1
|
Webber BJ. Physical Inactivity is Simply Too Risky During Pregnancy. Am J Lifestyle Med 2024:15598276241305544. [PMID: 39691783 PMCID: PMC11647816 DOI: 10.1177/15598276241305544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Affiliation(s)
- Bryant J Webber
- Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD, USA (BJW)
| |
Collapse
|
2
|
Ren J, Zhou L, Li S, Zhang Q, Xiao X. The roles of the gut microbiota, metabolites, and epigenetics in the effects of maternal exercise on offspring metabolism. Am J Physiol Endocrinol Metab 2024; 327:E760-E772. [PMID: 39535269 DOI: 10.1152/ajpendo.00200.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/20/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Metabolic diseases, including obesity, dyslipidemia, and type 2 diabetes, have become severe challenges worldwide. The Developmental Origins of Health and Disease (DOHaD) hypothesis suggests that an adverse intrauterine environment can increase the risk of metabolic disorders in offspring. Studies have demonstrated that maternal exercise is an effective intervention for improving the offspring metabolic health. However, the pathways through which exercise works are unclear. It has been reported that the gut microbiota mediates the effect of maternal exercise on offspring metabolism, and epigenetic modifications have also been proposed to be important molecular mechanisms. Microbial metabolites can influence epigenetics by providing substrates for DNA or histone modifications, binding to G-protein-coupled receptors to affect downstream pathways, or regulating the activity of epigenetic modifying enzymes. This review aims to summarize the intergenerational effect of maternal exercise and proposes that gut microbiota-metabolites-epigenetic regulation is an important mechanism by which maternal exercise improves offspring metabolism, which may yield novel targets for the early prevention and intervention of metabolic diseases.
Collapse
Affiliation(s)
- Jing Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Liyuan Zhou
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Shunhua Li
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Wu MY, Luo HL, Chang YC, Yu CY, Sung WW. Exercise may improve lung immunity after surgical stress: Evidence from a nephrectomy model via a bioinformatic analysis. PLoS One 2024; 19:e0303334. [PMID: 38848417 PMCID: PMC11161109 DOI: 10.1371/journal.pone.0303334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/23/2024] [Indexed: 06/09/2024] Open
Abstract
Exercise offers numerous benefits to cancer patients and plays an essential role in postsurgical cancer rehabilitation. However, there is a lack of research examining the effects of exercise after the surgical stress of nephrectomy. To address this gap, we created an animal model that simulated patients who had undergone nephrectomy with or without an exercise intervention. Next, we performed a bioinformatic analysis based on the data generated by the RNA sequencing of the lung tissue sample. An overrepresentation analysis was conducted using two genome databases (Gene Ontology and Kyoto Encyclopedia of Genes and Genomes [KEGG]). A KEGG analysis of the exercise-treated nephrectomy mice revealed enrichment in immune-related pathways, particularly in the NF-κB and B cell-related pathways. The expression of CD79A and IGHD, which are responsible for B cell differentiation and proliferation, was upregulated in the nephrectomy mice. Differential gene expression was categorized as significantly upregulated or downregulated according to nephrectomy and exercise groups. Notably, we identified several gene expression reversals in the nephrectomy groups with exercise that were not found in the nephrectomy without exercise or control groups. Our preliminary results potentially reveal a genetic landscape for the underlying mechanisms of the effects of exercise on our nephrectomy model.
Collapse
Affiliation(s)
- Min-You Wu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hao-Lun Luo
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ya-Chuan Chang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Ying Yu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wen-Wei Sung
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
4
|
Adamo KB, Goudreau AD, Corson AE, MacDonald ML, O'Rourke N, Tzaneva V. Physically active pregnancies: Insights from the placenta. Physiol Rep 2024; 12:e16104. [PMID: 38872466 PMCID: PMC11176744 DOI: 10.14814/phy2.16104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/03/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Physical activity (PA) positively influences pregnancy, a critical period for health promotion, and affects placental structure and function in ways previously overlooked. Here, we summarize the current body of literature examining the association between PA, placenta biology, and physiology while also highlighting areas where gaps in knowledge exist. PA during pregnancy induces metabolic changes, influencing nutrient availability and transporter expression in the placenta. Hormones and cytokines secreted during PA contribute to health benefits, with intricate interactions in pro- and anti-inflammatory markers. Extracellular vesicles and placental "-omics" data suggest that gestational PA can shape placental biology, affecting gene expression, DNA methylation, metabolite profiles, and protein regulation. However, whether cytokines that respond to PA alter placental proteomic profiles during pregnancy remains to be elucidated. The limited research on placenta mitochondria of physically active gestational parents (gesP), has shown improvements in mitochondrial DNA and antioxidant capacity, but the relationship between PA, placental mitochondrial dynamics, and lipid metabolism remains unexplored. Additionally, PA influences the placenta-immune microenvironment, angiogenesis, and may confer positive effects on neurodevelopment and mental health through placental changes, vascularization, and modulation of brain-derived neurotrophic factor. Ongoing exploration is crucial for unraveling the multifaceted impact of PA on the intricate placental environment.
Collapse
Affiliation(s)
- Kristi B Adamo
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Alexandra D Goudreau
- Department of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Abbey E Corson
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Meaghan L MacDonald
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Nicholas O'Rourke
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Velislava Tzaneva
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Valkenborghs SR, Hayman MJ. Physical activity during pregnancy and baby brain development - The elephant in the consulting room. Neurosci Biobehav Rev 2024; 159:105602. [PMID: 38395119 DOI: 10.1016/j.neubiorev.2024.105602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Affiliation(s)
- Sarah R Valkenborghs
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, Australia; Active Living research program, Hunter Medical Research Institute, New Lambton Heights, Australia.
| | - Melanie J Hayman
- School of Health, Medical, and Applied Sciences, CQUniversity, Rockhampton, Australia
| |
Collapse
|
6
|
Chae SA, Du M, Zhu MJ, Son JS. Exercise enhances placental labyrinth trophoblast development by activation of PGC-1α and FNDC5/irisin†. Biol Reprod 2024; 110:355-364. [PMID: 37934783 PMCID: PMC10873274 DOI: 10.1093/biolre/ioad151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/10/2023] [Accepted: 10/28/2023] [Indexed: 11/09/2023] Open
Abstract
Placental chorion/labyrinth trophoblasts are energy demanding which is met by the mitochondrial oxidative phosphorylation. Exercise enhances placental development and mitochondrial biogenesis, but the underlying mechanisms remain poorly understood. To address, female C57BL/6 J mice were randomly assigned into two groups: a control group and an exercise (EX) group. All animals were acclimated to treadmill exercise for 1 week before mating, but only the EX group was subjected to daily exercise during pregnancy from embryonic day (E) 1.5 to E16.5. Placenta were collected at E18.5 for biochemical and histochemical analyses, and primary trophoblast cells were isolated from the E18.5 placenta for further analyses. The data showed that exercise during pregnancy promoted the expression of syncytiotrophoblast cell markers, indicating trophoblast cell differentiation, which was closely associated with elevated mitochondrial biogenesis and oxidative metabolism in the E18.5 placenta. In addition, exercise during pregnancy activated peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α), which was associated with upregulated placental α-ketoglutarate and the expression of isocitrate dehydrogenases and ten-eleven translocations, facilitating DNA demethylation of the Pgc1a promoter. Furthermore, exercise upregulated fibronectin type III domain containing 5 expression and the secretion of its cleaved form, irisin, which is known to activate PGC-1α. These data suggest that exercise-induced activation of PGC-1α, via epigenetic modifications, is responsible for promoting mitochondrial energy metabolism and chorion/labyrinth trophoblast development.
Collapse
Affiliation(s)
- Song Ah Chae
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, USA
| | - Jun Seok Son
- Nutrigenomics and Exercise Biology Laboratory, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Zhang H, Xiang G, Li J, He S, Wang Y, Deng A, Wang Y, Guo C. Promotion effect of FGF23 on osteopenia in congenital scoliosis through FGFr3/TNAP/OPN pathway. Chin Med J (Engl) 2023; 136:1468-1477. [PMID: 37192015 PMCID: PMC10278695 DOI: 10.1097/cm9.0000000000002690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Congenital scoliosis (CS) is a complex spinal malformation of unknown etiology with abnormal bone metabolism. Fibroblast growth factor 23 (FGF23), secreted by osteoblasts and osteocytes, can inhibit bone formation and mineralization. This research aims to investigate the relationship between CS and FGF23. METHODS We collected peripheral blood from two pairs of identical twins for methylation sequencing of the target region. FGF23 mRNA levels in the peripheral blood of CS patients and age-matched controls were measured. Receiver operator characteristic (ROC) curve analyses were conducted to evaluate the specificity and sensitivity of FGF23. The expression levels of FGF23 and its downstream factors fibroblast growth factor receptor 3 (FGFr3)/tissue non-specific alkaline phosphatase (TNAP)/osteopontin (OPN) in primary osteoblasts from CS patients (CS-Ob) and controls (CT-Ob) were detected. In addition, the osteogenic abilities of FGF23-knockdown or FGF23-overexpressing Ob were examined. RESULTS DNA methylation of the FGF23 gene in CS patients was decreased compared to that of their identical twins, accompanied by increased mRNA levels. CS patients had increased peripheral blood FGF23 mRNA levels and decreased computed tomography (CT) values compared with controls. The FGF23 mRNA levels were negatively correlated with the CT value of the spine, and ROCs of FGF23 mRNA levels showed high sensitivity and specificity for CS. Additionally, significantly increased levels of FGF23, FGFr3, OPN, impaired osteogenic mineralization and lower TNAP levels were observed in CS-Ob. Moreover, FGF23 overexpression in CT-Ob increased FGFr3 and OPN levels and decreased TNAP levels, while FGF23 knockdown induced downregulation of FGFr3 and OPN but upregulation of TNAP in CS-Ob. Mineralization of CS-Ob was rescued after FGF23 knockdown. CONCLUSIONS Our results suggested increased peripheral blood FGF23 levels, decreased bone mineral density in CS patients, and a good predictive ability of CS by peripheral blood FGF23 levels. FGF23 may contribute to osteopenia in CS patients through FGFr3/TNAP / OPN pathway.
Collapse
Affiliation(s)
- Hongqi Zhang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Gang Xiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Jiong Li
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Sihan He
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Yunjia Wang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Ang Deng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Yuxiang Wang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Chaofeng Guo
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| |
Collapse
|
8
|
Aparicio VA, Baena-García L, Sánchez-González C, Acosta-Manzano P, Varela-López A, Quiles JL. Influence of a concurrent exercise training program during pregnancy on the placenta mitochondrial DNA integrity and content of minerals with enzymatic relevance. The GESTAFIT project. Placenta 2023; 139:19-24. [PMID: 37295054 DOI: 10.1016/j.placenta.2023.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
INTRODUCTION We aimed i) to investigate the effects of a concurrent (aerobic plus strength) exercise intervention during pregnancy on placental mtDNA copy number, proportion of deleted mtDNA, and on the content of some trace and ultra-trace minerals with coenzymatic relevance; ii) to explore the association of such mitochondrial markers with the concentration of these minerals. METHODS For the present study specific aims, 47 placentas were randomly selected from women that participated in the GESTAFIT project into exercise (n = 24) or control (n = 23) groups. The exercise group followed a concurrent aerobic and strength training program, three 60-min sessions/week, from the 17th gestational week until birth. Placenta tissue was collected and processed for minerals determination by the inductively coupled plasma mass spectrometry technique. RT-PCR was used to determine placentas mtDNA copy number and ND1/ND4 deletion. RESULTS After adjusting for potential confounders, the mothers who participated in the exercise program had placentas with greater mtDNA copy number (p = 0.04) and lower mtDNA deletion (p = 0.003). Placentas from mothers in the exercise group presented higher manganese content than those from the controls (0.26 ± 0.03 mg/dL vs. 0.13 ± 0.03 mg/dL, p = 0.003). Placenta manganese content was significantly associated with lower mtDNA deletions (r = -0.382) and greater mtDNA copy number (r = 0.513). Iron content was associated with higher mtDNA copy number (r = 0.393). Selenium content was associated with lower mtDNA deletion (r = -0.377) and greater mtDNA copy number (r = 0.442). Finally, zinc and magnesium content were associated with higher mtDNA copy number (r = 0.447 and r = 0.453, respectively). DISCUSSION This concurrent exercise training program induced a better placental status, which might be mediated through an improvement of mitochondrial bioenergetics and antioxidative capacity.
Collapse
Affiliation(s)
- Virginia A Aparicio
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, Spain; Sport and Health University Research Centre (iMUDS), University of Granada, Spain; Glzartea, Kirola eta Ariketa Fisikoa Ikerkuntza Taldea (GIKAFIT), Society Sports and Exercise Research Group, Department of Physical Education and Sport, Faculty of Education and Sport-Physical Activity and Sport Sciences Section, University of Basque Country (UPV/EHU), Vitoria-Gasteiz, Araba/Álava, Basque Country, Spain
| | - Laura Baena-García
- Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain; The Institute of Biomedicine Research (Instituto de Investigación Biosanitaria, ibs), Spain.
| | - Cristina Sánchez-González
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, Spain
| | - Pedro Acosta-Manzano
- Sport and Health University Research Centre (iMUDS), University of Granada, Spain; Institute of Human Movement Science, Sport and Health, University of Graz, Austria
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, Spain
| | - Jose L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, Spain
| |
Collapse
|
9
|
Priviero F. Epigenetic modifications and fetal programming: Molecular mechanisms to control hypertension inheritance. Biochem Pharmacol 2023; 208:115412. [PMID: 36632959 PMCID: PMC10012045 DOI: 10.1016/j.bcp.2023.115412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Cardiovascular diseases (CVD) are the number 1 cause of death in the United States and hypertension is a highly prevalent risk factor for CVD. It is estimated that up to 50 % of the hypertensive trait is genetically inherited while the other 50 % is determined by modifiable factors involving lifestyle, behaviors, and the environment. Interestingly, the hypertensive trait is induced or inhibited by epigenetic modifications modulated by modifiable factors. This review focused on the underlying mechanisms of stress, sleep deprivation, obesity and sedentarism as key players for epigenetic modifications contributing to the development of the hypertensive trait and, on the other hand, how epigenetic modifications induced by physical exercise and healthier habits may contribute to overturn and prevent the inheritance of hypertension trait. Furthermore, adversities during gestation and perinatal life also increase the risk for hypertension and CVD later in life, which can perpetuate the inheritance of the hypertensive trait whereas healthier habits during gestation and lactation may counteract fetal programming to improve the cardiovascular health of the progeny. Therefore, it is promising that a healthier lifestyle causes long-lasting epigenetic modifications and is transmitted to the next generation, strengthening the fight against the inheritance of hypertension.
Collapse
Affiliation(s)
- Fernanda Priviero
- Department of Cell Biology and Anatomy - School of Medicine, University of South Carolina, Columbia, SC, United States; Cardiovascular Translational Research Center - School of Medicine, University of South Carolina, Columbia, SC, United States; College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, SC, United States.
| |
Collapse
|
10
|
The intergenerational effects of parental physical activity on offspring brain and neurocognition in humans: a scoping review. Neurosci Biobehav Rev 2022; 143:104953. [DOI: 10.1016/j.neubiorev.2022.104953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/19/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
|