1
|
Kábelová A, Malínská H, Marková I, Hüttl M, Liška F, Chylíková B, Šeda O. Quercetin supplementation in metabolic syndrome: nutrigenetic interactions with the Zbtb16 gene variant in rodent models. GENES & NUTRITION 2024; 19:22. [PMID: 39455928 PMCID: PMC11515271 DOI: 10.1186/s12263-024-00757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Quercetin is a promising phytochemical in treating abnormalities associated with metabolic syndrome (MetS). This study aimed to explore the morphometric, metabolic, transcriptomic, and nutrigenetic responses to quercetin supplementation using two genetically distinct MetS models that only differ in the variant of the MetS-related Zbtb16 gene (Zinc Finger And BTB Domain Containing 16). RESULTS Quercetin supplementation led to a significant reduction in the relative weight of retroperitoneal adipose tissue in both investigated strains. A decrease in visceral (epididymal) fat mass, accompanied by an increase in brown fat mass after quercetin treatment, was observed exclusively in the SHR strain. While the levels of serum triglycerides decreased within both strains, the free fatty acids levels decreased in SHR-Zbtb16-Q rats only. The total serum cholesterol levels were not affected by quercetin in either of the two tested strains. While there were no significant changes in brown adipose tissue transcriptome, quercetin supplementation led to a pronounced gene expression shift in white retroperitoneal adipose tissue, particularly in SHR-Zbtb16-Q. CONCLUSION Quercetin administration ameliorates certain MetS-related features; however, the efficacy of the treatment exhibits subtle variations depending on the specific variant of the Zbtb16 gene.
Collapse
Affiliation(s)
- Adéla Kábelová
- Institute of Biology and Medical Genetics, the First Faculty of Medicine, Charles University, General University Hospital in Prague, Albertov 4, Prague 2, 128 00, Czech Republic
| | - Hana Malínská
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Irena Marková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martina Hüttl
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - František Liška
- Institute of Biology and Medical Genetics, the First Faculty of Medicine, Charles University, General University Hospital in Prague, Albertov 4, Prague 2, 128 00, Czech Republic
| | - Blanka Chylíková
- Institute of Biology and Medical Genetics, the First Faculty of Medicine, Charles University, General University Hospital in Prague, Albertov 4, Prague 2, 128 00, Czech Republic
| | - Ondřej Šeda
- Institute of Biology and Medical Genetics, the First Faculty of Medicine, Charles University, General University Hospital in Prague, Albertov 4, Prague 2, 128 00, Czech Republic.
| |
Collapse
|
2
|
Zhang H, Qiu J, Zhao Q, Zhang Y, Zheng H, Dou Z, Yan Y. Tanshinone IIA alleviates bleomycin-induced pulmonary fibrosis by inhibiting Zbtb16. Pulm Pharmacol Ther 2024; 84:102285. [PMID: 38191069 DOI: 10.1016/j.pupt.2024.102285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/29/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Pulmonary fibrosis is a complex disease that can occur in a variety of clinical settings. The Zinc Finger and BTB Domain Containing 16 (Zbtb16) is a transcription factor and has not been studied in pulmonary fibrosis. Lung tissues from rats which were treated with bleomycin and Tanshinone IIA (Tan IIA) were collected for mRNA sequencing. Zbtb16, a differentially expressed gene, was screened. Using adeno-associated virus to knock down Zbtb16 in rats, it was found that the lung index and the content of hydroxyproline in lung tissue were decreased. HE and Masson staining revealed that pathological symptoms of lung histopathology were relieved after Zbtb16 knockdown. Protein expressions of α-SMA, Collagen I and Fibronectin were significantly decreased after Zbtb16 knockdown in vivo and in vitro. Meanwhile, the protein content of TGF-β1 and the phosphorylation of Smad2/3 were inhibited by Zbtb16 knockdown. Conversely, under the treatment of Tan IIA and TGF-β1, overexpression of Zbtb16 improved cell viability, increased the expression of fibrosis-related proteins, and promoted the phosphorylation of Smad 2/3. All above demonstrates that Zbtb16 inhibition ameliorates pulmonary fibrosis and suppresses the TGF-β/Smad pathway. Furthermore, Zbtb16 mediates the inhibitory process of Tan IIA on pulmonary fibrosis. This study provides a novel candidate therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- Huijuan Zhang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, PR China.
| | - Jianli Qiu
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, PR China
| | - Qianyi Zhao
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, PR China
| | - Yong Zhang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, PR China
| | - Haitao Zheng
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, PR China
| | - Ziying Dou
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, PR China
| | - Yongbin Yan
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, PR China.
| |
Collapse
|
3
|
Schneider S, Hashmi SK, Thrasher AJ, Kothakapa DR, Wright CM, Heuckeroth RO. Single Nucleus Sequencing of Human Colon Myenteric Plexus-Associated Visceral Smooth Muscle Cells, Platelet Derived Growth Factor Receptor Alpha Cells, and Interstitial Cells of Cajal. GASTRO HEP ADVANCES 2023; 2:380-394. [PMID: 37206377 PMCID: PMC10194832 DOI: 10.1016/j.gastha.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS Smooth muscle cells (SMCs), interstitial cells of Cajal (ICCs), and platelet-derived growth factor receptor alpha (PDGFRα+) cells (PαCs) form a functional syncytium in the bowel known as the "SIP syncytium." The SIP syncytium works in concert with the enteric nervous system (ENS) to coordinate bowel motility. However, our understanding of individual cell types that form this syncytium and how they interact with each other remains limited, with no prior single-cell RNAseq analyses focused on human SIP syncytium cells. METHODS We analyzed single-nucleus RNA sequencing data from 10,749 human colon SIP syncytium cells (5572 SMC, 372 ICC, and 4805 PαC nuclei) derived from 15 individuals. RESULTS Consistent with critical contractile and pacemaker functions and with known enteric nervous system interactions, SIP syncytium cell types express many ion channels, including mechanosensitive channels in ICCs and PαCs. PαCs also prominently express extracellular matrix-associated genes and the inhibitory neurotransmitter receptor for vasoactive intestinal peptide (VIPR2), a novel finding. We identified 2 PαC clusters that differ in the expression of many ion channels and transcriptional regulators. Interestingly, SIP syncytium cells co-express 6 transcription factors (FOS, MEIS1, MEIS2, PBX1, SCMH1, and ZBTB16) that may be part of a combinatorial signature that specifies these cells. Bowel region-specific differences in SIP syncytium gene expression may correlate with regional differences in function, with right (ascending) colon SMCs and PαCs expressing more transcriptional regulators and ion channels than SMCs and PαCs in left (sigmoid) colon. CONCLUSION These studies provide new insights into SIP syncytium biology that may be valuable for understanding bowel motility disorders and lead to future investigation of highlighted genes and pathways.
Collapse
Affiliation(s)
- Sabine Schneider
- Department of Pediatrics, The Children’s Hospital of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania
| | - Sohaib K. Hashmi
- Department of Pediatrics, The Children’s Hospital of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania
- Department of Bioengineering, The University of Pennsylvania School of Engineering and Applied Science, Philadelphia, Pennsylvania
| | - A. Josephine Thrasher
- Department of Pediatrics, The Children’s Hospital of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania
| | - Deepika R. Kothakapa
- Department of Pediatrics, The Children’s Hospital of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York
- Albany Medical College, Albany, New York
| | - Christina M. Wright
- Department of Pediatrics, The Children’s Hospital of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania
| | - Robert O. Heuckeroth
- Department of Pediatrics, The Children’s Hospital of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Nutrigenetic Interaction of Spontaneously Hypertensive Rat Chromosome 20 Segment and High-Sucrose Diet Sensitizes to Metabolic Syndrome. Nutrients 2022; 14:nu14163428. [PMID: 36014934 PMCID: PMC9416443 DOI: 10.3390/nu14163428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Several corresponding regions of human and mammalian genomes have been shown to affect sensitivity to the manifestation of metabolic syndrome via nutrigenetic interactions. In this study, we assessed the effect of sucrose administration in a newly established congenic strain BN.SHR20, in which a limited segment of rat chromosome 20 from a metabolic syndrome model, spontaneously hypertensive rat (SHR), was introgressed into Brown Norway (BN) genomic background. We mapped the extent of the differential segment and compared the genomic sequences of BN vs. SHR within the segment in silico. The differential segment of SHR origin in BN.SHR20 spans about 9 Mb of the telomeric portion of the short arm of chromosome 20. We identified non-synonymous mutations e.g., in ApoM, Notch4, Slc39a7, Smim29 genes and other variations in or near genes associated with metabolic syndrome in human genome-wide association studies. Male rats of BN and BN.SHR20 strains were fed a standard diet for 18 weeks (control groups) or 16 weeks of standard diet followed by 14 days of high-sucrose diet (HSD). We assessed the morphometric and metabolic profiles of all groups. Adiposity significantly increased only in BN.SHR20 after HSD. Fasting glycemia and the glucose levels during the oral glucose tolerance test were higher in BN.SHR20 than in BN groups, while insulin levels were comparable. The fasting levels of triacylglycerols were the highest in sucrose-fed BN.SHR20, both compared to the sucrose-fed BN and the control BN.SHR20. The non-esterified fatty acids and total cholesterol concentrations were higher in BN.SHR20 compared to their respective BN groups, and the HSD elicited an increase in non-esterified fatty acids only in BN.SHR20. In a new genetically defined model, we have isolated a limited genomic region involved in nutrigenetic sensitization to sucrose-induced metabolic disturbances.
Collapse
|
5
|
Ohara H, Nabika T. Genetic Modifications to Alter Blood Pressure Level. Biomedicines 2022; 10:biomedicines10081855. [PMID: 36009402 PMCID: PMC9405136 DOI: 10.3390/biomedicines10081855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Genetic manipulation is one of the indispensable techniques to examine gene functions both in vitro and in vivo. In particular, cardiovascular phenotypes such as blood pressure cannot be evaluated in vitro system, necessitating the creation of transgenic or gene-targeted knock-out and knock-in experimental animals to understand the pathophysiological roles of specific genes on the disease conditions. Although genome-wide association studies (GWAS) in various human populations have identified multiple genetic variations associated with increased risk for hypertension and/or its complications, the causal links remain unresolved. Genome-editing technologies can be applied to many different types of cells and organisms for creation of knock-out/knock-in models. In the post-GWAS era, it may be more worthwhile to validate pathophysiological implications of the risk variants and/or candidate genes by creating genome-edited organisms.
Collapse
|
6
|
Šilhavý J, Mlejnek P, Šimáková M, Liška F, Kubovčiak J, Sticová E, Pravenec M. Sodium Accumulation and Blood Capillary Rarefaction in the Skin Predispose Spontaneously Hypertensive Rats to Salt Sensitive Hypertension. Biomedicines 2022; 10:biomedicines10020376. [PMID: 35203585 PMCID: PMC8962406 DOI: 10.3390/biomedicines10020376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
Recent studies in humans and rats suggested that increased Na+ storage in the skin without parallel water retention may predispose to salt-sensitive hypertension. In the current studies, we compared tissue Na+ storage in salt sensitive spontaneously hypertensive rats (SHR) versus salt resistant normotensive Brown Norway (BN-Lx) rats. After salt loading (10 days drinking 1% NaCl solution), the SHR showed significant parallel increase in Na+-to-water as well as (Na++K+)-to-water ratios suggesting increased storage of osmotically inactive Na+ in the skin while no significant changes in skin electrolyte concentrations were observed in BN-Lx rats. SHR rats after salt treatment exhibited a nonsignificant decrease in skin blood capillary number (rarefaction) while BN-Lx rats showed significantly increased skin blood capillary density. Analysis of dermal gene expression profiles in BN-Lx rats after salt treatment showed significant up-regulation of genes involved in angiogenesis and proliferation of endothelial cells contrary to the SHR. Since the skin harbors most of the body’s resistance vessels it is possible that blood capillary rarefaction may lead to increased peripheral resistance and salt sensitivity in the SHR.
Collapse
Affiliation(s)
- Jan Šilhavý
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic; (P.M.); (M.Š.); (F.L.); (M.P.)
- Correspondence:
| | - Petr Mlejnek
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic; (P.M.); (M.Š.); (F.L.); (M.P.)
| | - Miroslava Šimáková
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic; (P.M.); (M.Š.); (F.L.); (M.P.)
| | - František Liška
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic; (P.M.); (M.Š.); (F.L.); (M.P.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, General University Hospital, 12800 Prague, Czech Republic
| | - Jan Kubovčiak
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Eva Sticová
- Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic;
- Department of Pathology, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic; (P.M.); (M.Š.); (F.L.); (M.P.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, General University Hospital, 12800 Prague, Czech Republic
| |
Collapse
|
7
|
Brinks J, van Dijk EHC, Kiełbasa SM, Mei H, van der Veen I, Peters HAB, Sips HCM, Notenboom RGE, Quax PHA, Boon CJF, Meijer OC. The Cortisol Response of Male and Female Choroidal Endothelial Cells: Implications for Central Serous Chorioretinopathy. J Clin Endocrinol Metab 2022; 107:512-524. [PMID: 34546342 PMCID: PMC8764349 DOI: 10.1210/clinem/dgab670] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Central serous chorioretinopathy (CSC) is a severe ocular disease characterized by fluid accumulation under the retina and abnormalities in the underlying vascular layer, the choroid. CSC has a striking prevalence in males of 80% to 90% of total patients. Corticosteroids are the most pronounced extrinsic risk factor for CSC. Choroidal endothelial cells (CECs) are important for the vascular integrity of the choroid, but the effects of corticosteroid effects in these cells are unknown. OBJECTIVE We aimed to reveal the potential steroidal contribution to CSC. METHOD We characterized the expression of the glucocorticoid, mineralocorticoid, and androgen receptor in the human choroid using immunohistochemistry. Using RNA-sequencing, we describe the cortisol response in human CECs derived from 5 male and 5 female postmortem donors. RESULTS The glucocorticoid receptor was highly expressed in the human choroid, whereas no to minimal expression of the mineralocorticoid and androgen receptors was observed. The extensive transcriptional response to cortisol in human primary cultured CECs showed interindividual differences but very few sex differences. Several highly regulated genes such as ZBTB16 (log2 fold change males 7.9; females 6.2) provide strong links to choroidal vascular regulation. CONCLUSIONS The glucocorticoid receptor predominantly mediates the response to cortisol in human CECs. Interindividual differences are an important determinant regarding the cortisol response in human cultured CECs, whereas intrinsic sex differences appear less pronounced. The marked response of particular target genes in endothelial cells to cortisol, such as ZBTB16, warrants further investigation into their potential role in the pathophysiology of CSC and other vascular conditions.
Collapse
Affiliation(s)
- Joost Brinks
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Elon H C van Dijk
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Szymon M Kiełbasa
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, the Netherlands
| | - Isa van der Veen
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam-Zuidoost, the Netherlands
| | - Hendrika A B Peters
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Hetty C M Sips
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| | - Robbert G E Notenboom
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Paul H A Quax
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam-Zuidoost, the Netherlands
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
8
|
PLZF and its fusion proteins are pomalidomide-dependent CRBN neosubstrates. Commun Biol 2021; 4:1277. [PMID: 34764413 PMCID: PMC8586336 DOI: 10.1038/s42003-021-02801-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Pomalidomide and lenalidomide are immunomodulatory agents that were derived from thalidomide. Cereblon (CRBN) is a common direct target of thalidomide and related compounds and works as a Cullin Ring 4 E3 ubiquitin ligase (CRL4) with DDB1, CUL4, and ROC1. The substrate specificity of CRL4CRBN is modulated by thalidomide-related compounds. While lenalidomide is approved for the treatment of several diseases including multiple myeloma, 5q- syndrome, mantle cell lymphoma, and follicular lymphoma, pomalidomide is approved only for the treatment of lenalidomide-resistant multiple myeloma. Here we show that PLZF/ZBTB16 and its fusion proteins are pomalidomide-dependent neosubstrates of CRL4CRBN. PLZF joins to RARα or potentially other partner genes, and the translocation causes leukemias, such as acute promyelocytic leukemia and T-cell acute lymphoblastic leukemia. We demonstrate that pomalidomide treatment induces PLZF-RARα degradation, resulting in antiproliferation of leukemic cells expressing PLZF-RARα. This study highlights a potential therapeutic role of pomalidomide as a degrader of leukemogenic fusion proteins.
Collapse
|
9
|
Kábelová A, Malínská H, Marková I, Oliyarnyk O, Chylíková B, Šeda O. Ellagic Acid Affects Metabolic and Transcriptomic Profiles and Attenuates Features of Metabolic Syndrome in Adult Male Rats. Nutrients 2021; 13:nu13030804. [PMID: 33671116 PMCID: PMC8001306 DOI: 10.3390/nu13030804] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
Ellagic acid, a natural substance found in various fruits and nuts, was previously shown to exhibit beneficial effects towards metabolic syndrome. In this study, using a genetic rat model of metabolic syndrome, we aimed to further specify metabolic and transcriptomic responses to ellagic acid treatment. Adult male rats of the SHR-Zbtb16Lx/k.o. strain were fed a high-fat diet accompanied by daily intragastric gavage of ellagic acid (50 mg/kg body weight; high-fat diet–ellagic acid (HFD-EA) rats) or vehicle only (high-fat diet–control (HFD-CTL) rats). Morphometric and metabolic parameters, along with transcriptomic profile of liver and brown and epididymal adipose tissues, were assessed. HFD-EA rats showed higher relative weight of brown adipose tissue (BAT) and decreased weight of epididymal adipose tissue, although no change in total body weight was observed. Glucose area under the curve, serum insulin, and cholesterol levels, as well as the level of oxidative stress, were significantly lower in HFD-EA rats. The most differentially expressed transcripts reflecting the shift induced by ellagic acid were detected in BAT, showing downregulation of BAT activation markers Dio2 and Nr4a1 and upregulation of insulin-sensitizing gene Pla2g2a. Ellagic acid may provide a useful nutritional supplement to ameliorate features of metabolic syndrome, possibly by suppressing oxidative stress and its effects on brown adipose tissue.
Collapse
Affiliation(s)
- Adéla Kábelová
- Institute of Biology and Medical Genetics, The First Faculty of Medicine, Charles University and The General University Hospital, 121 08 Prague, Czech Republic; (A.K.); (B.C.)
| | - Hana Malínská
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (H.M.); (I.M.); (O.O.)
| | - Irena Marková
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (H.M.); (I.M.); (O.O.)
| | - Olena Oliyarnyk
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (H.M.); (I.M.); (O.O.)
| | - Blanka Chylíková
- Institute of Biology and Medical Genetics, The First Faculty of Medicine, Charles University and The General University Hospital, 121 08 Prague, Czech Republic; (A.K.); (B.C.)
| | - Ondřej Šeda
- Institute of Biology and Medical Genetics, The First Faculty of Medicine, Charles University and The General University Hospital, 121 08 Prague, Czech Republic; (A.K.); (B.C.)
- Correspondence: ; Tel.: +420-224-968-180
| |
Collapse
|
10
|
Szpirer C. Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes. J Biomed Sci 2020; 27:84. [PMID: 32741357 PMCID: PMC7395987 DOI: 10.1186/s12929-020-00673-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
The laboratory rat has been used for a long time as the model of choice in several biomedical disciplines. Numerous inbred strains have been isolated, displaying a wide range of phenotypes and providing many models of human traits and diseases. Rat genome mapping and genomics was considerably developed in the last decades. The availability of these resources has stimulated numerous studies aimed at discovering causal disease genes by positional identification. Numerous rat genes have now been identified that underlie monogenic or complex diseases and remarkably, these results have been translated to the human in a significant proportion of cases, leading to the identification of novel human disease susceptibility genes, helping in studying the mechanisms underlying the pathological abnormalities and also suggesting new therapeutic approaches. In addition, reverse genetic tools have been developed. Several genome-editing methods were introduced to generate targeted mutations in genes the function of which could be clarified in this manner [generally these are knockout mutations]. Furthermore, even when the human gene causing a disease had been identified without resorting to a rat model, mutated rat strains (in particular KO strains) were created to analyze the gene function and the disease pathogenesis. Today, over 350 rat genes have been identified as underlying diseases or playing a key role in critical biological processes that are altered in diseases, thereby providing a rich resource of disease models. This article is an update of the progress made in this research and provides the reader with an inventory of these disease genes, a significant number of which have similar effects in rat and humans.
Collapse
Affiliation(s)
- Claude Szpirer
- Université Libre de Bruxelles, B-6041, Gosselies, Belgium.
- , Waterloo, Belgium.
| |
Collapse
|
11
|
Školníková E, Šedová L, Liška F, Šeda O. SHR-Zbtb16 minimal congenic strain reveals nutrigenetic interaction between Zbtb16 and high-sucrose diet. Physiol Res 2020; 69:521-527. [PMID: 32469238 DOI: 10.33549/physiolres.934423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Both prenatal and postnatal excessive consumption of dietary sucrose or fructose was shown to be detrimental to health and contributing to pathogenesis of metabolic syndrome. Our knowledge of genetic determinants of individual sensitivity to sucrose-driven metabolic effects is limited. In this study, we have tested the hypothesis that a variation of metabolic syndrome-related gene, Zbtb16 (Zinc Finger and BTB Domain Containing 16 will affect the reaction to high-sucrose diet (HSD) content in "matched" nutritional exposition settings, i.e. maternal HSD with re-exposition to HSD in adulthood vs. standard diet. We compared metabolic profiles of adult males of spontaneously hypertensive rats (SHR) and a single-gene, minimal congenic strain SHR-Zbtb16 fed either standard diet or exposed to HSD prenatally throughout gestation and nursing and again at the age of 6 months for the period of 14 days. HSD exposition led to increased adiposity in both strains and decrease of glucose tolerance and cholesterol (Ch) concentrations in majority of low-density lipoprotein (LDL) particle classes and in very large and large high-density lipoprotein (HDL) in SHR-Zbtb16 male offspring. There was a similar pattern of HSD-induced increase of triacylglycerols in chylomicrons and very low-density lipoprotein (VLDL) of both strains, though the increase of (triacylglycerol) TAG content was clearly more pronounced in SHR. We observed significant STRAIN*DIET interactions for the smallest LDL particles as their TAG content decreased in SHR-Zbtb16 and did not change in SHR in response to HSD. In summary, we provide evidence of nutrigenetic interaction between Zbtb16 and HSD in context of pathogenesis of metabolic syndrome.
Collapse
Affiliation(s)
- E Školníková
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.
| | | | | | | |
Collapse
|
12
|
Mirchi LF, Chylíková B, Janků M, Šeda O, Liška F. Transcriptomic analysis of left ventricle myocardium in an SHR congenic line with ameliorated cardiac fibrosis. Physiol Res 2019; 68:747-755. [PMID: 31424260 DOI: 10.33549/physiolres.934127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Metabolic syndrome and one of its manifestations, essential hypertension, is an important cause of worldwide morbidity and mortality. Morbidity and mortality associated with hypertension are caused by organ complications. Previously we revealed a decrease of blood pressure and an amelioration of cardiac fibrosis in a congenic line of spontaneously hypertensive rats (SHR), in which a short segment of chromosome 8 (encompassing only 7 genes) was exchanged for a segment of normotensive polydactylous (PD) origin. To unravel the genetic background of this phenotype we compared heart transcriptomes between SHR rat males and this chromosome 8 minimal congenic line (PD5). We found 18 differentially expressed genes, which were further analyzed using annotations from Database for Annotation, Visualization and Integrated Discovery (DAVID). Four of the differentially expressed genes (Per1, Nr4a1, Nr4a3, Kcna5) belong to circadian rhythm pathways, aldosterone synthesis and secretion, PI3K-Akt signaling pathway and potassium homeostasis. We were also able to confirm Nr4a1 2.8x-fold upregulation in PD5 on protein level using Western blotting, thus suggesting a possible role of Nr4a1 in pathogenesis of the metabolic syndrome.
Collapse
Affiliation(s)
- L F Mirchi
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
13
|
Abstract
Eicosanoids are bioactive lipids that play crucial roles in various pathophysiological conditions, including inflammation and cancer. They include both the COX-derived prostaglandins and the LOX-derived leukotrienes. Furthermore, the epidermal growth factor receptor (EGFR) pathways family of receptor tyrosine kinases also are known to play a central role in the tumorigenesis. Various antitumor modalities have been approved cancer treatments that target therapeutically the COX-2 and EGFR pathways; these include selective COX-2 inhibitors and EGFR monoclonal antibodies. Research has shown that the COX-2 and epidermal growth factor receptor pathways actively interact with each other in order to orchestrate carcinogenesis. This has been used to justify a targeted combinatorial approach aimed at these two pathways. Although combined therapies have been found to have a greater antitumor effect than the administration of single agent, this does not exempt them from the possible fatal cardiac effects that are associated with COX-2 inhibition. In this review, we delineate the contribution of HB-EGF, an important EGFR ligand, to the cardiac dysfunction related to decreased shedding of HB-EGF after COX-2/PGE2 inhibition. A better understanding of the molecular mechanisms underlying these cardiac side effects will make possible more effective regimens that use the dual-targeting approach.
Collapse
Affiliation(s)
- Cheng-Chieh Yang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
- School of Dentistry, National Yang-Ming University, Taipei, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.
- School of Dentistry, National Yang-Ming University, Taipei, Taiwan.
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
14
|
Šeda O, Šedová L, Včelák J, Vaňková M, Liška F, Bendlová B. ZBTB16 and metabolic syndrome: a network perspective. Physiol Res 2018; 66:S357-S365. [PMID: 28948820 DOI: 10.33549/physiolres.933730] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Metabolic syndrome is a prevalent, complex condition. The search for genetic determinants of the syndrome is currently undergoing a paradigm enhancement by adding systems genetics approaches to association studies. We summarize the current evidence on relations between an emergent new candidate, zinc finger and BTB domain containing 16 (ZBTB16) transcription factor and the major components constituting the metabolic syndrome. Information stemming from studies on experimental models with altered Zbtb16 expression clearly shows its effect on adipogenesis, cardiac hypertrophy and fibrosis, lipid levels and insulin sensitivity. Based on current evidence, we provide a network view of relations between ZBTB16 and hallmarks of metabolic syndrome in order to elucidate the potential functional links involving the ZBTB16 node. Many of the identified genes interconnecting ZBTB16 with all or most metabolic syndrome components are linked to immune function, inflammation or oxidative stress. In summary, ZBTB16 represents a promising pleiotropic candidate node for metabolic syndrome.
Collapse
Affiliation(s)
- O Šeda
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic, Institute of Endocrinology, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
15
|
Krupková M, Liška F, Kazdová L, Šedová L, Kábelová A, Křenová D, Křen V, Šeda O. Single-Gene Congenic Strain Reveals the Effect of Zbtb16 on Dexamethasone-Induced Insulin Resistance. Front Endocrinol (Lausanne) 2018; 9:185. [PMID: 29731739 PMCID: PMC5919955 DOI: 10.3389/fendo.2018.00185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/05/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Glucocorticoids (GCs) are potent therapeutic agents frequently used for treatment of number of conditions, including hematologic, inflammatory, and allergic diseases. Both their therapeutic and adverse effects display significant interindividual variation, partially attributable to genetic factors. We have previously isolated a seven-gene region of rat chromosome 8 sensitizing to dexamethasone (DEX)-induced dyslipidemia and insulin resistance (IR) of skeletal muscle. Using two newly derived congenic strains, we aimed to investigate the effect of one of the prime candidates for this pharmacogenetic interaction, the Zbtb16 gene. METHODS Adult male rats of SHR-Lx.PD5PD-Zbtb16 (n = 9) and SHR-Lx.PD5SHR-Zbtb16 (n = 8) were fed standard diet (STD) and subsequently treated with DEX in drinking water (2.6 µg/ml) for 3 days. The morphometric and metabolic profiles of both strains including oral glucose tolerance test, triacylglycerols (TGs), free fatty acids, insulin, and C-reactive protein levels were assessed before and after the DEX treatment. Insulin sensitivity of skeletal muscle and visceral adipose tissue was determined by incorporation of radioactively labeled glucose. RESULTS The differential segment of SHR-Lx.PD5SHR-Zbtb16 rat strain spans 563 kb and contains six genes: Htr3a, Htr3b, Usp28, Zw10, Tmprss5, and part of Drd2. The SHR-Lx.PD5PD-Zbtb16 minimal congenic strain contains only Zbtb16 gene on SHR genomic background and its differential segment spans 254 kb. Total body weight was significantly increased in SHR-Lx.PD5PD-Zbtb16 strain compared with SHR-Lx.PD5SHR-Zbtb16 , however, no differences in the weights of adipose tissue depots were observed. While STD-fed rats of both strains did not show major differences in their metabolic profiles, after DEX treatment the SHR-Lx.PD5PD-Zbtb16 congenic strain showed increased levels of TGs, glucose, and blunted inhibition of lipolysis by insulin. Both basal and insulin-stimulated incorporation of radioactively labeled glucose into skeletal muscle glycogen were significantly reduced in SHR-Lx.PD5PD-Zbtb16 strain, but the insulin sensitivity of adipose tissue was comparable between the two strains. CONCLUSION The metabolic disturbances including impaired glucose tolerance, dyslipidemia, and IR of skeletal muscle observed after DEX treatment in the congenic SHR-Lx.PD5PD-Zbtb16 reveal the Zbtb16 locus as a possible sensitizing factor for side effects of GC therapy.
Collapse
Affiliation(s)
- Michaela Krupková
- The First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, The General Teaching Hospital, Prague, Czechia
| | - František Liška
- The First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, The General Teaching Hospital, Prague, Czechia
| | - Ludmila Kazdová
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Lucie Šedová
- The First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, The General Teaching Hospital, Prague, Czechia
- Laboratory of Transgenic Models of Diseases, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Vestec, Prague, Czechia
| | - Adéla Kábelová
- The First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, The General Teaching Hospital, Prague, Czechia
| | - Drahomíra Křenová
- The First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, The General Teaching Hospital, Prague, Czechia
| | - Vladimír Křen
- The First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, The General Teaching Hospital, Prague, Czechia
| | - Ondřej Šeda
- The First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, The General Teaching Hospital, Prague, Czechia
- *Correspondence: Ondřej Šeda,
| |
Collapse
|
16
|
BENDLOVÁ B, VAŇKOVÁ M, HILL M, VACÍNOVÁ G, LUKÁŠOVÁ P, VEJRAŽKOVÁ D, ŠEDOVÁ L, ŠEDA O, VČELÁK J. ZBTB16 Gene Variability Influences Obesity-Related Parameters and Serum Lipid Levels in Czech Adults. Physiol Res 2017; 66:S425-S431. [DOI: 10.33549/physiolres.933731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The data derived from rat models and the preliminary results of human studies provide strong indices of involvement of common ZBTB16 variants in a range of cardiovascular and metabolic traits. This cross-sectional study in the Caucasian cohort of 1517 Czech adults aimed to verify the hypothesis that ZBTB16 gene variation directly affects obesity and serum lipid levels. Genotyping of nine polymorphisms of the ZBTB16 gene (rs11214863, rs593731, rs763857, rs2846027, rs681200, rs686989, rs661223, rs675044, rs567057) was performed. A multivariate bidirectional regression with the reduction of dimensionality (O2PLS model) revealed relationships between basal lipid levels and anthropometric parameters and some minor ZBTB16 alleles. In men, the predictors – age and presence of minor ZBTB16 alleles of rs686989, rs661223, rs675044, rs567057 – were associated with significantly higher body mass index, waist to hip ratio, body adiposity index, waist and abdominal circumferences, higher total cholesterol and LDL cholesterol and explained 20 % of variability of these variables. In women, the predictors – age and presence of the rs686989 minor T allele – were also associated with increased anthropometric parameters and total cholesterol and LDL cholesterol but the obtained O2PLS model explained only 7.8 % of the variability of the explained variables. Our study confirmed that the selected gene variants of the transcription factor ZBTB16 influence the obesity-related parameters and lipid levels. This effect was more pronounced in men.
Collapse
Affiliation(s)
- B. BENDLOVÁ
- Institute of Endocrinology, Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Liška F, Landa V, Zídek V, Mlejnek P, Šilhavý J, Šimáková M, Strnad H, Trnovská J, Škop V, Kazdová L, Starker CG, Voytas DF, Izsvák Z, Mancini M, Šeda O, Křen V, Pravenec M. Downregulation of
Plzf
Gene Ameliorates Metabolic and Cardiac Traits in the Spontaneously Hypertensive Rat. Hypertension 2017; 69:1084-1091. [DOI: 10.1161/hypertensionaha.116.08798] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/06/2016] [Accepted: 03/09/2017] [Indexed: 12/20/2022]
Abstract
The spontaneously hypertensive rat (SHR), one of the most widely used model of essential hypertension, is predisposed to left ventricular hypertrophy, myocardial fibrosis, and metabolic disturbances. Recently, quantitative trait loci influencing blood pressure, left ventricular mass, and heart interstitial fibrosis were genetically isolated within a minimal congenic subline that contains only 7 genes, including mutant
Plzf
(promyelocytic leukemia zinc finger) candidate gene. To identify
Plzf
as a quantitative trait gene, we targeted
Plzf
in the SHR using the transcription activator-like effector nuclease technique and obtained SHR line harboring targeted
Plzf
gene with a premature stop codon. Because the
Plzf
targeted allele is semilethal, morphologically normal heterozygous rats were used for metabolic and hemodynamic analyses. SHR-
Plzf
+/−
heterozygotes versus SHR wild-type controls exhibited reduced body weight and relative weight of epididymal fat, lower serum and liver triglycerides and cholesterol, and better glucose tolerance. In addition, SHR-
Plzf
+/−
rats exhibited significantly increased sensitivity of adipose and muscle tissue to insulin action when compared with wild-type controls. Blood pressure was comparable in SHR versus SHR-
Plzf
+/−
; however, there was significant amelioration of cardiomyocyte hypertrophy and cardiac fibrosis in SHR-
Plzf
+/−
rats. Gene expression profiles in the liver and expression of selected genes in the heart revealed differentially expressed genes that play a role in metabolic pathways, PPAR (peroxisome proliferator-activated receptor) signaling, and cell cycle regulation. These results provide evidence for an important role of
Plzf
in regulation of metabolic and cardiac traits in the rat and suggest a cross talk between cell cycle regulators, metabolism, cardiac hypertrophy, and fibrosis.
Collapse
Affiliation(s)
- František Liška
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| | - Vladimír Landa
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| | - Václav Zídek
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| | - Petr Mlejnek
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| | - Jan Šilhavý
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| | - Miroslava Šimáková
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| | - Hynek Strnad
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| | - Jaroslava Trnovská
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| | - Vojtěch Škop
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| | - Ludmila Kazdová
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| | - Colby G. Starker
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| | - Daniel F. Voytas
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| | - Zsuzsanna Izsvák
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| | - Massimiliano Mancini
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| | - Ondřej Šeda
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| | - Vladimír Křen
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| | - Michal Pravenec
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| |
Collapse
|
18
|
Mancini M, Scavone A, Sartorio CL, Baccaro R, Kleinert C, Pernazza A, Buia V, Leopizzi M, d'Amati G, Camici PG. Effect of different drug classes on reverse remodeling of intramural coronary arterioles in the spontaneously hypertensive rat. Microcirculation 2017; 24. [DOI: 10.1111/micc.12298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/19/2016] [Indexed: 02/01/2023]
Affiliation(s)
| | - Angela Scavone
- Vita Salute University and Scientific Institute San Raffaele; Milan Italy
| | | | - Rocco Baccaro
- Vita Salute University and Scientific Institute San Raffaele; Milan Italy
| | - Christina Kleinert
- Vita Salute University and Scientific Institute San Raffaele; Milan Italy
| | - Angelina Pernazza
- Department of Radiology; Oncology and Pathology; “Sapienza” University; Rome Italy
| | - Veronica Buia
- Vita Salute University and Scientific Institute San Raffaele; Milan Italy
| | - Martina Leopizzi
- Department of Radiology; Oncology and Pathology; “Sapienza” University; Rome Italy
| | - Giulia d'Amati
- Department of Radiology; Oncology and Pathology; “Sapienza” University; Rome Italy
| | - Paolo G. Camici
- Vita Salute University and Scientific Institute San Raffaele; Milan Italy
| |
Collapse
|
19
|
Targeting of the Plzf Gene in the Rat by Transcription Activator-Like Effector Nuclease Results in Caudal Regression Syndrome in Spontaneously Hypertensive Rats. PLoS One 2016; 11:e0164206. [PMID: 27727328 PMCID: PMC5058558 DOI: 10.1371/journal.pone.0164206] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/21/2016] [Indexed: 12/01/2022] Open
Abstract
Recently, it has been found that spontaneous mutation Lx (polydactyly-luxate syndrome) in the rat is determined by deletion of a conserved intronic sequence of the Plzf (Promyelocytic leukemia zinc finger protein) gene. In addition, Plzf is a prominent candidate gene for quantitative trait loci (QTLs) associated with cardiac hypertrophy and fibrosis in the spontaneously hypertensive rat (SHR). In the current study, we tested the effects of Plzf gene targeting in the SHR using TALENs (transcription activator-like effector nucleases). SHR ova were microinjected with constructs pTAL438/439 coding for a sequence-specific endonuclease that binds to target sequence in the first coding exon of the Plzf gene. Out of 43 animals born after microinjection, we detected a single male founder. Sequence analysis revealed a deletion of G that resulted in frame shift mutation starting in codon 31 and causing a premature stop codon at position of amino acid 58. The Plzftm1Ipcv allele is semi-lethal since approximately 95% of newborn homozygous animals died perinatally. All homozygous animals exhibited manifestations of a caudal regression syndrome including tail anomalies and serious size reduction and deformities of long bones, and oligo- or polydactyly on the hindlimbs. The heterozygous animals only exhibited the tail anomalies. Impaired development of the urinary tract was also revealed: one homozygous and one heterozygous rat exhibited a vesico-ureteric reflux with enormous dilatation of ureters and renal pelvis. In the homozygote, this was combined with a hypoplastic kidney. These results provide evidence for the important role of Plzf gene during development of the caudal part of a body—column vertebrae, hindlimbs and urinary system in the rat.
Collapse
|
20
|
Krupková M, Liška F, Sedová L, Křenová D, Křen V, Seda O. Pharmacogenomic analysis of retinoic-acid induced dyslipidemia in congenic rat model. Lipids Health Dis 2014; 13:172. [PMID: 25403085 PMCID: PMC4247747 DOI: 10.1186/1476-511x-13-172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 10/29/2014] [Indexed: 01/02/2023] Open
Abstract
Background All-trans retinoic acid (ATRA, tretinoin) is a vitamin A derivative commonly used in the treatment of diverse conditions ranging from cancer to acne. In a fraction of predisposed individuals, the administration of ATRA is accompanied by variety of adverse metabolic effects, particularly by the induction of hyperlipidemia. We have previously derived a minimal congenic SHR.PD-(D8Rat42-D8Arb23)/Cub (SHR-Lx) strain sensitive to ATRA-induced increase of triacylglycerols and cholesterol under condition of high-sucrose diet. SHR-Lx differs only by 7 genes of polydactylous rat (PD/Cub) origin from its spontaneously hypertensive rat (SHR) progenitor strain. Methods Adult male rats of SHR and SHR-Lx strains were fed standard diet (STD) and experimental groups were subsequently treated with ATRA (15 mg/kg) via oral gavage for 16 days, while still on STD. We contrasted the metabolic profiles (including free fatty acids, triacylglycerols (TG) and cholesterol (C) in 20 lipoprotein fractions) between SHR and SHR-Lx under conditions of standard diet and standard diet + ATRA. We performed transcriptomic analysis of muscle tissue (m. soleus) in all groups using Affymetrix GeneChip Rat Gene 2.0 ST Arrays followed by Ingenuity Pathway Analysis and real-time PCR validation. Results In response to ATRA, SHR-Lx reacted with substantially greater rise in TG and C concentrations throughout the lipoprotein spectrum (two-way ANOVA strain * RA interaction significant for C content in chylomicrons (CM), VLDL and LDL as well as total, CM and HDL-TG). Conclusions According to our modeling of metabolic and signalization pathways using differentially expressed genes we have identified a network with major nodes (including Sirt3, Il1b, Cpt1b and Pparg) likely to underlie the observed strain specific response to ATRA. Electronic supplementary material The online version of this article (doi:10.1186/1476-511X-13-172) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Ondřej Seda
- Institute of Biology and Medical Genetics, the First Faculty of Medicine, Charles University and the General Teaching Hospital, Albertov 4, 12800 Prague, Czech Republic.
| |
Collapse
|