1
|
Bohn T, de Lera AR, Landrier JF, Rühl R. Carotenoid metabolites, their tissue and blood concentrations in humans and further bioactivity via retinoid receptor-mediated signalling. Nutr Res Rev 2023; 36:498-511. [PMID: 36380523 DOI: 10.1017/s095442242200021x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Many epidemiological studies have emphasised the relation between carotenoid dietary intake and their circulating concentrations and beneficial health effects, such as lower risk of cardiometabolic diseases and cancer. However, there is dispute as to whether the attributed health benefits are due to native carotenoids or whether they are instead induced by their metabolites. Several categories of metabolites have been reported, most notably involving (a) modifications at the cyclohexenyl ring or the polyene chain, such as epoxides and geometric isomers, (b) excentric cleavage metabolites with alcohol-, aldehyde- or carboxylic acid-functional groups or (c) centric cleaved metabolites with additional hydroxyl, aldehyde or carboxyl functionalities, not counting their potential phase-II glucuronidated / sulphated derivatives. Of special interest are the apo-carotenoids, which originate in the intestine and other tissues from carotenoid cleavage by β-carotene oxygenases 1/2 in a symmetrical / non-symmetrical fashion. These are more water soluble and more electrophilic and, therefore, putative candidates for interactions with transcription factors such as NF-kB and Nrf2, as well as ligands for RAR-RXR nuclear receptor interactions. In this review, we discuss in vivo detected apo-carotenoids, their reported tissue concentrations, and potential associated health effects, focusing exclusively on the human situation and based on quantified / semi-quantified carotenoid metabolites proven to be present in humans.
Collapse
Affiliation(s)
- Torsten Bohn
- Nutrition and Health Research Group, Precision Health Department, Luxembourg Institute of Health, 1 A-B, rue Thomas Edison, L-1445, Strassen, Luxembourg
| | - Angel R de Lera
- Departmento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, 36310 Vigo, Spain
| | | | - Ralph Rühl
- CISCAREX UG, Berlin, Germany
- Paprika Bioanalytics BT, Debrecen, Hungary
| |
Collapse
|
2
|
Bohn T, de Lera AR, Landrier JF, Carlsen H, Merk D, Todt T, Renaut J, Rühl R. State-of-the-art methodological investigation of carotenoid activity and metabolism - from organic synthesis via metabolism to biological activity - exemplified by a novel retinoid signalling pathway. Food Funct 2023; 14:621-638. [PMID: 36562448 DOI: 10.1039/d2fo02816f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Carotenoids are the most abundant lipophilic secondary plant metabolites and their dietary intake has been related to a large number of potential health benefits relevant for humans, including even reduced total mortality. An important feature is their potential to impact oxidative stress and inflammatory pathways, by interacting with transcription factors. For example, they may act as precursors of bioactive derivatives activating nuclear hormone receptor mediated signalling. These bioactive derivatives, originating e.g. from β-carotene, i.e. retinoids / vitamin A, can activate the nuclear hormone receptors RARs (retinoic acid receptors). Due to new analytical insights, various novel metabolic pathways were recently outlined to be mediated via distinct nuclear hormone receptor activating pathways that were predicted and further confirmed. In this article, we describe old and novel metabolic pathways from various carotenoids towards novel ligands of alternative nuclear hormone receptors. However, to fully elucidate these pathways, a larger array of techniques and tools, starting from organic synthesis, lipidomics, reporter models, classical in vitro and in vivo models and further omics-approaches and their statistical evaluation are needed to comprehensively and conclusively study this topic. Thus, we further describe state-of-the-art techniques from A to Ω elucidating carotenoid biological mediated activities and describe in detail required materials and methods needed - in practical protocol form - for the various steps of carotenoid investigations.
Collapse
Affiliation(s)
- Torsten Bohn
- Luxembourg Institute of Health, Nutrition and Health Research Group, Department of Precision Health, 1 A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, 36310 Vigo, Spain
| | | | - Harald Carlsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Daniel Merk
- Ludwig-Maximilians-Universität München, Department of Pharmacy, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Tilman Todt
- HAN University of Applied Sciences, School of Applied Biosciences and Chemistry, Nijmegen, The Netherlands
| | - Jenny Renaut
- Luxembourg Institute of Science and Technology, 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Ralph Rühl
- CISCAREX UG, Berlin, Germany. .,Paprika Bioanalytics BT, Debrecen, Hungary
| |
Collapse
|
3
|
Geng T, Bao S, Sun X, Ma D, Zhang H, Ge Q, Liu X, Ma T. A clarification of concepts related to the digestion and absorption of carotenoids and a new standardized carotenoids bioavailability evaluation system. Food Chem 2022; 400:134060. [DOI: 10.1016/j.foodchem.2022.134060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 08/20/2022] [Accepted: 08/27/2022] [Indexed: 10/14/2022]
|
4
|
Takatani N, Beppu F, Yamano Y, Maoka T, Miyashita K, Hosokawa M. Preparation of Apoastaxanthinals and Evaluation of Their Anti-inflammatory Action against Lipopolysaccharide-Stimulated Macrophages and Adipocytes. ACS OMEGA 2022; 7:22341-22350. [PMID: 35811858 PMCID: PMC9260902 DOI: 10.1021/acsomega.2c01164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Apocarotenoids are carotenoid derivatives in which the polyene chain is cleaved via enzymatic or nonenzymatic action. They are found in animal tissues and carotenoid-containing foods. However, limited information on the biological functions of apocarotenoids is available. Here, we prepared apocarotenoids from astaxanthin via chemical oxidation and evaluated their anti-inflammatory action against macrophages and adipocytes. A series of astaxanthin-derived apoastaxanthinals, apo-11-, apo-15-, apo-14'-, apo-12'-, apo-10'-, and apo-8'-astaxanthinals, were successfully characterized by chromatography and spectroscopic analysis. The apoastaxanthinals inhibited inflammatory cytokine production and mRNA expression against lipopolysaccharide-stimulated RAW 264.7 macrophages. Apoastaxanthinals suppressed interleukin-6 overexpression in an in vitro model with macrophages and adipocytes in the following cultures: (1) contact coculture of 3T3-L1 adipocytes and RAW264.7 macrophages and (2) 3T3-L1 adipocytes in a RAW264.7-derived conditioned media. These results indicate that the apoastaxanthinals have the potential for regulation of adipose tissue inflammation observed in obesity.
Collapse
Affiliation(s)
- Naoki Takatani
- Faculty
of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Fumiaki Beppu
- Faculty
of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Yumiko Yamano
- Comprehensive
Education and Research Center, Kobe Pharmaceutical
University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Takashi Maoka
- Research
Institute for Production and Development, 15 Shimogamo-morimoto-cho, Sakyo-ku, Kyoto 606-0805, Japan
| | - Kazuo Miyashita
- Faculty
of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Masashi Hosokawa
- Faculty
of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| |
Collapse
|
5
|
Moran NE, Thomas-Ahner JM, Wan L, Zuniga KE, Erdman JW, Clinton SK. Tomatoes, Lycopene, and Prostate Cancer: What Have We Learned from Experimental Models? J Nutr 2022; 152:1381-1403. [PMID: 35278075 PMCID: PMC9178968 DOI: 10.1093/jn/nxac066] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/04/2022] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Human epidemiology suggests a protective effect of tomatoes or tomato phytochemicals, such as lycopene, on prostate cancer risk. However, human epidemiology alone cannot reveal causal relations. Laboratory animal models of prostate cancer provide opportunities to investigate hypotheses regarding dietary components in precisely controlled, experimental systems, contributing to our understanding of diet and cancer risk relations. We review the published studies evaluating the impact of tomatoes and/or lycopene in preclinical models of prostate carcinogenesis and tumorigenesis. The feeding of tomatoes or tomato components demonstrates anti-prostate cancer activity in both transplantable xenograft models of tumorigenesis and models of chemically- and genetically-driven carcinogenesis. Feeding pure lycopene shows anticancer activity in most studies, although outcomes vary by model system, suggesting that the impact of pure lycopene can depend on dose, duration, and specific carcinogenic processes represented in different models. Nonetheless, studies with the transgenic adenocarcinoma of the mouse prostate (TRAMP) model of carcinogenesis typically demonstrate similar bioactivity to that of tomato feeding. In general, interventions that commence earlier in carcinogenesis and are sustained tend to be more efficacious. Accumulated data suggest that lycopene is one, but perhaps not the only, anticancer bioactive compound in tomatoes. Although it is clear that tomatoes and lycopene have anti-prostate cancer activity in rodent models, major knowledge gaps remain in understanding dose-response relations and molecular mechanisms of action. Published and future findings from rodent studies can provide guidance for translational scientists to design and execute informative human clinical trials of prostate cancer prevention or in support of therapy.
Collapse
Affiliation(s)
- Nancy E Moran
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jennifer M Thomas-Ahner
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Lei Wan
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Interdisciplinary Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Krystle E Zuniga
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA.,Livestrong Cancer Institutes, Dell Medical School, University of Texas, Austin, TX, USA
| | - John W Erdman
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Steven K Clinton
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH, USA
| |
Collapse
|
6
|
Carotenoids, β-Apocarotenoids, and Retinoids: The Long and the Short of It. Nutrients 2022; 14:nu14071411. [PMID: 35406024 PMCID: PMC9003029 DOI: 10.3390/nu14071411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Naturally occurring retinoids (retinol, retinal, retinoic acid, retinyl esters) are a subclass of β-apocarotenoids, defined by the length of the polyene side chain. Provitamin A carotenoids are metabolically converted to retinal (β-apo-15-carotenal) by the enzyme β-carotene-15,15′-dioxygenase (BCO1) that catalyzes the oxidative cleavage of the central C=C double bond. A second enzyme β-carotene-9′-10′-dioxygenase cleaves the 9′,10′ bond to yield β-apo-10′-carotenal and β-ionone. Chemical oxidation of the other double bonds leads to the generation of other β-apocarotenals. Like retinal, some of these β-apocarotenals are metabolically oxidized to the corresponding β-apocarotenoic acids or reduced to the β-apocarotenols, which in turn are esterified to β-apocarotenyl esters. Other metabolic fates such as 5,6-epoxidation also occur as for retinoids. Whether the same enzymes are involved remains to be understood. β-Apocarotenoids occur naturally in plant-derived foods and, therefore, are present in the diet of animals and humans. However, the levels of apocarotenoids are relatively low, compared with those of the parent carotenoids. Moreover, human studies show that there is little intestinal absorption of intact β-apocarotenoids. It is possible that they are generated in vivo under conditions of oxidative stress. The β-apocarotenoids are structural analogs of the naturally occurring retinoids. As such, they may modulate retinoid metabolism and signaling. In deed, those closest in size to the C-20 retinoids—namely, β-apo-14′-carotenoids (C-22) and β-apo-13-carotenone (C-18) bind with high affinity to purified retinoid receptors and function as retinoic acid antagonists in transactivation assays and in retinoic acid induction of target genes. The possible pathophysiologic relevance in human health remains to be determined.
Collapse
|
7
|
Methods for assessing the interaction of apocarotenoids with vertebrate nuclear receptors. Methods Enzymol 2022; 674:391-403. [DOI: 10.1016/bs.mie.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Carotenoid extraction and analysis from blood plasma/serum. Methods Enzymol 2022; 670:423-457. [DOI: 10.1016/bs.mie.2022.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Abstract
Dietary intake and tissue levels of carotenoids have been associated with a reduced risk of several chronic diseases, including cardiovascular diseases, type 2 diabetes, obesity, brain-related diseases and some types of cancer. However, intervention trials with isolated carotenoid supplements have mostly failed to confirm the postulated health benefits. It has thereby been speculated that dosing, matrix and synergistic effects, as well as underlying health and the individual nutritional status plus genetic background do play a role. It appears that our knowledge on carotenoid-mediated health benefits may still be incomplete, as the underlying mechanisms of action are poorly understood in relation to human relevance. Antioxidant mechanisms - direct or via transcription factors such as NRF2 and NF-κB - and activation of nuclear hormone receptor pathways such as of RAR, RXR or also PPARs, via carotenoid metabolites, are the basic principles which we try to connect with carotenoid-transmitted health benefits as exemplified with described common diseases including obesity/diabetes and cancer. Depending on the targeted diseases, single or multiple mechanisms of actions may play a role. In this review and position paper, we try to highlight our present knowledge on carotenoid metabolism and mechanisms translatable into health benefits related to several chronic diseases.
Collapse
|
10
|
Odes-Barth S, Khanin M, Linnewiel-Hermoni K, Miller Y, Abramov K, Levy J, Sharoni Y. Inhibition of Osteoclast Differentiation by Carotenoid Derivatives through Inhibition of the NF-ƙB Pathway. Antioxidants (Basel) 2020; 9:E1167. [PMID: 33238590 PMCID: PMC7700390 DOI: 10.3390/antiox9111167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 01/01/2023] Open
Abstract
The bone protective effects of carotenoids have been demonstrated in several studies, and the inhibition of RANKL-induced osteoclast differentiation by lycopene has also been demonstrated. We previously reported that carotenoid oxidation products are the active mediators in the activation of the transcription factor Nrf2 and the inhibition of the NF-ƙB transcription system by carotenoids. Here, we demonstrate that lycopene oxidation products are more potent than intact lycopene in inhibiting osteoclast differentiation. We analyzed the structure-activity relationship of a series of dialdehyde carotenoid derivatives (diapocarotene-dials) in inhibiting osteoclastogenesis. We found that the degree of inhibition depends on the electron density of the carbon atom that determines the reactivity of the conjugated double bond in reactions such as Michael addition to thiol groups in proteins. Moreover, the carotenoid derivatives attenuated the NF-ƙB signal through inhibition of IƙB phosphorylation and NF-ƙB translocation to the nucleus. In addition, we show a synergistic inhibition of osteoclast differentiation by combinations of an active carotenoid derivative with the polyphenols curcumin and carnosic acid with combination index (CI) values < 1. Our findings suggest that carotenoid derivatives inhibit osteoclast differentiation, partially by inhibiting the NF-ƙB pathway. In addition, carotenoid derivatives can synergistically inhibit osteoclast differentiation with curcumin and carnosic acid.
Collapse
Affiliation(s)
- Shlomit Odes-Barth
- Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (S.O.-B.); (M.K.); (K.L.-H.); (J.L.)
| | - Marina Khanin
- Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (S.O.-B.); (M.K.); (K.L.-H.); (J.L.)
| | - Karin Linnewiel-Hermoni
- Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (S.O.-B.); (M.K.); (K.L.-H.); (J.L.)
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (Y.M.); (K.A.)
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Karina Abramov
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (Y.M.); (K.A.)
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Joseph Levy
- Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (S.O.-B.); (M.K.); (K.L.-H.); (J.L.)
| | - Yoav Sharoni
- Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (S.O.-B.); (M.K.); (K.L.-H.); (J.L.)
| |
Collapse
|
11
|
von Lintig J, Moon J, Lee J, Ramkumar S. Carotenoid metabolism at the intestinal barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158580. [PMID: 31794861 PMCID: PMC7987234 DOI: 10.1016/j.bbalip.2019.158580] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022]
Abstract
Carotenoids exert a rich variety of physiological functions in mammals and are beneficial for human health. These lipids are acquired from the diet and metabolized to apocarotenoids, including retinoids (vitamin A and its metabolites). The small intestine is a major site for their absorption and bioconversion. From here, carotenoids and their metabolites are distributed within the body in triacylglycerol-rich lipoproteins to support retinoid signaling in peripheral tissues and photoreceptor function in the eyes. In recent years, much progress has been made in identifying carotenoid metabolizing enzymes, transporters, and binding proteins. A diet-responsive regulatory network controls the activity of these components and adapts carotenoid absorption and bioconversion to the bodily requirements of these lipids. Genetic variability in the genes encoding these components alters carotenoid homeostasis and is associated with pathologies. We here summarize the advanced state of knowledge about intestinal carotenoid metabolism and its impact on carotenoid and retinoid homeostasis of other organ systems, including the eyes, liver, and immune system. The implication of the findings for science-based intake recommendations for these essential dietary lipids is discussed. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America.
| | - Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - Joan Lee
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - Srinivasagan Ramkumar
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| |
Collapse
|
12
|
Etzbach L, Stolle R, Anheuser K, Herdegen V, Schieber A, Weber F. Impact of Different Pasteurization Techniques and Subsequent Ultrasonication on the In Vitro Bioaccessibility of Carotenoids in Valencia Orange ( Citrus sinensis (L.) Osbeck) Juice. Antioxidants (Basel) 2020; 9:E534. [PMID: 32570987 PMCID: PMC7346171 DOI: 10.3390/antiox9060534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
The effects of traditional pasteurization (low pasteurization, conventional pasteurization, hot filling) and alternative pasteurization (pulsed electric fields, high pressure processing), followed by ultrasonication on the carotenoid content, carotenoid profile, and on the in vitro carotenoid bioaccessibility of orange juice were investigated. There was no significant difference in the total carotenoid content between the untreated juice (879.74 µg/100 g juice) and all pasteurized juices. Significantly lower contents of violaxanthin esters were found in the high thermally-treated juices (conventional pasteurization, hot filling) compared to the untreated juice, owing to heat-induced epoxy-furanoid rearrangement. The additional ultrasonication had almost no effects on the carotenoid content and profile of the orange juices. However, the in vitro solubilization and the micellarization efficiency were strongly increased by ultrasound, the latter by approximately 85.3-159.5%. Therefore, among the applied processing techniques, ultrasonication might be a promising technology to enhance the in vitro bioaccessibility of carotenoids and, thus, the nutritional value of orange juice.
Collapse
Affiliation(s)
- Lara Etzbach
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Endenicher Allee 19b, D-53115 Bonn, Germany; (L.E.); (R.S.); (A.S.)
| | - Ruth Stolle
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Endenicher Allee 19b, D-53115 Bonn, Germany; (L.E.); (R.S.); (A.S.)
| | - Kerstin Anheuser
- Eckes-Granini Group GmbH, Ludwig-Eckes-Platz 1, D-55268 Nieder-Olm, Germany; (K.A.); (V.H.)
| | - Volker Herdegen
- Eckes-Granini Group GmbH, Ludwig-Eckes-Platz 1, D-55268 Nieder-Olm, Germany; (K.A.); (V.H.)
| | - Andreas Schieber
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Endenicher Allee 19b, D-53115 Bonn, Germany; (L.E.); (R.S.); (A.S.)
| | - Fabian Weber
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Endenicher Allee 19b, D-53115 Bonn, Germany; (L.E.); (R.S.); (A.S.)
| |
Collapse
|
13
|
Kopec RE, Caris‐Veyrat C, Nowicki M, Bernard J, Morange S, Chitchumroonchokchai C, Gleize B, Borel P. The Effect of an Iron Supplement on Lycopene Metabolism and Absorption During Digestion in Healthy Humans. Mol Nutr Food Res 2019; 63:e1900644. [DOI: 10.1002/mnfr.201900644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/07/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Rachel E. Kopec
- INRA UMR408University of Avignon Avignon France
- Human Nutrition ProgramThe Ohio State University Columbus Ohio USA
| | | | | | | | | | | | | | - Patrick Borel
- INRA, INSERM, Aix Marseille Univ, C2VN Marseille France
| |
Collapse
|
14
|
Durojaye BO, Riedl KM, Curley RW, Harrison EH. Uptake and metabolism of β-apo-8'-carotenal, β-apo-10'-carotenal, and β-apo-13-carotenone in Caco-2 cells. J Lipid Res 2019; 60:1121-1135. [PMID: 30846527 DOI: 10.1194/jlr.m093161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Indexed: 11/20/2022] Open
Abstract
β-Apocarotenoids are eccentric cleavage products of carotenoids formed by chemical and enzymatic oxidations. They occur in foods containing carotenoids and thus might be directly absorbed from the diet. However, there is limited information about their intestinal absorption. The present research examined the kinetics of uptake and metabolism of β-apocarotenoids. Caco-2 cells were grown on 6-well plastic plates until a differentiated cell monolayer was achieved. β-Apocarotenoids were prepared in Tween 40 micelles, delivered to differentiated cells in serum-free medium, and incubated at 37°C for up to 8 h. There was rapid uptake of β-apo-8'-carotenal into cells, and β-apo-8'-carotenal was largely converted to β-apo-8'-carotenoic acid and a minor metabolite that we identified as 5,6-epoxy-β-apo-8'-carotenol. There was also rapid uptake of β-apo-10'-carotenal into cells, and β-apo-10'-carotenal was converted into a major metabolite identified as 5,6-epoxy-β-apo-10'-carotenol and a minor metabolite that is likely a dihydro-β-apo-10'-carotenol. Finally, there was rapid cellular uptake of β-apo-13-carotenone, and this compound was extensively degraded. These results suggest that dietary β-apocarotenals are extensively metabolized in intestinal cells via pathways similar to the metabolism of retinal. Thus, they are likely not absorbed directly from the diet.
Collapse
Affiliation(s)
| | - Kenneth M Riedl
- Food Science and Technology, Ohio State University, Columbus, OH 43210
| | - Robert W Curley
- College of Pharmacy, Ohio State University, Columbus, OH 43210
| | - Earl H Harrison
- Departments of Human Sciences Ohio State University, Columbus, OH 43210
| |
Collapse
|