya Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun-Yat University, Guangzhou 51006, China
| | - Yun Yun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - John Huntriss
- School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Michael N Routledge
- Leicester Medical School, George Davies Centre, Lancaster Rd, Leicester LE1 7HA, United Kingdom
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
5
|
Mehta R, Wenndt AJ. Mycotoxins and bone growth: a review of the literature on associations between xenobiotic exposure and bone growth and development. Nutr Rev 2024:nuae032. [PMID: 38578611 DOI: 10.1093/nutrit/nuae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Mycotoxins are secondary metabolites of fungi that are known to be associated with linear growth faltering because of their impact on inflammation, intestinal damage, inhibition of protein synthesis, and micronutrient absorption. In this narrative review, we aim to extend this analysis to further explore associations between mycotoxins (aflatoxins, ochratoxins, trichothecenes including deoxynivalenol, T-2 toxin, and fumonisins) and long-bone growth, particularly during the saltatory periods of development. Linear growth is a direct function of skeletal development and long-bone growth. We therefore explored biological pathways and mechanisms of impact of these toxins in both animal and human studies, in addition to the epidemiology literature (post-2020). Given what is known of the effects of individual and combinations of mycotoxins based on the animal literature, we have identified a need for further research and examination of how these toxins and exposures may be studied in humans to elucidate the downstream impact on bone-related biomarkers and anthropometric indices used to identify and predict stunting in population-based studies.
Collapse
Affiliation(s)
- Rukshan Mehta
- Centre for Global Child Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | | |
Collapse
|
6
|
Xiang X, Hao Y, Cheng C, Hu H, Chen H, Tan J, Wang Y, Liu X, Peng B, Liao J, Wang J, Xie Y, Liu J, Chen S, Xu L, Xie W, Xue R, Kuang M, Xu Z, Jiang H, Peng S. A TGF-β-dominant chemoresistant phenotype of hepatoblastoma associated with aflatoxin exposure in children. Hepatology 2024; 79:650-665. [PMID: 37459556 DOI: 10.1097/hep.0000000000000534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/03/2023] [Indexed: 02/18/2024]
Abstract
BACKGROUND AND AIMS Hepatoblastoma (HB) is the most common liver cancer in children, posing a serious threat to children's health. Chemoresistance is the leading cause of mortality in patients with HB. A more explicit definition of the features of chemotherapy resistance in HB represents a fundamental urgent need. APPROACH AND RESULTS We performed an integrative analysis including single-cell RNA sequencing, whole-exome sequencing, and bulk RNA sequencing in 180 HB samples, to reveal genomic features, transcriptomic profiles, and the immune microenvironment of HB. Multicolor immunohistochemistry staining and in vitro experiments were performed for validation. Here, we reported four HB transcriptional subtypes primarily defined by differential expression of transcription factors. Among them, the S2A subtype, characterized by strong expression of progenitor ( MYCN , MIXL1 ) and mesenchymal transcription factors ( TWIST1 , TBX5 ), was defined as a new chemoresistant subtype. The S2A subtype showed increased TGF-β cancer-associated fibroblast and an immunosuppressive microenvironment induced by the upregulated TGF-β of HB. Interestingly, the S2A subtype enriched SBS24 signature and significantly higher serum aflatoxin B1-albumin (AFB1-ALB) level in comparison with other subtypes. Functional assays indicated that aflatoxin promotes HB to upregulate TGF-β. Furthermore, clinical prognostic analysis showed that serum AFB1-ALB is a potential indicator of HB chemoresistance and prognosis. CONCLUSIONS Our studies offer new insights into the relationship between aflatoxin and HB chemoresistance and provide important implications for its diagnosis and treatment.
Collapse
Affiliation(s)
- Xiao Xiang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yijie Hao
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Cheng Cheng
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huanjing Hu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huadong Chen
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jiehui Tan
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuanqi Wang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaofei Liu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bo Peng
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Junbin Liao
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ji Wang
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yubin Xie
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Juncheng Liu
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shuling Chen
- Division of Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lixia Xu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenxuan Xie
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruidong Xue
- Peking University First Hospital, Translational Cancer Research, Beijing, China
| | - Ming Kuang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, China
| | - Zhe Xu
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hong Jiang
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Sui Peng
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Clinical Trial Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Açar Y, Akbulut G. Evaluation of Aflatoxins Occurrence and Exposure in Cereal-Based Baby Foods: An Update Review. Curr Nutr Rep 2024; 13:59-68. [PMID: 38282161 PMCID: PMC10923960 DOI: 10.1007/s13668-024-00519-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 01/30/2024]
Abstract
PURPOSE OF REVIEW The first stages of human life, which include the fetal period, infancy, and early childhood, are the most critical for human growth and development. This is the most vulnerable phase to health challenges due to the immature immune system and rapid development. Mycotoxins such as aflatoxins, ochratoxin A, patulin, fumonisins, zearalenone, and deoxynivalenol are secondary metabolites secreted by various fungal species, primarily Aspergillus, Fusarium, Penicillium, and Alternaria. Aflatoxins are one of the major mycotoxins produced in cereals and cereal-based foods by several species of Aspergillus, mainly Aspergillus flavus. In this context, this review provides a brief overview of the occurrence, exposure, legal regulations, and health effects of aflatoxins (B1, B2, G1, G2, and M1) in cereal-based baby foods and breast milk. RECENT FINDINGS Human aflatoxin exposure in utero and through breast milk, infant formulas, cereals, and cereal-based foods has been linked to various health consequences, including adverse birth outcomes, impaired growth and development, immune system suppression, and hepatic dysfunction. Recent evidence suggests that especially infants and children are more susceptible to aflatoxins due to their lower body weight, lowered capacity to detoxify harmful substances, more restrictive diet, immature metabolism and elimination, and faster rates of growth and development. It is essential for both food safety and infant and child health that aflatoxins in cereal and cereal-based products are precisely detected, detoxified, and managed.
Collapse
Affiliation(s)
- Yasemin Açar
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey.
| | - Gamze Akbulut
- Department of Nutrition and Dietetics, Istanbul Kent University, Istanbul, Turkey
| |
Collapse
|
8
|
Nejad BG, Mostafaei Z, Rezaabad AB, Mehravar F, Zarei M, Dehghani A, Estabragh MAR, Karami-Mohajeri S, Alizadeh H. A systematic review with meta-analysis of the relation of aflatoxin B1 to growth impairment in infants/children. BMC Pediatr 2023; 23:614. [PMID: 38053136 PMCID: PMC10696779 DOI: 10.1186/s12887-023-04275-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/25/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Aflatoxins are regarded as the most potent genotoxic and carcinogenic type of mycotoxins. This meta-analysis was performed to investigate a the relation of aflatoxin B1 (AFB1) to growth measurements of infants/children, including wasting, underweight, stunting, as well as weight-for-age (WAZ), height-for-age (HAZ), and weight-for-height (WHZ) z-scores. METHODS Electronic databases of PubMed, Web of Science, and Scopus were searched to identify related publications. Effect sizes for associations were pooled using the random effects analysis. Subgroup analysis by study design, method used to assess AFB1, and adjustment for covariateswas performed to detect possible sources of heterogeneity. RESULTS Pooled analysis of available data showed that AFB1 exposure was negatively associated growth z-scores, including WHZ (β = -0.02, 95%CI = -0.07 to 0.03), with WAZ (β = -0.18, 95%CI = -0.33 to -0.02), and HAZ (β = -0.17, 95%CI = -0.30 to -0.03) in infants/children. There was a remarkable heterogeneity among studies on WAZ and HAZ (P ≤ 0.001). In prospective cohort studies, AFB1 exposure was found to be significantly associated with the elevated risk of underweight (OR = 1.20, 95%CI = 1.03 to 1.40) and stunting (OR = 1.21, 95%CI = 1.11 to 1.33). CONCLUSIONS This meta-analysis highlighted the importance of AFB1 exposure as a potential risk factor for growth impairment in infants/children.
Collapse
Affiliation(s)
- Behnam Ghorbani Nejad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Mostafaei
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Balouchi Rezaabad
- Department of Pharmacognosy, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Mehravar
- Department of Psychiatry and Community Health Nursing School of Nursing and Midwifery, Golestan University of Medical Sciences (GOUMS), Golestan, Iran
| | - Mahtab Zarei
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Dehghani
- Nutrition Research Center, Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Somayyeh Karami-Mohajeri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hamzeh Alizadeh
- Genetics Research Center, Department of Genetics and Breeding, The University of Guilan, Rasht, Iran.
| |
Collapse
|
9
|
Monge A, Romero M, Groopman JD, McGlynn KA, Santiago-Ruiz L, Villalpando-Hernández S, Mannan R, Burke SM, Remes-Troche JM, Lajous M. Aflatoxin exposure in adults in southern and eastern Mexico in 2018: A descriptive study. Int J Hyg Environ Health 2023; 253:114249. [PMID: 37672956 PMCID: PMC10538954 DOI: 10.1016/j.ijheh.2023.114249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/08/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023]
Abstract
OBJECTIVE To estimate the frequency of detection and levels of aflatoxin B1-lysine adduct (AFB1-lys), an important hepatocellular carcinoma (HCC) risk factor, in eastern and southern Mexico. MATERIALS AND METHODS We determined serum AFB1-lys using mass spectrometry in a representative sample of 952 adults (weighted n = 7,493,354) from five states (Campeche, Chiapas, Tamaulipas, Veracruz and Yucatán) in 2018. We calculated overall and subgroup-specific frequency of detection and 95% confidence intervals (95%CI) and median AFB1-lys levels and quartiles. RESULTS The overall frequency of detection of AFB1-lys was 91.9% (95%CI 88.6, 94.3). The median AFB1-lys level was 0.172 pg/μL (Q1-Q3, 0.060-0.582). Levels differed geographically (median pg/μL, 0.361 for Veracruz and 0.061 for Yucatan) and were higher among men and older individuals. Levels were almost three times higher in rural relative to urban areas (0.317 vs. 0.123 pg/μL). We observed higher AFB1-lys exposure in lower socioeconomic status (SES) level populations. CONCLUSION AFB1-lys frequency of detection was very high and exposure levels were highest in Veracruz, men, rural areas, and among persons of lower SES. Understanding modifiable HCC risk factors in populations with unique epidemiological patterns could inform preventative interventions.
Collapse
Affiliation(s)
- Adriana Monge
- Center for Research on Population Health, National Institute of Public Health, Cuernavaca, Mexico
| | - Martín Romero
- Center for Research on Evaluation and Surveys, National Institute of Public Health, Cuernavaca, Mexico
| | - John D Groopman
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | | - Luis Santiago-Ruiz
- Center for Research on Population Health, National Institute of Public Health, Cuernavaca, Mexico
| | | | - Reima Mannan
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Sean M Burke
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | | - Martín Lajous
- Center for Research on Population Health, National Institute of Public Health, Cuernavaca, Mexico; Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, USA.
| |
Collapse
|
10
|
Du Z, Liu ZZ. Inhibition of aflatoxins on UDP-glucuronosyltransferases (UGTs). Toxicol In Vitro 2023; 90:105612. [PMID: 37164184 DOI: 10.1016/j.tiv.2023.105612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Aflatoxins have been recognized as the most harmful mycotoxins leading to various toxic effects. The present study aims to determine the inhibition behavior of aflatoxins on the activity of the important phase II metabolizing enzymes, UDP-glucuronosyltransferases (UGTs), based on in vitro incubation system of recombinant human UGTs-catalyzed glucuronidation of 4-methylumbelliferone (4-MU). 100 μM AFB1 and AFG1 exhibited extensive inhibition towards UGT isoforms especially UGT1A7 and UGT1A8, with the inhibition ratios to be 71.38%, 72.95% and 72.79% for AFB1 to UGT1A7, AFB1 to UGT1A8 and AFG1 to UGT1A8, respectively. Molecular docking results showed that hydrogen bonds and hydrophobic contacts of the particular structure consisting of double furan ring with double bond contributed to the interaction of aflatoxins and UGTs. Kinetics analysis, including inhibition types and kinetics parameters (Ki), and in vitro-in vivo extrapolation (IVIVE) indicated that there might be a medium possibility of inhibition on UGTs by aflatoxins in vivo. In conclusion, the present study indicated that aflatoxins could possibly disturb endogenous metabolism by inhibiting the activity of UGTs so as to exhibit toxic effects.
Collapse
Affiliation(s)
- Zuo Du
- School of Public Health, North Sichuan Medical College, Nanchong 637000, China.
| | - Zhen-Zhong Liu
- School of Public Health, North Sichuan Medical College, Nanchong 637000, China
| |
Collapse
|
11
|
Kyei NNA, Waid JL, Ali N, Cramer B, Humpf HU, Gabrysch S. Maternal exposure to multiple mycotoxins and adverse pregnancy outcomes: a prospective cohort study in rural Bangladesh. Arch Toxicol 2023; 97:1795-1812. [PMID: 37067549 PMCID: PMC10182942 DOI: 10.1007/s00204-023-03491-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/30/2023] [Indexed: 04/18/2023]
Abstract
There is limited and inconsistent evidence, primarily from cross-sectional studies, linking mycotoxins to adverse birth outcomes. This study investigates the potential role of maternal dietary exposure to multiple mycotoxins in the development of several adverse pregnancy and birth outcomes. We analyzed data from 436 singleton pregnancies enrolled in a prospective cohort study in the rural Habiganj district, Bangladesh, between July 2018 and November 2019. Thirty-five urinary mycotoxin biomarkers were quantified using liquid chromatography coupled with tandem mass spectrometry and used to estimate dietary mycotoxin exposure. Multivariable regression models, adjusted for potential confounding and clustering, were fitted to assess the associations between maternal exposure to frequently occurring mycotoxins (ochratoxin A-OTA, citrinin- CIT, and Deoxynivalenol- DON) and pregnancy loss, preterm birth (PTB), low birth weight (LBW), born small-for-gestational-age (SGA) and small-vulnerable newborn. The results indicate that only in 16 of 436 pregnancies (4%) were urine samples free from all investigated mycotoxins. Biomarkers for six major mycotoxins were detected in the urine samples. OTA (95%), CIT (61%), and DON (6%) were most frequently detected, with at least two mycotoxins co-occurring in the majority of women (63%). There was evidence that maternal dietary intake of OTA was associated with higher odds of having an LBW baby, with the odds increasing in a dose-dependent manner. We found no evidence of associations between pregnancy loss, PTB, SGA, small-vulnerable newborns, and maternal dietary exposure to OTA, CIT, and DON, albeit with large confidence intervals, so findings are consistent with protective as well as large harmful effects. Exposure to multiple mycotoxins during pregnancy is widespread in this rural community and represents a health risk for mothers and babies. Tailored public health policies and interventions must be implemented to reduce mycotoxin exposure to the lowest possible level.
Collapse
Affiliation(s)
- Nicholas N A Kyei
- Institute of Public Health, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Unversität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Heidelberg Institute of Global Health, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
- Research Department 2, Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P. O. Box 60 12 03, 14412, Potsdam, Germany.
| | - Jillian L Waid
- Research Department 2, Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P. O. Box 60 12 03, 14412, Potsdam, Germany
- Helen Keller International-Bangladesh Country Office, House 10E, Road 82, Gulshan 2, Dhaka, 1212, Bangladesh
| | - Nurshad Ali
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Benedikt Cramer
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Sabine Gabrysch
- Institute of Public Health, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Unversität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Heidelberg Institute of Global Health, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- Research Department 2, Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P. O. Box 60 12 03, 14412, Potsdam, Germany
| |
Collapse
|
12
|
Owumi SE, Arunsi UO, Oyelere AK. The protective effect of 3-indolepropanoic acid on aflatoxin B1-induced systemic perturbation of the liver and kidney function in rats. Fundam Clin Pharmacol 2023; 37:369-384. [PMID: 36214208 DOI: 10.1111/fcp.12842] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/07/2022] [Accepted: 10/07/2022] [Indexed: 02/25/2023]
Abstract
Aflatoxin B1 (AFB1) is known to derange the hepatorenal system by redox, DNA adduct formation and apoptotic networks. Endogenous 3-indole propionic acid (3-IPA) is a metabolite of tryptophan metabolism by gut microbiota that can protect against redox imbalance, inflammation and cellular lipid damage. We investigated the beneficial effect of 3-IPA against AFB1-mediated organ toxicity in male rats post 28 days of consecutive treatment. The 3-IPA (25 and 50 mg/kg) was orally administered alongside AFB1 (50 μg/kg) treatment. Biochemical and enzyme-linked immunosorbent assays were utilised to examine biomarkers of hepatorenal function, oxidative status and inflammation. DNA damage and apoptosis were also assessed, and histological staining techniques were used to investigate hepatorenal tissues for pathological indicators. The 3-IPA supplementation abated AFB1-mediated increases in biomarkers of hepatic and renal dysfunction in rat serum. Co-administration of 3-IPA further reduced AFB1-induced redox imbalance (by upregulating antioxidant mediators and enzymes [GSH, TSH, Trx, Trx-R, SOD, CAT, GPx and GST]; reducing reactive oxygen species, lipid peroxidation and DNA adduct [RONS, LPO and 8-OH-dG] formation; suppressing pro-inflammatory and apoptotic mediators [XO, MPO, NO, IL-1β and Casp -9 and -3]; and upregulating the level of interleukin 10 (IL-10). Moreover, treatment with 3-IPA lessened hepatorenal tissue injuries. These findings suggest that augmenting 3-IPA endogenously from tryptophan metabolism may provide a novel strategy to forestall xenobiotics-mediated hepatorenal toxicity, including AFB1.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Uche O Arunsi
- Department of Cancer Immunology and Biotechnology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Adegboyega K Oyelere
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Rotimi OA, De Campos OC, Adelani IB, Olawole TD, Rotimi SO. Early-life AFB1 exposure: DNA methylation and hormone alterations. VITAMINS AND HORMONES 2023; 122:237-252. [PMID: 36863796 DOI: 10.1016/bs.vh.2022.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Aflatoxins are secondary metabolites of mold that contaminate food and feedstuff. They are found in various food including grains, nuts, milk and eggs. Aflatoxin B1 (AFB1) is the most poisonous and commonly found of the various types of aflatoxins. Exposures to AFB1 start early in life viz. in utero, during breastfeeding, and during weaning through the waning foods which are mainly grain based. Several studies have shown that early-life exposures to various contaminants may have various biological effects. In this chapter, we reviewed the effects of early-life AFB1 exposures on changes in hormone and DNA methylation. In utero AFB1 exposure results in alterations in steroid and growth hormones. Specifically, the exposure results in a reduction in testosterone levels later in life. The exposure also affects the methylation of various genes that are significant in growth, immune, inflammation, and signaling pathways.
Collapse
|
14
|
McKune SL, Mechlowitz K, Miller LC. Dietary animal source food across the lifespan in LMIC. GLOBAL FOOD SECURITY 2022. [DOI: 10.1016/j.gfs.2022.100656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Srinivasan B, Ghosh S, Webb P, Griswold SP, Xue KS, Wang JS, Mehta S. Assessing an aflatoxin exposure biomarker: Exploring the interchangeability and correlation between venous and capillary blood samples. ENVIRONMENTAL RESEARCH 2022; 215:114396. [PMID: 36154854 DOI: 10.1016/j.envres.2022.114396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/09/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Exposure to dietary aflatoxins has been recognized as a potential threat to child nutrition and growth, in addition to being a known carcinogen. The ability to accurately assess concentration of aflatoxin in the blood of at-risk individuals is therefore very important to inform public health policies and on-the-ground programs around the world. Venous blood is frequently used to quantify biomarkers of exposure such as AFB1-lysine adducts. However, venous blood collection methods are invasive, requiring highly trained staff, which makes this method challenging to implement, especially in resource-limited settings. In contrast, capillary blood collection by fingerprick is less invasive and has the potential for application in point-of-need monitoring. The aim of this exploratory study was to investigate the correlation and interchangeability of capillary and venous human blood samples in the quantification of AFB1-lysine adduct concentration. A total of 72 venous and capillary blood samples were collected from 36 women of reproductive age (16-49 years) in northern Uganda. All sample specimens were analyzed using high-performance liquid chromatography with fluorescence detection. Regression analysis and Bland-Altman analysis were performed to compare AFB1-lysine concentrations between venous and capillary sample pairs. Bland-Altman analysis of albumin-normalized AFB1-lysine data-bias was -0.023 pg/mg-albumin and the 95% limits of agreement were 0.51 to -0.56 pg/mg-albumin for log-transformed data. There was a positive correlation between albumin-normalized venous and capillary AFB1-lysine concentrations with r of 0.71 (p < .0001). A lack of any accepted clinical cutoff for aflatoxin exposure makes definition of an 'acceptable' limit for statistical analysis and comparison of methods challenging. Our data suggests a positive correlation between albumin-normalized AFB1-lysine concentrations in venous and capillary sample pairs, but relatively weak agreement and interchangeability based on Bland-Altman analysis.
Collapse
Affiliation(s)
- Balaji Srinivasan
- Center for Precision Nutrition and Health, Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA.
| | - Shibani Ghosh
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Patrick Webb
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Stacy P Griswold
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Kathy S Xue
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| | - Jia-Sheng Wang
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| | - Saurabh Mehta
- Center for Precision Nutrition and Health, Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
16
|
Tian M, Zhang G, Ding S, Jiang Y, Jiang B, Ren D, Chen P. Lactobacillus plantarum T3 as an adsorbent of aflatoxin B1 effectively mitigates the toxic effects on mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
17
|
Antagonism of Cyanamide-3-O-glucoside and protocatechuic acid on Aflatoxin B 1-induced toxicity in zebrafish larva (Danio rerio). Toxicon 2022; 216:139-147. [PMID: 35817093 DOI: 10.1016/j.toxicon.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/09/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022]
Abstract
The zebrafish model was used to evaluate the antioxidant properties of cyanidin-3-O-glucoside (C3G) and its metabolite protocatechuic acid (PCA) against aflatoxin B1 (AFB1)-induced hepatotoxicity and oxidative stress. In this study, zebrafish larvae were cultured for 3 days post fertilization (dpf) and then induced with AFB1. After induced 4 h, 8 h, 12 h, and 24 h, 5 μg/mL C3G/PCA was added and then co-cultured to 5 dpf, respectively. The experiments showed that C3G/PCA suppressed AFB1-induced zebrafish liver atrophy and delayed the absorption of the yolk sac. In addition, reactive oxygen species (ROS) and cell death were also significantly decreased by 5 μg/mL C3G/PCA (P ˂ 0.05). C3G/PCA significantly reduced hepatic biomarkers in the serum contents (P ˂ 0.05). Besides, glutathione (GSH) contents were significantly upregulated, and the activities of superoxide dismutase (SOD) and catalase (CAT) were significantly elevated in zebrafish (P ˂ 0.05). The addition of 5 μg/mL C3G/PCA was capable of reducing the apoptotic levels of caspase-9 and caspase-3 after 100 ng/mL AFB1 intoxication. In conclusion, these results suggested that C3G and its metabolite PCA might antagonize the hepatotoxicity of AFB1, reduce oxidative damage and inhibit cell death.
Collapse
|
18
|
Kyei NNA, Cramer B, Humpf HU, Degen GH, Ali N, Gabrysch S. Assessment of multiple mycotoxin exposure and its association with food consumption: a human biomonitoring study in a pregnant cohort in rural Bangladesh. Arch Toxicol 2022; 96:2123-2138. [PMID: 35441239 PMCID: PMC9151532 DOI: 10.1007/s00204-022-03288-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/21/2022] [Indexed: 01/01/2023]
Abstract
Aflatoxins (AFs), ochratoxin A (OTA), citrinin (CIT), fumonisin B1 (FB1), zearalenone (ZEN), and deoxynivalenol (DON) are mycotoxins that may contaminate diets, especially in low-income settings, with potentially severe health consequences. This study investigates the exposure of 439 pregnant women in rural Bangladesh to 35 mycotoxins and their corresponding health risks and links their exposure to certain foods and local stimulants. Overall, 447 first-morning urine samples were collected from pregnant women between July 2018 and November 2019. Mycotoxin biomarkers were quantified by DaS-HPLC-MS/MS. Urinary concentration of frequently occurring mycotoxins was used to estimate dietary mycotoxin exposure. Median regression analyses were performed to investigate the association between the consumption of certain foods and local stimulants, and urinary concentration of frequently occurring mycotoxins. Only in 17 of 447 urine samples (4%) were none of the investigated mycotoxins detected. Biomarkers for six major mycotoxins (AFs, CIT, DON, FB1, OTA, and ZEN) were detected in the urine samples. OTA (95%), CIT (61%), and DON (6%) were most frequently detected, with multiple mycotoxins co-occurring in 281/447 (63%) of urine samples. Under the lowest exposure scenario, dietary exposure to OTA, CIT, and DON was of public health concern in 95%, 16%, and 1% of the pregnant women, respectively. Consumption of specific foods and local stimulants-betel nut, betel leaf, and chewing tobacco-were associated with OTA, CIT, and DON urine levels. In conclusion, exposure to multiple mycotoxins during early pregnancy is widespread in this rural community and represents a potential health risk for mothers and their offspring.
Collapse
Affiliation(s)
- Nicholas N A Kyei
- Institute of Public Health, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Heidelberg Institute of Global Health, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
- Research Department 2, Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P. O. Box 60 12 03, 14412, Potsdam, Germany.
| | - Benedikt Cramer
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Gisela H Degen
- Leibniz-Research Centre for Working Environment and Human Factors (IfADo) at the TU Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Nurshad Ali
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Sabine Gabrysch
- Institute of Public Health, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Heidelberg Institute of Global Health, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- Research Department 2, Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P. O. Box 60 12 03, 14412, Potsdam, Germany
| |
Collapse
|
19
|
Saha Turna N, Havelaar A, Adesogan A, Wu F. Aflatoxin M1 in milk does not contribute substantially to global liver cancer incidence. Am J Clin Nutr 2022; 115:1473-1480. [PMID: 35470382 DOI: 10.1093/ajcn/nqac033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/02/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND For 60 y, it has been known that aflatoxin B1 (AFB1), a mycotoxin produced by Aspergillus fungi in certain food and feed crops, causes hepatocellular carcinoma (liver cancer; HCC) in humans. The annual global burden of AFB1-related HCC has been estimated. However, much less is known about the potential carcinogenic impact of a metabolite of AFB1 called aflatoxin M1 (AFM1), which is secreted in milk when dairy animals consume AFB1-contaminated feed. The cancer risk of AFM1 to humans from milk consumption has not yet been evaluated. OBJECTIVES We sought to estimate the global risk of AFM1-related liver cancer through liquid milk consumption, accounting for possible synergies between AFM1 and chronic infection with hepatitis B virus (HBV) in increasing cancer risk. METHODS We conducted a quantitative cancer risk assessment by analyzing extensive datasets of national population sizes, dairy consumption patterns, AFM1 concentrations in milk in 40 nations, and chronic HBV prevalence. Two separate cancer risk assessments were conducted: assuming a possible synergy between AFM1 and HBV in increasing cancer risk in a manner similar to that of AFB1 and HBV, and assuming no such synergy. RESULTS If there is no synergy between AFM1 and HBV, AFM1 may contribute ∼0.001% of total annual HCC cases globally. If there is synergy between AFM1 and HBV infection, AFM1 may contribute ∼0.003% of all HCC cases worldwide. In each case, the total expected AFM1-attributable cancer cases are ∼13-32 worldwide. CONCLUSION AFM1 exposure through liquid milk consumption does not substantially increase liver cancer risk in humans. Policymakers should consider this low risk against the nutritional benefits of milk consumption, particularly to children, in a current global situation of milk being discarded because of AFM1 concentrations exceeding regulatory standards.
Collapse
Affiliation(s)
- Nikita Saha Turna
- Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI, USA.,British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - Arie Havelaar
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA.,Food Systems Institute, University of Florida, Gainesville, FL, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Adegbola Adesogan
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA.,Food Systems Institute, University of Florida, Gainesville, FL, USA
| | - Felicia Wu
- Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI, USA.,Department of Agricultural, Food, and Resource Economics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
20
|
Ayelign A, Alemu T, De Saeger S. Validation of a HACCP community-based infants' complementary food safety assurance method in cash crop producing communities in Gedeo zone, Southern Ethiopia. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1311-1320. [PMID: 35594247 DOI: 10.1080/19440049.2022.2075040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A method based on a hazard analysis critical control point (HACCP)-based standard operating procedure (SOP) has been developed and implemented in community-based (CB) production of complementary foods (CFs) in agrarian regions in rural Ethiopia. The objective of this study was to validate the method in another setup, more specifically in cash crop (coffee and khat) producing communities in Southern Ethiopia. A quasi-experimental study was employed for the method validation. Two villages in the Gedeo zone, Southern Ethiopia were selected and a total of 40 mother-child pairs, 20 in each village, were involved in the study. Sociodemographic data, knowledge, and complementary feeding practices were collected using pretested questionnaires. The training was given to each mother for 1 h about community-based CFs production and implementation of the method. Then, 30 CF samples were collected and the level of aflatoxins (AFB1, AFB2, AFG1, and AFG2) was determined using a validated method. The majority (77.5%) of the mothers understand the importance of complementary feeding and give it to their infants beyond 6 months. Nearly two-thirds (62.5%) of the mothers had knowledge about the health impacts of aflatoxins, but the remaining 37.5% lacked awareness about the health risks of aflatoxins. Mothers were very well-motivated for the training and they promised to implement the knowledge and skill gained from the training for improving the nutritional status of their children. Overall, 23.3% of the CFs were contaminated by aflatoxins. AFB1 and AFG1 were detected in 6.7 and 16.7% of the CF samples, respectively. In cash crop-producing communities around the country, the HACCP-based SOP is easily validated in CB CFs production. Therefore, a scaleup of the method at the national level and beyond is recommended.
Collapse
Affiliation(s)
- Abebe Ayelign
- Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia
| | - Taddese Alemu
- College of Health Sciences and Referral Hospital, Dilla University, Dilla, Ethiopia.,Global Academy of Agriculture and Food Security, University of Edinburgh, Edinburgh, UK
| | - Sarah De Saeger
- Department of Bioanalysis, Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ghent, Belgium.,Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
21
|
PINK1/Parkin-mediated mitophagy as a protective mechanism against AFB 1-induced liver injury in mice. Food Chem Toxicol 2022; 164:113043. [PMID: 35447291 DOI: 10.1016/j.fct.2022.113043] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/19/2022] [Accepted: 04/14/2022] [Indexed: 11/22/2022]
Abstract
Aflatoxin B1 (AFB1) can cause oxidative stress leading to mitochondrial damage and subsequent liver injury. Although it is well-known that damaged mitochondria are eliminated by PINK1/Parkin-mediated mitophagy, this mechanism has not yet been characterized in the context of AFB1-induced liver injury. In this study, male wild-type C57BL/6N mice were divided into groups 1-4, which were then orally administered 0, 0.5, 0.75, and 1 mg/kg body weight AFB1 for 28 d, respectively. Our results demonstrated that oxidative stress, NLRP3-inflammasome activation, and mitochondrial damage were dose-dependently augmented in AFB1-induced liver injury. Additionally, PINK1/Parkin-mediated mitophagy peaked in the groups that had received a mid-dose of AFB1 (0.75 mg/kg), which was attenuated slightly in high-dose groups. Afterward, we further characterized AFB1-induced liver injury by comparing wild-type C57BL/6N mice with Parkin knockout (Parkin-/-) mice. We found that the restricted mitophagy in Parkin-/- mice was associated with increased oxidative stress, NLRP3-inflammasome activation, mitochondrial damage, and liver injury. Taken together, these results indicate that PINK1/Parkin-mediated mitophagy plays an important role in attenuating AFB1-induced liver injury in mice.
Collapse
|
22
|
Andrews‐Trevino J, Webb P, Shrestha R, Pokharel A, Acharya S, Chandyo R, Davis D, Baral K, Wang J, Xue K, Ghosh S. Exposure to multiple mycotoxins, environmental enteric dysfunction and child growth: Results from the AflaCohort Study in Banke, Nepal. MATERNAL & CHILD NUTRITION 2022; 18:e13315. [PMID: 35020261 PMCID: PMC8932698 DOI: 10.1111/mcn.13315] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022]
Abstract
Evidence of the impact of exposure to multiple mycotoxins and environment enteric dysfunction (EED) on child growth is limited. Using data from a birth cohort study, the objectives of this study were to (a) quantify exposure to multiple mycotoxins (serum aflatoxin [AFB1] and ochratoxin A [OTA], urinary fumonisin [UFB1] and deoxynivalenol [DON]), as well EED (lactulose:mannitol [L:M] ratio); (b) examine the potential combined effects of multiple mycotoxin exposure and EED on growth. Multivariate regressions were used to identify associations between growth measurements (length, weight, anthropometric z‐scores, stunting and underweight) at 24–26 months of age and exposure to mycotoxins and EED at 18–22 months (n = 699). Prevalence of AFB1, DON, OTA and UFB1 exposure ranged from 85% to 100%; average L:M ratio was 0.29 ± 0.53. In individual mycotoxin models, AFB1 exposure was negatively associated with weight, WAZ, increased odds of stunting (odds ratio [OR]: 1.28, 95% confidence interval [CI]: 1.08, 1.52; p = 0.004) and underweight (OR: 1.18, 95% CI: 1.00, 1.38; p = 0.046). Irrespective of other mycotoxin exposure and presence of EED, AFB1 was negatively associated with length, weight, head circumference, LAZ and WAZ, and with increased odds of stunting and underweight, UFB1 was associated with increased odds of underweight, and DON was negatively associated with head circumference. EED was associated with the impaired length and weight. These findings suggest that certain mycotoxins and EED may have independent impacts on different facets of growth and that aflatoxin dominates such impacts. Thus, programs reducing exposure to mycotoxin and EED through multi‐sectoral nutrition‐sensitive interventions have the potential to improve child growth. Mycotoxin exposure was highly prevalent in children aged 18–22 months. Various mycotoxins and EED contribute independently to different manifestations of poor child growth AFB1 was negatively associated with length, weight, head circumference, LAZ, as well as WAZ, and associated with increased odds of stunting and underweight. UFB1 was also associated with increased odds of underweight. DON was negatively associated with head circumference.
Collapse
Affiliation(s)
- Johanna Andrews‐Trevino
- Division of Food and Nutrition Policy and Programs, Friedman School of Nutrition Science and Policy Tufts University Boston Massachusetts USA
| | - Patrick Webb
- Division of Food and Nutrition Policy and Programs, Friedman School of Nutrition Science and Policy Tufts University Boston Massachusetts USA
| | - Robin Shrestha
- Division of Food and Nutrition Policy and Programs, Friedman School of Nutrition Science and Policy Tufts University Boston Massachusetts USA
| | | | | | - Ram Chandyo
- Department of Community Medicine Kathmandu Medical College Kathmandu Nepal
| | - Dale Davis
- Helen Keller International‐Nepal Kathmandu Nepal
| | - Kedar Baral
- Department of Community Health Sciences Patan Academy of Health Sciences Lalitpur Nepal
| | - Jia‐Sheng Wang
- Department of Environmental Health Science University of Georgia Athens Georgia USA
| | - Kathy Xue
- Department of Environmental Health Science University of Georgia Athens Georgia USA
| | - Shibani Ghosh
- Division of Food and Nutrition Policy and Programs, Friedman School of Nutrition Science and Policy Tufts University Boston Massachusetts USA
| |
Collapse
|
23
|
Owumi SE, Irozuru CE, Arunsi UO, Faleke HO, Oyelere AK. Caffeic acid mitigates aflatoxin B1-mediated toxicity in the male rat reproductive system by modulating inflammatory and apoptotic responses, testicular function, and the redox-regulatory systems. J Food Biochem 2022; 46:e14090. [PMID: 35112365 DOI: 10.1111/jfbc.14090] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/26/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
Aflatoxin B1 (AFB1 ) is a toxic metabolite of public health concern. The present study investigates the protective effects of caffeic acid (CA) against AFB1 -induced oxidative stress, inflammation, and apoptosis in the hypothalamus, epididymis, and testis of male rats. Five experimental rat cohorts (n = 6) were treated per os for 28 consecutive days as follows: Control (Corn oil 2 ml/kg body weight), AFB1 alone (50μg/kg), CA alone (40 mg/kg) and the co-treated rat cohorts (AFB1 : 50μg/kg + CA1: 20 or 40 mg/kg). Following sacrifice, the biomarkers of hypothalamic, epididymal, and testicular toxicities, antioxidant enzyme activities, myeloperoxidase (MPO) activity, as well as levels of nitric oxide (NO), reactive oxygen and nitrogen (RONS) species and lipid peroxidation (LPO) were analysed spectrophotometrically. Besides, the concentration of tumour necrosis factor-alpha (TNF-α), Bcl-2 and Bax proteins were assessed using ELISA. Results showed that the AFB1 -induced decrease in biomarkers of testicular, epididymal and hypothalamic toxicity was significantly (p < .05) alleviated in rats coexposed to CA. Moreover, the reduction of antioxidant status and the increase in RONS and LPO were lessened (p < .05) in rats co-treated with CA. AFB1 mediated increase in TNF-α, Bax, NO and MPO activity were reduced (p< .05) in the hypothalamus, epididymis, and testis of rats coexposed to CA. In addition, Bcl-2 levels were reduced in rats treated with CA dose-dependently. Light microscopic examination showed that histopathological lesions severity induced by AFB1 were alleviated in rats coexposed to CA. Taken together, the amelioration of AFB1 -induced neuronal and reproductive toxicities by CA involves anti-inflammatory, antioxidant, antiapoptotic mechanisms in rats. PRACTICAL APPLICATIONS: The beneficial antioxidant effects of caffeic acid (CA) are attributed to CA delocalized aromatic rings and free electrons, easily donated to stabilize reactive oxygen species. We report in vivo findings on CA and AfB1 mediated oxidative stress and reproductive dysfunction in rats. CA conjugated esters including chlorogenic acids are widely distributed in plants, and they act as a dietary source of natural defense against infections. CA can chelate heavy metals and reduce production of damaging free radicals to cellular macromolecules. Along these lines, CA can stabilize aflatoxin B1-epoxide as well and avert deleterious conjugates from forming with deoxyribonucleic acids. Hence CA, as a dietary phytochemical can protect against the damaging effects of toxins including aflatoxin B1 that contaminate food. CA dose-dependently abated oxidative, inflammatory, and apoptotic stimuli, improved functional characteristics of spermatozoa and reproductive hormone levels, and prevented histological alterations in experimental rats' hypothalamus and reproductive organs brought about by AFB1 toxicity.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Chioma E Irozuru
- Molecular Drug Metabolism Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Uche O Arunsi
- Department of Cancer Immunology and Biotechnology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Hammed O Faleke
- Membrane Biochemistry and Biotechnology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Adegboyega K Oyelere
- School of Chemistry & Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
24
|
Smith JW, Matchado AJ, Wu LSF, Arnold CD, Burke SM, Maleta KM, Ashorn P, Stewart CP, Shaikh S, Ali H, Labrique AB, West KP, Christian P, Dewey KG, Groopman JD, Schulze KJ. Longitudinal Assessment of Prenatal, Perinatal, and Early-Life Aflatoxin B 1 Exposure in 828 Mother-Child Dyads from Bangladesh and Malawi. Curr Dev Nutr 2022; 6:nzab153. [PMID: 35155983 PMCID: PMC8829025 DOI: 10.1093/cdn/nzab153] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND In utero or early-life exposure to aflatoxin, which contaminates staple crops in disadvantaged settings, may compromise pregnancy and infant outcomes, but investigations into the extent, persistence, and determinants of aflatoxin exposure at these life stages have lacked longitudinal data collection and broad geographic representation. OBJECTIVES Aflatoxin exposure and selected determinants thereof were characterized in mother-child dyads with serial plasma/serum samples in prenatal, perinatal, and early life in Malawi and Bangladesh. METHODS Circulating aflatoxin B1 (AFB1)-lysine albumin adducts were measured in dyads from Bangladesh (n = 573; maternal first and third trimester, 3 mo postpartum, cord blood, infant 24 mo) and Malawi (n = 255; maternal second and third trimester, 6 mo postpartum, infant 6 and 18 mo) with isotope dilution mass spectrometry. We examined AFB1-lysine adduct magnitude, persistence, seasonality, and associations with infant feeding, and estimated daily AFB1 intake. RESULTS Maternal AFB1-lysine was higher in Malawi (98% detectable; median: 0.469, IQR: 0.225-1.027 pg/µL) than in Bangladesh (59%; 0.030, nondetectable [nd]-0.077 pg/µL). Although estimated dietary exposure in Malawi was temporally stable (648 ng AFB1/day), estimated intake in Bangladesh was reduced by 94% between rainy and winter seasons (98 to 6 ng/day). AFB1-lysine was low in cord blood from Bangladesh (15% detectable; 0.045, 0.031-0.088 pg/µL among detectable) and in Malawian infants at 6 mo of age (0.072, nd-0.236 pg/µL), but reached maternal concentrations by 18 or 24 mo (Bangladesh: 0.034, nd-0.063 pg/µL; Malawi: 0.370, 0.195-0.964 pg/µL). In Malawian infants, exclusive breastfeeding at 3 mo was associated with 58% lower AFB1-lysine concentrations at 6 mo compared with other feeding modes (P = 0.010). CONCLUSIONS Among pregnant women, aflatoxin exposure was persistently high in Malawi, while lower and seasonal in Bangladesh. Infants were partially protected from exposure in utero and with exclusive breastfeeding, but exposures reached adult levels by 18-24 mo of age. The Bangladesh and Malawi trials are registered at clinicaltrials.gov as NCT00860470 and NCT01239693.
Collapse
Affiliation(s)
- Joshua W Smith
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew J Matchado
- Department of Nutrition and Institute for Global Nutrition, University of California, Davis, Davis, CA, USA
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Lee S-F Wu
- Center for Human Nutrition, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Charles D Arnold
- Department of Nutrition and Institute for Global Nutrition, University of California, Davis, Davis, CA, USA
| | - Sean M Burke
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Kenneth M Maleta
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Per Ashorn
- Tampere University, Faculty of Medicine and Health Technology, Center for Child, Adolescent and Maternal Health Research and Tampere University Hospital, Department of Pediatrics, Tampere, Finland
| | - Christine P Stewart
- Department of Nutrition and Institute for Global Nutrition, University of California, Davis, Davis, CA, USA
| | - Saijuddin Shaikh
- Center for Human Nutrition, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- The JiVitA Project of Johns Hopkins University, Bangladesh, Gaibandha, Bangladesh
| | - Hasmot Ali
- Center for Human Nutrition, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- The JiVitA Project of Johns Hopkins University, Bangladesh, Gaibandha, Bangladesh
| | - Alain B Labrique
- Center for Human Nutrition, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Keith P West
- Center for Human Nutrition, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Parul Christian
- Center for Human Nutrition, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Kathryn G Dewey
- Department of Nutrition and Institute for Global Nutrition, University of California, Davis, Davis, CA, USA
| | - John D Groopman
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Kerry J Schulze
- Center for Human Nutrition, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|