1
|
Cheng YB, Chan CM, Xu TY, Chen YL, Ding FH, Li Y, Wang JG. Left ventricular structure and function in relation to sodium dietary intake and renal handling in untreated Chinese patients. Hypertens Res 2024:10.1038/s41440-024-01864-8. [PMID: 39251855 DOI: 10.1038/s41440-024-01864-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024]
Abstract
Whether left ventricular structure and function is associated with sodium dietary intake and renal handling while considering blood pressure (BP) remains unclear. Consecutive untreated patients referred for ambulatory BP monitoring were recruited. Standard echocardiography was performed to measure left ventricular structure and function. Fractional excretion of lithium (FELi) and fractional distal reabsorption rate of sodium (FDRNa) were calculated as markers of proximal and distal tubular sodium handling, respectively. The 952 participants (51.0% women; mean age, 50.8 years) included 614 (64.5%) ambulatory hypertension and 103 (10.8%) left ventricular hypertrophy. There were significant interactions of urinary sodium excretion with FELi (P ≤ 0.045), but not FDRNa (P ≥ 0.36), in relation to left ventricular posterior wall thickness (LVPW), mass (LVM) and mass index (LVMI), but not functional measurements. Only in tertile 1 of FELi, the multivariate-adjusted regression coefficients for urinary sodium excretion reached statistical significance (P ≤ 0.049), being 0.16 ± 0.05 mm, 4.32 ± 1.48 g, and 1.64 ± 0.83 g/m2 for LVPW, LVM and LVMI, respectively. In mutually adjusted analyses, the regression coefficient for LVMI was statistically significant for FELi, FDRNa and 24-h systolic BP, being -2.17 ± 0.49, -1.95 ± 0.54, and 2.99 ± 0.51 g/m2, respectively (P < 0.001). Multivariable analysis of variance showed that sodium renal handling indexes (P ≥ 0.14), but not sodium urinary excretion (P = 0.007), were similarly as 24-h BP associated with LVMI. Heat maps on left ventricular hypertrophy provided a graphical confirmation of the findings. Sodium dietary intake and renal handling interact to be associated with left ventricular structure. Renal handling indexes were similarly in size as, jointly in action with and independently of 24-h BP.
Collapse
Affiliation(s)
- Yi-Bang Cheng
- Department of Cardiovascular Medicine, Centre for Epidemiological Studies and Clinical Trials, Shanghai Key Laboratory of Hypertension, The Shanghai Institute of Hypertension, National Research Centre for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chak-Ming Chan
- Department of Cardiovascular Medicine, Centre for Epidemiological Studies and Clinical Trials, Shanghai Key Laboratory of Hypertension, The Shanghai Institute of Hypertension, National Research Centre for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ting-Yan Xu
- Department of Cardiovascular Medicine, Centre for Epidemiological Studies and Clinical Trials, Shanghai Key Laboratory of Hypertension, The Shanghai Institute of Hypertension, National Research Centre for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yi-Lin Chen
- Department of Cardiovascular Medicine, Centre for Epidemiological Studies and Clinical Trials, Shanghai Key Laboratory of Hypertension, The Shanghai Institute of Hypertension, National Research Centre for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Feng-Hua Ding
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Cardiovascular Medicine, Centre for Epidemiological Studies and Clinical Trials, Shanghai Key Laboratory of Hypertension, The Shanghai Institute of Hypertension, National Research Centre for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ji-Guang Wang
- Department of Cardiovascular Medicine, Centre for Epidemiological Studies and Clinical Trials, Shanghai Key Laboratory of Hypertension, The Shanghai Institute of Hypertension, National Research Centre for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Huang QF, Zhang D, Luo Y, Hu K, Wu Q, Qiu H, Xu F, Wang ML, Chen X, Li Y, Wang JG. Comparison of two single-pill dual combination antihypertensive therapies in Chinese patients: a randomized, controlled trial. BMC Med 2024; 22:28. [PMID: 38263021 PMCID: PMC10807184 DOI: 10.1186/s12916-023-03244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/28/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Current hypertension guidelines recommend combination of an angiotensin-converting enzyme inhibitor or angiotensin-receptor blocker with a calcium-channel blocker or thiazide diuretic as initial antihypertensive therapy in patients with monotherapy uncontrolled hypertension. However, to what extent these two different combinations are comparable in blood pressure (BP)-lowering efficacy and safety remains under investigation, especially in the Chinese population. We investigated the BP-lowering efficacy and safety of the amlodipine/benazepril and benazepril/hydrochlorothiazide dual therapies in Chinese patients. METHODS In a multi-center, randomized, actively controlled, parallel-group trial, we enrolled patients with stage 1 or 2 hypertension from July 2018 to June 2021 in 20 hospitals and community health centers across China. Of the 894 screened patients, 560 eligible patients were randomly assigned to amlodipine/benazepril 5/10 mg (n = 282) or benazepril/hydrochlorothiazide 10/12.5 mg (n = 278), with 213 and 212 patients, respectively, who completed the study and had a valid repeat ambulatory BP recording during follow-up and were included in the efficacy analysis. The primary outcome was the change from baseline to 24 weeks of treatment in 24-h ambulatory systolic BP. Adverse events including symptoms and clinically significant changes in physical examinations and laboratory findings were recorded for safety analysis. RESULTS In the efficacy analysis (n = 425), the primary outcome, 24-h ambulatory systolic BP reduction, was - 13.8 ± 1.2 mmHg in the amlodipine/benazepril group and - 12.3 ± 1.2 mmHg in the benazepril/hydrochlorothiazide group, with a between-group difference of - 1.51 (p = 0.36) mmHg. The between-group differences for major secondary outcomes were - 1.47 (p = 0.18) in 24-h diastolic BP, - 2.86 (p = 0.13) and - 2.74 (p = 0.03) in daytime systolic and diastolic BP, and - 0.45 (p = 0.82) and - 0.93 (p = 0.44) in nighttime systolic and diastolic BP. In the safety analysis (n = 560), the incidence rate of dry cough was significantly lower in the amlodipine/benazepril group than in the benazepril/hydrochlorothiazide group (5.3% vs 10.1%, p = 0.04). CONCLUSIONS The amlodipine/benazepril and benazepril/hydrochlorothiazide dual therapies were comparable in ambulatory systolic BP lowering. The former combination, compared with the latter, had a greater BP-lowering effect in the daytime and a lower incidence rate of dry cough. TRIAL REGISTRATION ClinicalTrials.gov, NCT03682692. Registered on 18 September 2018.
Collapse
Affiliation(s)
- Qi-Fang Huang
- Department of Cardiovascular Medicine, Centre for Epidemiological Studies and Clinical Trials, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, The Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Ruijin 2nd Road 197, Shanghai, 200025, China
| | - Di Zhang
- Department of Cardiovascular Medicine, Centre for Epidemiological Studies and Clinical Trials, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, The Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Ruijin 2nd Road 197, Shanghai, 200025, China
| | - Yihong Luo
- Department of Cardiology, Chongming Branch of Shanghai Tenth People's Hospital, Shanghai, China
| | - Kun Hu
- Department of Cardiology, Chongming Branch of Shanghai Tenth People's Hospital, Shanghai, China
| | - Qiong Wu
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailong Qiu
- Department of Cardiology, Suzhou Hospital of Anhui Medical University (Suzhou Municipal Hospital of Anhui Province), Suzhou, Anhui Province, China
| | - Fei Xu
- Department of Cardiology, Suzhou Hospital of Anhui Medical University (Suzhou Municipal Hospital of Anhui Province), Suzhou, Anhui Province, China
| | - Mei-Ling Wang
- Hypertension Center, Puyang People's Hospital, Puyang, Henan Province, China
| | - Xin Chen
- Department of Hypertension, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Cardiovascular Medicine, Centre for Epidemiological Studies and Clinical Trials, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, The Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Ruijin 2nd Road 197, Shanghai, 200025, China
| | - Ji-Guang Wang
- Department of Cardiovascular Medicine, Centre for Epidemiological Studies and Clinical Trials, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, The Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Ruijin 2nd Road 197, Shanghai, 200025, China.
| |
Collapse
|
3
|
Cheng Y, Sheng CS, Huang JF, Zhang DY, Li MX, Cheng YB, An DW, Guo QH, Wang Y, Huang QF, Xu TY, Li Y, Wang JG. Seasonality in nighttime blood pressure and its associations with target organ damage. Hypertens Res 2023:10.1038/s41440-023-01201-5. [PMID: 36788302 DOI: 10.1038/s41440-023-01201-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/16/2023]
Abstract
There is some evidence that nighttime blood pressure varies between seasons. In the present analysis, we investigated the seasonal variation in ambulatory nighttime blood pressure and its associations with target organ damage. In 1054 untreated patients referred for ambulatory blood pressure monitoring, we performed measurements of urinary albumin-to-creatinine ratio (ACR, n = 1044), carotid-femoral pulse wave velocity (cfPWV, n = 1020) and left ventricular mass index (LVMI, n = 622). Patients referred in spring (n = 337, 32.0%), summer (n = 210, 19.9%), autumn (n = 196, 18.6%) and winter (n = 311, 29.5%) had similar 24-h ambulatory systolic/diastolic blood pressure (P ≥ 0.25). However, both before and after adjustment for confounding factors, nighttime systolic/diastolic blood pressure differed significantly between seasons (P < 0.001), being highest in summer and lowest in winter (adjusted mean values 117.0/75.3 mm Hg vs. 111.4/71.1 mm Hg). After adjustment for confounding factors, nighttime systolic/diastolic blood pressure were significantly and positively associated with ACR, cfPWV and LVMI (P < 0.006). In season-specific analyses, statistical significance was reached for all the associations of nighttime blood pressure with target organ damage in summer (P ≤ 0.02), and for some of the associations in spring, autumn and winter. The association between nighttime systolic blood pressure and ACR was significantly stronger in patients examined in summer than those in winter (standardized β, 0.31 vs 0.11 mg/mmol, P for interaction = 0.03). In conclusion, there is indeed seasonality in nighttime blood pressure level, as well as in its association with renal injury in terms of urinary albumin excretion. Our study shows that there is indeed seasonal variability in nighttime blood pressure, highest in summer and lowest in winter, and its association with renal injury in terms of urinary albumin excretion varies between summer and winter as well.
Collapse
Affiliation(s)
- Yi Cheng
- Department of Cardiovascular Medicine, National Research Centre for Translational Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang-Sheng Sheng
- Department of Cardiovascular Medicine, National Research Centre for Translational Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jian-Feng Huang
- Department of Cardiovascular Medicine, National Research Centre for Translational Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Yan Zhang
- Department of Cardiovascular Medicine, National Research Centre for Translational Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Xuan Li
- Department of Cardiovascular Medicine, National Research Centre for Translational Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Bang Cheng
- Department of Cardiovascular Medicine, National Research Centre for Translational Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - De-Wei An
- Department of Cardiovascular Medicine, National Research Centre for Translational Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian-Hui Guo
- Department of Cardiovascular Medicine, National Research Centre for Translational Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Cardiovascular Medicine, National Research Centre for Translational Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi-Fang Huang
- Department of Cardiovascular Medicine, National Research Centre for Translational Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting-Yan Xu
- Department of Cardiovascular Medicine, National Research Centre for Translational Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Cardiovascular Medicine, National Research Centre for Translational Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji-Guang Wang
- Department of Cardiovascular Medicine, National Research Centre for Translational Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Huang QF, Cheng YB, Guo QH, Liu CY, Kang YY, Sheng CS, Li Y, Wang JG. Clinic and ambulatory blood pressure in relation to the interaction between plasma advanced glycation end products and sodium dietary intake and renal handling. Hypertens Res 2021; 45:665-674. [PMID: 34862479 DOI: 10.1038/s41440-021-00805-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022]
Abstract
Advanced glycation end product (AGE) clearance may cause renal tubular injuries, such as changes in sodium reabsorption. We hypothesize that AGEs interact with sodium metabolism to influence blood pressure (BP). The study participants were outpatients who were suspected of having hypertension but had not been treated with antihypertensive medication. Clinic and ambulatory blood pressures were measured at baseline (n = 989) and during follow-up (median, 4.4 years, n = 293). Plasma AGE concentrations were measured by enzyme-linked immunosorbent assay. Twenty-four-hour urine was collected for measurements of creatinine, sodium and lithium. In a cross-sectional analysis (n = 989), subjects in the top quintile versus quintiles 1-4 of plasma AGE concentration had significantly (P ≤ 0.004) lower fractional excretion of lithium (18.3% vs. 21.6%) and fractional distal reabsorption rate of sodium (95.0% vs. 95.8%) but similar BP (P ≥ 0.25). However, there was an interaction between plasma AGE concentration and urinary sodium excretion in relation to diastolic BP (P ≤ 0.058). Only in participants with low urinary sodium chloride excretion (≤6 grams/day, n = 189), clinic (84.3 vs. 80.2 mmHg), 24-h (83.9 vs. 80.4 mmHg), daytime (87.8 vs. 84.8 mmHg) and nighttime (75.1 vs. 72.1 mmHg) diastolic BP at baseline were higher (P ≤ 0.05) in the top quintile than in quintiles 1-4 of plasma AGE concentration. In the longitudinal study (n = 383), similar trends were observed, with significant (P ≤ 0.05) differences in the increment in daytime diastolic BP (6.8 vs. -1.7 mmHg) and incidence of ambulatory and treated hypertension (hazard ratio 3.73) during follow-up. In conclusion, AGEs were associated with high BP, probably via enhanced proximal sodium handling and on low dietary sodium intake.
Collapse
Affiliation(s)
- Qi-Fang Huang
- Department of Cardiovascular Medicine, Centre for Epidemiological Studies and Clinical Trials, The Shanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yi-Bang Cheng
- Department of Cardiovascular Medicine, Centre for Epidemiological Studies and Clinical Trials, The Shanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qian-Hui Guo
- Department of Cardiovascular Medicine, Centre for Epidemiological Studies and Clinical Trials, The Shanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chang-Yuan Liu
- Department of Cardiovascular Medicine, Centre for Epidemiological Studies and Clinical Trials, The Shanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuan-Yuan Kang
- Department of Cardiovascular Medicine, Centre for Epidemiological Studies and Clinical Trials, The Shanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chang-Sheng Sheng
- Department of Cardiovascular Medicine, Centre for Epidemiological Studies and Clinical Trials, The Shanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Cardiovascular Medicine, Centre for Epidemiological Studies and Clinical Trials, The Shanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ji-Guang Wang
- Department of Cardiovascular Medicine, Centre for Epidemiological Studies and Clinical Trials, The Shanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Independent relationships between renal mechanisms and systemic flow, but not resistance to flow in primary hypertension in Africa. J Hypertens 2021; 39:2446-2454. [PMID: 34738989 DOI: 10.1097/hjh.0000000000002968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AIMS Whether renal mechanisms of hypertension primarily translate into increases in systemic vascular resistance (SVR) in all populations is uncertain. We determined whether renal mechanisms associate with either increases in SVR (and impedance to flow) or systemic flow in a community of African ancestry. METHOD In a South African community sampled across the full adult age range (n = 546), we assessed stroke volume (SV), peak aortic flow (Q), SVR, characteristic impedance (Zc) and total arterial compliance (TAC) from velocity and diameter measurements in the outflow tract (echocardiography) and central arterial pressures. Renal changes were determined from creatinine clearance (glomerular filtration rate, GFR) and fractional Na+ excretion (FeNa+) (derived from 24-h urine collections). RESULTS Independent of confounders (including MAP and pressures generated by the product of Q and Zc), SV (and hence cardiac output) (P < 0.0001) and Q (P < 0.01), but not SVR, Zc or TAC (P = 0.09-0.20) were independently associated with decreases in both GFR (index of nephron number) and FeNa+. Through an interactive effect (P < 0.0001), the impact of GFR on SV or Q was strongly determined by FeNa+ and vice versa. The relationship between the GFR-FeNa+ interaction and either SV or Q was noted in those above or below 50 years of age, although neither GFR, FeNa+ nor the interaction were independently associated with SVR, Zc or TAC at any age. CONCLUSION Across the full adult lifespan, in groups of African ancestry, renal mechanisms of hypertension translate into increases in systemic flow rather than into resistance or impedance to flow.
Collapse
|