1
|
Aquino de Moraes FC, Dantas Leite Pessôa FD, Duarte de Castro Ribeiro CH, Rodrigues Fernandes M, Rodríguez Burbano RM, Carneiro Dos Santos NP. Trifluridine-tipiracil plus bevacizumab versus trifluridine-tipiracil monotherapy for chemorefractory metastatic colorectal cancer: a systematic review and meta-analysis. BMC Cancer 2024; 24:674. [PMID: 38825703 PMCID: PMC11145814 DOI: 10.1186/s12885-024-12447-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024] Open
Abstract
Colorectal cancer is the leading cause of cancer death worldwide. The first and second lines of treatment for metastatic colorectal cancer (mCRC) include chemotherapy based on 5-fluorouracil. However, treatment following progression on the first and second line is still unclear. We searched PubMed, Scopus, Cochrane, and Web of Science databases for studies investigating the use of trifluridine-tipiracil with bevacizumab versus trifluridine-tipiracil alone for mCRC. We used RStudio version 4.2.3; and we considered p < 0.05 significant. Seven studies and 1,182 patients were included - 602 (51%) received trifluridine-tipiracil plus bevacizumab. Compared with control, the progression-free survival (PFS) (HR 0.52; 95% CI 0.42-0.63; p < 0.001) and overall survival (OS) (HR 0.61; 95% CI 0.52-0.70; p < 0.001) were significantly higher with bevacizumab. The objective response rate (ORR) (RR 3.14; 95% CI 1.51-6.51; p = 0.002) and disease control rate (DCR) (RR 1.66; 95% CI 1.28-2.16; p = 0.0001) favored the intervention. Regarding adverse events, the intervention had a higher rate of neutropenia (RR 1.38; 95% CI 1.19-1.59; p = 0.00001), whereas the monotherapy group had a higher risk of anemia (RR 0.60; 95% CI 0.44-0.82; p = 0.001). Our results support that the addition of bevacizumab is associated with a significant benefit in PFS, OS, ORR and DCR.
Collapse
Affiliation(s)
- Francisco Cezar Aquino de Moraes
- Oncology Research Center, Federal University of Pará, University Hospital João de Barros de Barreto. Rua dos Mundurucus, nº4487, Belem, 66073-005, PA, Brazil.
| | | | | | - Marianne Rodrigues Fernandes
- Oncology Research Center, Federal University of Pará, University Hospital João de Barros de Barreto. Rua dos Mundurucus, nº4487, Belem, 66073-005, PA, Brazil
| | | | - Ney Pereira Carneiro Dos Santos
- Oncology Research Center, Federal University of Pará, University Hospital João de Barros de Barreto. Rua dos Mundurucus, nº4487, Belem, 66073-005, PA, Brazil
| |
Collapse
|
2
|
Selvin T, Fasterius E, Jarvius M, Fryknäs M, Larsson R, Andersson CR. Single-cell transcriptional pharmacodynamics of trifluridine in a tumor-immune model. Sci Rep 2022; 12:11960. [PMID: 35831404 PMCID: PMC9279337 DOI: 10.1038/s41598-022-16077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/04/2022] [Indexed: 11/09/2022] Open
Abstract
Understanding the immunological effects of chemotherapy is of great importance, especially now that we have entered an era where ever-increasing pre-clinical and clinical efforts are put into combining chemotherapy and immunotherapy to combat cancer. Single-cell RNA sequencing (scRNA-seq) has proved to be a powerful technique with a broad range of applications, studies evaluating drug effects in co-cultures of tumor and immune cells are however scarce. We treated a co-culture comprised of human colorectal cancer (CRC) cells and peripheral blood mononuclear cells (PBMCs) with the nucleoside analogue trifluridine (FTD) and used scRNA-seq to analyze posttreatment gene expression profiles in thousands of individual cancer and immune cells concurrently. ScRNA-seq recapitulated major mechanisms of action previously described for FTD and provided new insight into possible treatment-induced effects on T-cell mediated antitumor responses.
Collapse
Affiliation(s)
- Tove Selvin
- Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden.
| | - Erik Fasterius
- National Bioinformatics Infrastructure Sweden (NBIS), Stockholm University, Stockholm, Sweden
| | - Malin Jarvius
- Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden.,Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, 751 24, Uppsala, Sweden
| | - Mårten Fryknäs
- Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Rolf Larsson
- Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Claes R Andersson
- Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden.
| |
Collapse
|
3
|
Jia HJ, Zhou M, Vashisth MK, Xia J, Hua H, Dai QL, Bai SR, Zhao Q, Wang XB, Shi YL. Trifluridine induces HUVECs senescence by inhibiting mTOR-dependent autophagy. Biochem Biophys Res Commun 2022; 610:119-126. [PMID: 35462092 DOI: 10.1016/j.bbrc.2022.04.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 01/18/2023]
|
4
|
Sousa MJD, Gomes I, Pereira TC, Magalhães J, Basto R, Paulo J, Jacinto P, Bonito N, Sousa G. The effect of prognostic factors at baseline on the efficacy of trifluridine/tipiracil in patients with metastatic colorectal cancer: A Portuguese exploratory analysis. Cancer Treat Res Commun 2022; 31:100531. [PMID: 35172243 DOI: 10.1016/j.ctarc.2022.100531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The RECOURSE trial supported trifluridine/tipiracil as a treatment option in metastatic colorectal cancer (mCRC). Subsequent analysis demonstrated that low tumour burden and indolent disease are good prognosis factors improving progression-free survival (PFS) and overall survival (OS). This study aimed to evaluate the impact of prognosis group in the OS, PFS and safety of trifluridine/tipiracil in patients with mCRC. METHODS Single-centre, retrospective, and observational study of patients with mCRC who started trifluridine/tipiracil between February 2018 and July 2019. Patients were divided into good prognosis characteristics (GPC) [low tumour burden (less than 3 metastasis site) and indolent disease (≥18 months from first metastasis diagnosis)] and poor prognostic characteristics (PPC) group [high tumour burden (3 or more metastasis sites) and/or aggressive disease (<18 months since the first metastasis diagnosis)]. RESULTS Median age was 67 years (48-82), 67.3% of the patients were male, and 65.3% had stage IV disease at baseline. Overall, median OS was 7.5 months (95%CI:5.7-9.3). Twenty-two patients (44.9%) presented GPC and 29 (59.1%) had PPC. GPC patients had longer median OS [11.4 (95%CI:6.2-16.7)] versus 3.9 months [(95%CI: 3.3-4.6),p < 0.0001] and PFS [4.9 (95%CI:3.0-6.9) versus 2.6 months (95%CI:2.2-2.8),p < 0.0001]. These differences were more pronounced in GPC patients with no liver metastasis. Grade ≥3 adverse events incidence didn't vary between GPC and PPC subgroups. CONCLUSION Our study validates the improved trifluridine/tipiracil efficacy in patients with GPC in comparison with PPC while maintaining a well-tolerated safety profile. Indolent disease, low tumour burden and the absence of liver metastasis were shown to be good prognosis factors influencing sustained response to trifluridine/tipiracil.
Collapse
Affiliation(s)
- M João de Sousa
- Medical Oncology Service, Institute of Oncology Francisco Gentil (IPO Coimbra), Coimbra, Portugal.
| | - Inês Gomes
- Medical Oncology Service, Institute of Oncology Francisco Gentil (IPO Coimbra), Coimbra, Portugal
| | - Tatiana Cunha Pereira
- Medical Oncology Service, Institute of Oncology Francisco Gentil (IPO Coimbra), Coimbra, Portugal
| | - Joana Magalhães
- Medical Oncology Service, Institute of Oncology Francisco Gentil (IPO Coimbra), Coimbra, Portugal
| | - Raquel Basto
- Medical Oncology Service, Institute of Oncology Francisco Gentil (IPO Coimbra), Coimbra, Portugal
| | - Judy Paulo
- Medical Oncology Service, Institute of Oncology Francisco Gentil (IPO Coimbra), Coimbra, Portugal
| | - Paula Jacinto
- Medical Oncology Service, Institute of Oncology Francisco Gentil (IPO Coimbra), Coimbra, Portugal
| | - Nuno Bonito
- Medical Oncology Service, Institute of Oncology Francisco Gentil (IPO Coimbra), Coimbra, Portugal
| | - Gabriela Sousa
- Medical Oncology Service, Institute of Oncology Francisco Gentil (IPO Coimbra), Coimbra, Portugal
| |
Collapse
|
5
|
The Immunotherapy for Colorectal Cancer, Lung Cancer and Pancreatic Cancer. Int J Mol Sci 2021; 22:ijms222312836. [PMID: 34884642 PMCID: PMC8657810 DOI: 10.3390/ijms222312836] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy is a novel anti-cancer method which employs a different mechanism to conventional treatment. It has become a significant strategy because it provides a better or an alternative option for cancer patients. Recently, immunotherapy has been increasingly approved for the treatment of cancer; however, it has various limitations; for instance, it is only suitable for specific patients, the response rate is still low in most cases, etc. Colorectal cancer, lung cancer and pancreatic cancer are known as three major death-causing cancers in most countries. In this review, we discuss immunotherapeutic treatment for these three cancers, and consider the option, prospects and limitations of immunotherapy. The development of immunotherapy should focus on the discovery of biomarkers to screen suitable patients, new targets on tumors, neoadjuvant immunotherapy and the combination of immunotherapy with conventional therapeutic methods. We can expect that immunotherapy potentially will develop as one of the best therapies for patients with advanced cancer or poor responses to traditional methods.
Collapse
|
6
|
Jiang H, Qin X, Wang Q, Xu Q, Wang J, Wu Y, Chen W, Wang C, Zhang T, Xing D, Zhang R. Application of carbohydrates in approved small molecule drugs: A review. Eur J Med Chem 2021; 223:113633. [PMID: 34171659 DOI: 10.1016/j.ejmech.2021.113633] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/24/2022]
Abstract
Carbohydrates are an important energy source and play numerous key roles in all living organisms. Carbohydrates chemistry involved in diagnosis and treatment of diseases has been attracting increasing attention. Carbohydrates could be one of the major focuses of new drug discovery. Currently, however, carbohydrate-containing drugs account for only a small percentage of all drugs in clinical use, which does not match the important roles of carbohydrates in the organism. In other words, carbohydrates are a relatively untapped source of new drugs and therefore may offer exciting novel therapeutic opportunities. Here, we presented an overview of the application of carbohydrates in approved small molecule drugs and emphasized and evaluated the roles of carbohydrates in those drugs. The potential development direction of carbohydrate-containing drugs was presented after summarizing the advantages and challenges of carbohydrates in the development of new drugs.
Collapse
Affiliation(s)
- Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Xiaofei Qin
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Qi Wang
- Department of Critical Medicine, Hainan Maternal and Children's Medical Center, Haikou, 570312, China
| | - Qi Xu
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology Shandong Academy of Sciences, Jinan, China
| | - Jie Wang
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Yudong Wu
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Wujun Chen
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Chao Wang
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Tingting Zhang
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao, 266071, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
7
|
Baby K, Maity S, Mehta CH, Suresh A, Nayak UY, Nayak Y. Targeting SARS-CoV-2 Main Protease: A Computational Drug Repurposing Study. Arch Med Res 2021; 52:38-47. [PMID: 32962867 PMCID: PMC7498210 DOI: 10.1016/j.arcmed.2020.09.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/06/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) induced Novel Coronavirus Disease (COVID-19) has currently become pandemic worldwide. Though drugs like remdesivir, favipiravir, and dexamethasone found beneficial for COVID-19 management, they have limitations clinically, and vaccine development takes a long time. The researchers have reported key proteins which could act as druggable targets. Among them, the major protease Mpro is first published, plays a prominent role in viral replication and an attractive drug-target for drug discovery. Hence, to target Mpro and inhibit it, we accomplished the virtual screening of US-FDA approved drugs using well-known drug repurposing approach by computer-aided tools. METHODS The protein Mpro, PDB-ID 6LU7 was imported to Maestro graphical user interphase of Schrödinger software. The US-FDA approved drug structures are imported from DrugBank and docked after preliminary protein and ligand preparation. The drugs are shortlisted based on the docking scores in the Standard Precision method (SP-docking) and then based on the type of molecular interactions they are studied for molecular dynamics simulations. RESULTS The docking and molecular interactions studies, five drugs emerged as potential hits by forming hydrophilic, hydrophobic, electrostatic interactions. The drugs such as arbutin, terbutaline, barnidipine, tipiracil and aprepitant identified as potential hits. Among the drugs, tipiracil and aprepitant interacted with the Mpro consistently, and they turned out to be most promising. CONCLUSIONS This study shows the possible exploration for drug repurposing using computer-aided docking tools and the potential roles of tipiracil and aprepitant, which can be explored further in the treatment of COVID-19.
Collapse
Affiliation(s)
- Krishnaprasad Baby
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Swastika Maity
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Chetan H Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Akhil Suresh
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
8
|
Chemistry of Fluorinated Pyrimidines in the Era of Personalized Medicine. Molecules 2020; 25:molecules25153438. [PMID: 32751071 PMCID: PMC7435603 DOI: 10.3390/molecules25153438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
We review developments in fluorine chemistry contributing to the more precise use of fluorinated pyrimidines (FPs) to treat cancer. 5-Fluorouracil (5-FU) is the most widely used FP and is used to treat > 2 million cancer patients each year. We review methods for 5-FU synthesis, including the incorporation of radioactive and stable isotopes to study 5-FU metabolism and biodistribution. We also review methods for preparing RNA and DNA substituted with FPs for biophysical and mechanistic studies. New insights into how FPs perturb nucleic acid structure and dynamics has resulted from both computational and experimental studies, and we summarize recent results. Beyond the well-established role for inhibiting thymidylate synthase (TS) by the 5-FU metabolite 5-fluoro-2′-deoxyuridine-5′-O-monophosphate (FdUMP), recent studies have implicated new roles for RNA modifying enzymes that are inhibited by 5-FU substitution including tRNA methyltransferase 2 homolog A (TRMT2A) and pseudouridylate synthase in 5-FU cytotoxicity. Furthermore, enzymes not previously implicated in FP activity, including DNA topoisomerase 1 (Top1), were established as mediating FP anti-tumor activity. We review recent literature summarizing the mechanisms by which 5-FU inhibits RNA- and DNA-modifying enzymes and describe the use of polymeric FPs that may enable the more precise use of FPs for cancer treatment in the era of personalized medicine.
Collapse
|