1
|
Isaxon C, Lovén K, Ludvigsson L, Sivakumar S, Gudmundsson A, Messing ME, Pagels J, Hedmer M. Workplace Emissions and Exposures During Semiconductor Nanowire Production, Post-production, and Maintenance Work. Ann Work Expo Health 2021; 64:38-54. [PMID: 31819949 PMCID: PMC6935015 DOI: 10.1093/annweh/wxz088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 01/07/2023] Open
Abstract
Background Nanowires are a high-aspect-ratio material of increasing interest for a wide range of applications. A new and promising method to produce nanowires is by aerotaxy, where the wires are grown in a continuous stream of gas. The aerotaxy method can grow nanowires much faster than by more conventional methods. Nanowires have important properties in common with asbestos fibers, which indicate that there can be potential health effects if exposure occurs. No conclusive exposure (or emission) data from aerotaxy-production of nanowires has so far been published. Methods Different work tasks during semiconductor nanowire production, post-production, and maintenance were studied. A combination of direct-reading instruments for number concentration (0.007–20 µm) and filter sampling was used to assess the emissions (a couple of centimeter from the emission sources), the exposure in the personal breathing zone (max 30 cm from nose–mouth), and the concentrations in the background zone (at least 3 m from any emission source). The filters were analyzed for metal dust composition and number concentration of nanowires. Various surfaces were sampled for nanowire contamination. Results The particle concentrations in the emission zone (measured with direct-reading instruments) were elevated during cleaning of arc discharge, manual reactor cleaning, exchange of nanowire outflow filters, and sonication of substrates with nanowires. In the case of cleaning of the arc discharge and manual reactor cleaning, the emissions affected the concentrations in the personal breathing zone and were high enough to also affect the concentrations in the background. Filter analysis with electron microscopy could confirm the presence of nanowires in some of the air samples. Conclusions Our results show that a major part of the potential for exposure occurs not during the actual manufacturing, but during the cleaning and maintenance procedures. The exposures and emissions were evaluated pre- and post-upscaling the production and showed that some work tasks (e.g. exchange of nanowire outflow filters and sonication of substrates with nanowires) increased the emissions post-upscaling.
Collapse
Affiliation(s)
- Christina Isaxon
- NanoLund, Lund University, Lund, Sweden.,Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Karin Lovén
- NanoLund, Lund University, Lund, Sweden.,Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Linus Ludvigsson
- NanoLund, Lund University, Lund, Sweden.,Solid State Physics, Lund University, Lund, Sweden
| | - Sudhakar Sivakumar
- NanoLund, Lund University, Lund, Sweden.,Solid State Physics, Lund University, Lund, Sweden
| | - Anders Gudmundsson
- NanoLund, Lund University, Lund, Sweden.,Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Maria E Messing
- NanoLund, Lund University, Lund, Sweden.,Solid State Physics, Lund University, Lund, Sweden
| | - Joakim Pagels
- NanoLund, Lund University, Lund, Sweden.,Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Maria Hedmer
- NanoLund, Lund University, Lund, Sweden.,Occupational and Environmental Medicine, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Wright MD, Buckley AJ, Smith R. Estimates of carbon nanotube deposition in the lung: improving quality and robustness. Inhal Toxicol 2020; 32:282-298. [PMID: 32689844 DOI: 10.1080/08958378.2020.1785594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Carbon nanotube (CNT) in vivo inhalation studies are increasingly providing estimates of the quantity of material deposited in the lung, generally estimated using standard formulae and pulmonary deposition models. These models have typically been developed and validated using data from studies using sphere-like particles. Given the importance of particle morphology to pulmonary deposition, the appropriateness of such an approach was explored to identify any potential limitations. Aerosolized CNT particles typically form 'fiber-like' and/or 'broadly spherical' agglomerates. A review of currently used deposition models indicates that none have been directly validated against results for CNT, however, models for spherical particles have been extensively validated against a wide range of particle sizes and materials and are thus expected to provide reasonable estimates for most 'broadly spherical' CNT particles, although experimental confirmation of this would be of benefit, especially given their low density. The validation of fiber deposition models is significantly less extensive and, in general, focused on larger particles, e.g. asbestos. This raises concerns about the accuracy of deposition estimates for 'fiber-like' CNT particles and recommendations are made for future research to address this. An appreciation of the uncertainties on CNT deposition estimates is important for their interpretation and thus it is recommended that model sensitivity and uncertainty assessments be undertaken. Issues surrounding the measurement and derivation of model input data are also addressed, including instrument responses and particle density assessment options. Recommendations are also made for aerosol characterization to 'future-proof' CNT inhalation studies regarding advances in deposition modeling and toxicological understanding.
Collapse
Affiliation(s)
- Matthew D Wright
- Centre for Radiation, Chemical and Environmental Hazards (CRCE), Public Health England (PHE), Chilton, UK
| | - Alison J Buckley
- Centre for Radiation, Chemical and Environmental Hazards (CRCE), Public Health England (PHE), Chilton, UK
| | - Rachel Smith
- Centre for Radiation, Chemical and Environmental Hazards (CRCE), Public Health England (PHE), Chilton, UK
| |
Collapse
|
3
|
Dahm MM, Evans DE, Bertke S, Grinshpun SA. Evaluation of total and inhalable samplers for the collection of carbon nanotube and carbon nanofiber aerosols. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2019; 53:958-970. [PMID: 35392279 PMCID: PMC8985588 DOI: 10.1080/02786826.2019.1618437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/19/2019] [Accepted: 04/29/2019] [Indexed: 06/14/2023]
Abstract
A growing number of carbon nanotubes and nanofibers (CNT/F) exposure and epidemiologic studies have utilized 25-mm and 37-mm open-faced cassettes (OFC) to assess the inhalable aerosol fraction. It has been previously established that the 37-mm OFC under-samples particles greater than 20 μm in diameter, but the size-selective characteristics of the 25-mm OFC have not yet been fully evaluated. This article describes an experimental study conducted to determine if the 25- and 37-mm OFCs performed with relative equivalence to a reference inhalable aerosol sampler when challenged with CNT/F particles. Side-by-side paired samples were collected within a small Venturi chamber using a 25-mm styrene OFC, 37-mm styrene OFC, 25-mm aluminum OFC, and Button Inhalable Aerosol Sampler. Three types of CNT/F materials and an Arizona road dust were used as challenge aerosols for the various sampler configurations. Repeated experiments were conducted for each sampler configuration and material. The OFC samplers operated at flow rates of 2 and 5 liters per minute. Results showed that the 25-mm OFC performed comparably to the Button Sampler when challenged with CNT/F aerosols, which was demonstrated in five of the six experimental scenarios with an average error of 20%. Overall, the results of this study indicate that the sampling efficiency of the 25- and 37-mm OFCs adequately followed the ISO/ACGIH/CEN inhalable sampling convention when challenged with CNT/F aerosols. Past exposure and epidemiologic studies that used these OFC samplers can directly compare their results to studies that have used other validated inhalable aerosol samplers.
Collapse
Affiliation(s)
- Matthew M. Dahm
- Division of Surveillance, Hazard Evaluations, and Field Studies, National Institute for Occupational Safety and Health, Cincinnati, OH 45226, USA
| | - Douglas E. Evans
- Division of Applied Research and Technology, National Institute for Occupational Safety and Health, 1090 Tusculum Ave, Cincinnati, OH 45226, USA
| | - Stephen Bertke
- Division of Surveillance, Hazard Evaluations, and Field Studies, National Institute for Occupational Safety and Health, Cincinnati, OH 45226, USA
| | - Sergey A. Grinshpun
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, Cincinnati, OH 45267, USA
| |
Collapse
|
4
|
Sampling Techniques on Collecting Fine Carbon Nanotube Fibers for Exposure Assessment. Sci Rep 2019; 9:7137. [PMID: 31073208 PMCID: PMC6509341 DOI: 10.1038/s41598-019-43661-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 04/24/2019] [Indexed: 12/02/2022] Open
Abstract
Carbon nanotube (CNT) sampling using an open-faced 25 mm cassette fiber sampling method and a newly developed direct sampling device was evaluated for the size fractioned analysis of collected airborne CNT fibers to improve the sampling and analytical methods. The open-faced 25 mm cassette fiber sampling method primarily collected large agglomerates, with the majority of collected particles being larger than two micrometer in size. Most of CNT structures collected by the new direct sampling device were individual fibers and clusters smaller than one micrometer with a high particle number concentration discrepancy compared to the open-faced 25 mm cassette method raising the concern of this sampling method to representatively characterize the respirable size fraction of CNT aerosols. This work demonstrates that a specialized technique is needed for collecting small fibers to provide a more representative estimate of exposure. It is recommended that an additional sampler be used to directly collect and analyze small fibers in addition to the widely accepted sampling method which utilizes an open-faced 25 mm cassette.
Collapse
|
5
|
Tromp PC, Kuijpers E, Bekker C, Godderis L, Lan Q, Jedynska AD, Vermeulen R, Pronk A. A New Approach Combining Analytical Methods for Workplace Exposure Assessment of Inhalable Multi-Walled Carbon Nanotubes. Ann Work Expo Health 2018; 61:759-772. [PMID: 28810684 DOI: 10.1093/annweh/wxx053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 06/09/2017] [Indexed: 11/13/2022] Open
Abstract
To date there is no consensus about the most appropriate analytical method for measuring carbon nanotubes (CNTs), hampering the assessment and limiting the comparison of data. The goal of this study is to develop an approach for the assessment of the level and nature of inhalable multi-wall CNTs (MWCNTs) in an actual workplace setting by optimizing and evaluating existing analytical methods. In a company commercially producing MWCNTs, personal breathing zone samples were collected for the inhalable size fraction with IOM samplers; which were analyzed with carbon analysis, inductively coupled plasma mass spectrometry (ICP-MS) and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX). Analytical methods were optimized for carbon analysis and SEM/EDX. More specifically, methods were applied and evaluated for background correction using carbon analyses and SEM/EDX, CNT structure count with SEM/EDX and subsequent mass conversion based on both carbon analyses and SEM/EDX. A moderate-to-high concordance correlation coefficient (RC) between carbon analyses and SEM/EDX was observed [RC = 0.81, 95% confidence interval (CI): 0.59-0.92] with an absolute mean difference of 59 µg m-3. A low RC between carbon analyses and ICP-MS (RC = 0.41, 95% CI: 0.07-0.67) with an absolute mean difference of 570 µg m-3 was observed. The large absolute difference between EC and metals is due to the presence of non-embedded inhalable catalyst particles, as a result of which MWCNT concentrations were overestimated. Combining carbon analysis and SEM/EDX is the most suitable for quantitative exposure assessment of MWCNTs in an actual workplace situation.
Collapse
Affiliation(s)
- Peter C Tromp
- Netherlands Organization for Applied Research, TNO, Utrecht, The Netherlands
| | - Eelco Kuijpers
- Netherlands Organization for Applied Research, TNO, Utrecht, The Netherlands.,IRAS - Institute for Risk Assessment Sciences, Molecular Epidemiology and Risk Assessment Utrecht, The Netherlands
| | - Cindy Bekker
- Netherlands Organization for Applied Research, TNO, Utrecht, The Netherlands.,IRAS - Institute for Risk Assessment Sciences, Molecular Epidemiology and Risk Assessment Utrecht, The Netherlands
| | - Lode Godderis
- Katholieke Universiteit Leuven - Centre for Environment and Health, Leuven, Belgium.,IDEWE, External Service for Prevention and Protection at Work, Heverlee, Belgium
| | - Qing Lan
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | - Roel Vermeulen
- IRAS - Institute for Risk Assessment Sciences, Molecular Epidemiology and Risk AssessmentUtrecht, The Netherlands
| | - Anjoeka Pronk
- Netherlands Organization for Applied Research, TNO, Utrecht, The Netherlands
| |
Collapse
|
6
|
Hamilton RF, Tsuruoka S, Wu N, Wolfarth M, Porter DW, Bunderson-Schelvan M, Holian A. Length, but Not Reactive Edges, of Cup-stack MWCNT Is Responsible for Toxicity and Acute Lung Inflammation. Toxicol Pathol 2017; 46:62-74. [PMID: 28946794 DOI: 10.1177/0192623317732303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multiwalled carbon nanotube (MWCNT) toxicity after inhalation has been associated with size, aspect ratio, rigidity, surface modification, and reactive oxygen species production. In this study, we investigated a series of cup-stacked MWCNT prepared as variants of the Creos 24PS. Mechanical chopping produced a short version (AR10) and graphitization to remove active reaction sites by extreme heat (2,800°C; Creos 24HT) to test the contribution of length and alteration of potential reaction sites to toxicity. The 3 MWCNT variants were tested in vitro in a human macrophage-like cell model and with C57BL/6 alveolar macrophages for dose-dependent toxicity and NLRP3 inflammasome activation. The 24PS and 24HT variants showed significant dose-dependent toxicity and inflammasome activation. In contrast, the AR10 variant showed no toxicity or bioactivity at any concentration tested. The in vivo results reflected those observed in vitro, with the 24PS and 24HT variants resulting in acute inflammation, including elevated polymorphonuclear counts, Interleukin (IL)-18, cathepsin B, and lactate dehydrogenase in isolated lung lavage fluid from mice exposed to 40 µg MWCNT. Taken together, these data indicate that length, but not the absence of proposed reaction sites, on the MWCNT influences particle bioactivity.
Collapse
Affiliation(s)
- Raymond F Hamilton
- 1 Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, Montana, USA
| | - Shuji Tsuruoka
- 2 Institute of Carbon Science and Technology, Shinshu University, Nagano, Japan
| | - Nianqiang Wu
- 3 Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia, USA
| | - Michael Wolfarth
- 4 National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Dale W Porter
- 4 National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Melisa Bunderson-Schelvan
- 1 Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, Montana, USA
| | - Andrij Holian
- 1 Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
7
|
Stueckle TA, Davidson DC, Derk R, Wang P, Friend S, Schwegler-Berry D, Zheng P, Wu N, Castranova V, Rojanasakul Y, Wang L. Effect of surface functionalizations of multi-walled carbon nanotubes on neoplastic transformation potential in primary human lung epithelial cells. Nanotoxicology 2017; 11:613-624. [PMID: 28513319 DOI: 10.1080/17435390.2017.1332253] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Functionalized multi-walled carbon nanotube (fMWCNT) development has been intensified to improve their surface activity for numerous applications, and potentially reduce toxic effects. Although MWCNT exposures are associated with lung tumorigenesis in vivo, adverse responses associated with exposure to different fMWCNTs in human lung epithelium are presently unknown. This study hypothesized that different plasma-coating functional groups determine MWCNT neoplastic transformation potential. Using our established model, human primary small airway epithelial cells (pSAECs) were continuously exposed for 8 and 12 weeks at 0.06 μg/cm2 to three-month aged as-prepared-(pMWCNT), carboxylated-(MW-COOH), and aminated-MWCNTs (MW-NHx). Ultrafine carbon black (UFCB) and crocidolite asbestos (ASB) served as particle controls. fMWCNTs were characterized during storage, and exposed cells were assessed for several established cancer cell hallmarks. Characterization analyses conducted at 0 and 2 months of aging detected a loss of surface functional groups over time due to atmospheric oxidation, with MW-NHx possessing less oxygen and greater lung surfactant binding affinity. Following 8 weeks of exposure, all fMWCNT-exposed cells exhibited significant increased proliferation compared to controls at 7 d post-treatment, while UFCB- and ASB-exposed cells did not differ significantly from controls. UFCB, pMWCNT, and MW-COOH exposure stimulated significant transient invasion behavior. Conversely, aged MW-NHx-exposed cells displayed moderate increases in soft agar colony formation and morphological transformation potential, while UFCB cells showed a minimal effect compared to all other treatments. In summary, surface properties of aged fMWCNTs can impact cell transformation events in vitro following continuous, occupationally relevant exposures.
Collapse
Affiliation(s)
- Todd A Stueckle
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Donna C Davidson
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Ray Derk
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Peng Wang
- b Department of Pharmaceutical Sciences, School of Pharmacy , West Virginia University , Morgantown , WV , USA
| | - Sherri Friend
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Diane Schwegler-Berry
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Peng Zheng
- c Department of Mechanical and Aerospace Engineering , West Virginia University , Morgantown , WV , USA
| | - Nianqiang Wu
- c Department of Mechanical and Aerospace Engineering , West Virginia University , Morgantown , WV , USA
| | - Vince Castranova
- b Department of Pharmaceutical Sciences, School of Pharmacy , West Virginia University , Morgantown , WV , USA
| | - Yon Rojanasakul
- b Department of Pharmaceutical Sciences, School of Pharmacy , West Virginia University , Morgantown , WV , USA
| | - Liying Wang
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| |
Collapse
|
8
|
Bornholdt J, Saber AT, Lilje B, Boyd M, Jørgensen M, Chen Y, Vitezic M, Jacobsen NR, Poulsen SS, Berthing T, Bressendorff S, Vitting-Seerup K, Andersson R, Hougaard KS, Yauk CL, Halappanavar S, Wallin H, Vogel U, Sandelin A. Identification of Gene Transcription Start Sites and Enhancers Responding to Pulmonary Carbon Nanotube Exposure in Vivo. ACS NANO 2017; 11:3597-3613. [PMID: 28345861 DOI: 10.1021/acsnano.6b07533] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Increased use of nanomaterials in industry, medicine, and consumer products has raised concerns over their toxicity. To ensure safe use of nanomaterials, understanding their biological effects at the molecular level is crucial. In particular, the regulatory mechanisms responsible for the cascade of genes activated by nanomaterial exposure are not well-characterized. To this end, we profiled the genome-wide usage of gene transcription start sites and linked active enhancer regions in lungs of C57BL/6 mice 24 h after intratracheal instillation of a single dose of the multiwalled carbon nanotube (MWCNT) Mitsui-7. Our results revealed a massive gene regulatory response, where expression of key inflammatory genes (e.g., Csf3, Il24, and Fgf23) was increased >100-fold 24 h after Mitsui-7 exposure. Many of the Mitsui-7-responsive transcription start sites were alternative transcription start sites for known genes, and the number of alternative transcription start sites used in a given gene was correlated with overall Mitsui-7 response. Strikingly, genes that were up-regulated after Mitsui-7 exposure only through their main annotated transcription start site were linked to inflammatory and defense responses, while genes up-regulated only through alternative transcription start sites were functionally heterogeneous and not inflammation-associated. Furthermore, we identified almost 12 000 active enhancers, many of which were Mitsui-7-responsive, and we identified similarly responding putative target genes. Overall, our study provides the location and activity of Mitsui-7-induced enhancers and transcription start sites, providing a useful resource for targeted experiments elucidating the biological effects of nanomaterials and the identification of biomarkers for early detection of MWCNT-induced inflammation.
Collapse
Affiliation(s)
- Jette Bornholdt
- The Bioinformatics Centre, Department of Biology University of Copenhagen , 2200 Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen , 2200 Copenhagen, Denmark
| | | | - Berit Lilje
- The Bioinformatics Centre, Department of Biology University of Copenhagen , 2200 Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen , 2200 Copenhagen, Denmark
| | - Mette Boyd
- The Bioinformatics Centre, Department of Biology University of Copenhagen , 2200 Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen , 2200 Copenhagen, Denmark
| | - Mette Jørgensen
- The Bioinformatics Centre, Department of Biology University of Copenhagen , 2200 Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen , 2200 Copenhagen, Denmark
| | - Yun Chen
- The Bioinformatics Centre, Department of Biology University of Copenhagen , 2200 Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen , 2200 Copenhagen, Denmark
| | - Morana Vitezic
- The Bioinformatics Centre, Department of Biology University of Copenhagen , 2200 Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen , 2200 Copenhagen, Denmark
| | | | - Sarah Søs Poulsen
- National Research Centre for the Working Environment , 2100 Copenhagen, Denmark
| | - Trine Berthing
- National Research Centre for the Working Environment , 2100 Copenhagen, Denmark
| | - Simon Bressendorff
- The Bioinformatics Centre, Department of Biology University of Copenhagen , 2200 Copenhagen, Denmark
| | - Kristoffer Vitting-Seerup
- The Bioinformatics Centre, Department of Biology University of Copenhagen , 2200 Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen , 2200 Copenhagen, Denmark
| | - Robin Andersson
- The Bioinformatics Centre, Department of Biology University of Copenhagen , 2200 Copenhagen, Denmark
| | | | - Carole L Yauk
- Environmental and Radiation Health Sciences Directorate, Health Canada , Ottawa, Ontario K1A 0K9, Canada
| | - Sabina Halappanavar
- Environmental and Radiation Health Sciences Directorate, Health Canada , Ottawa, Ontario K1A 0K9, Canada
| | - Håkan Wallin
- National Research Centre for the Working Environment , 2100 Copenhagen, Denmark
- Department of Public Health, University of Copenhagen , 2200 Copenhagen, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment , 2100 Copenhagen, Denmark
- Department of Micro and Nanotechnology, Technical University of Denmark , 2800 Kongens Lyngby, Denmark
| | - Albin Sandelin
- The Bioinformatics Centre, Department of Biology University of Copenhagen , 2200 Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen , 2200 Copenhagen, Denmark
| |
Collapse
|
9
|
Debia M, Bakhiyi B, Ostiguy C, Verbeek JH, Brouwer DH, Murashov V. A Systematic Review of Reported Exposure to Engineered Nanomaterials. ANNALS OF OCCUPATIONAL HYGIENE 2016; 60:916-35. [DOI: 10.1093/annhyg/mew041] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 06/06/2016] [Indexed: 12/30/2022]
|
10
|
Fatkhutdinova LM, Khaliullin TO, Zalyalov RR, Tkachev AG, Birch ME, Shvedova AA. Assessment of Airborn Multiwalled Carbon Nanotubes in a Manufactoring Environment. ACTA ACUST UNITED AC 2016; 11:110-116. [PMID: 28603597 DOI: 10.1134/s1995078016010055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study was carried out in a factory producing multiwalled carbon nanotubes (MWCNTs) by the catalytic chemical vapor deposition method in a pyrolysis reactor. Air samples of the personal breathing areas were collected simultaneously on mixed cellulose ester filters, for analysis by transmission electron microscopy (TEM), and on high-purity quartz filters for thermal-optical analysis of elemental carbon (EC). It is found that the production of MWCNTs is accompanied by the release of the MWCNT structures in the air of different working zones. The concentration of respirable aerosol in the personal breathing areas, averaged over an 8-hour period, ranges from 0.54 to 6.11 μg/m3 based on EC. Airborne MWCNTs were found in the form of agglomerates that range in size from about 1 to 10 μm. These data are consistent with measurements in different plants by two other international groups (from the United States and Sweden) using similar methodology (TEM in combination with EC analysis). In the absence of convincing data on the potential health risks of MWCNTs, and following the principle of reasonable precautions, preventive measures should be taken to minimize exposure to these materials.
Collapse
Affiliation(s)
- L M Fatkhutdinova
- Kazan State Medical University, ul Butlerova 49, Kazan, 420012 Russia
| | - T O Khaliullin
- Kazan State Medical University, ul Butlerova 49, Kazan, 420012 Russia
| | - R R Zalyalov
- Kazan State Medical University, ul Butlerova 49, Kazan, 420012 Russia
| | - A G Tkachev
- Tambov State Technical University, ul. Sovetskaya 106, Tambov, 392000 Russia
| | - M E Birch
- National Institute for Occupational Safety and Health, Cincinnati, Ohio, USA
| | - A A Shvedova
- National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| |
Collapse
|
11
|
Guseva Canu I, Bateson TF, Bouvard V, Debia M, Dion C, Savolainen K, Yu IJ. Human exposure to carbon-based fibrous nanomaterials: A review. Int J Hyg Environ Health 2016; 219:166-75. [PMID: 26752069 DOI: 10.1016/j.ijheh.2015.12.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 12/29/2022]
Abstract
In an emerging field of nanotechnologies, assessment of exposure to carbon nanotubes (CNT) and carbon nanofibers (CNF) is an integral component of occupational and environmental epidemiology, risk assessment and management, as well as regulatory actions. The current state of knowledge on exposure to carbon-based fibrous nanomaterials among workers, consumers and general population was studied in frame of the International Agency for Research on Cancer (IARC) Monographs-Volume 111 "Some Nanomaterials and Some Fibres". Completeness and reliability of available exposure data for use in epidemiology and risk assessment were assessed. Occupational exposure to CNT/CNF may be of concern at all stages of the material life-cycle from research through manufacture to use and disposal. Consumer and environmental exposures are only estimated by modeled data. The available information of the final steps of the life-cycle of these materials remains incomplete so far regarding amounts of handled materials and levels of exposure. The quality and amount of information available on the uses and applications of CNT/CNF should be improved to enable quantitative assessment of human exposure to these materials. For that, coordinated effort in producing surveys and exposure inventories based on harmonized strategy of material test, exposure measurement and reporting results is strongly encouraged.
Collapse
Affiliation(s)
- Irina Guseva Canu
- Institut de veille sanitaire, Département Santé-Travail, Saint-Maurice, France.
| | - Thomas F Bateson
- Environmental Protection Agency, Effects Identification & Characterization Group, Washington, DC, USA
| | - Veronique Bouvard
- International Agency for Research on Cancer (IARC), IARC Monographs Section, Lyon, France
| | - Maximilien Debia
- Institut de recherche en santé publique de l'Université de Montréal, Département de santé environnementale et santé au travail, Montreal, Canada
| | - Chantal Dion
- Institut de recherche en santé publique de l'Université de Montréal, Département de santé environnementale et santé au travail, Montreal, Canada; Institut de recherche Robert-Sauvé en santé et sécurité du travail, Département de santé environnementale et santé au travail, Montreal, Canada
| | - Kai Savolainen
- Finnish Institute of Occupational Health, Nanosafety Research Centre, Helsinki, Finland
| | - Il-Je Yu
- Hoseo University, Toxicological Research Center, Asan, South Korea
| |
Collapse
|
12
|
Zheng W, McKinney W, Kashon M, Salmen R, Castranova V, Kan H. The influence of inhaled multi-walled carbon nanotubes on the autonomic nervous system. Part Fibre Toxicol 2016; 13:8. [PMID: 26864021 PMCID: PMC4750189 DOI: 10.1186/s12989-016-0119-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/02/2016] [Indexed: 11/10/2022] Open
Abstract
Background Heart rate and cardiovascular function are regulated by the autonomic nervous system. Heart rate variability (HRV) as a marker reflects the activity of autonomic nervous system. The prognostic significance of HRV in cardiovascular disease has been reported in clinical and epidemiological studies. The present study focused on the influence of inhaled multi-walled carbon nanotubes (MWCNTs) on autonomic nervous system by HRV analysis. Methods Male Sprague–Dawley rats were pre-implanted with a telemetry device and kept in the individual cages for recovery. At week four after device implantation, rats were exposed to MWCNTs for 5 h at a concentration of 5 mg/m3. The real-time EKGs were recorded by a telemetry system at pre-exposure, during exposure, 1 day and 7 days post-exposure. HRV was measured by root mean square of successive differences (RMSSD); the standard deviation of inter-beat (RR) interval (SDNN); the percentage of successive RR interval differences greater than 5 ms (pNN5) and 10 ms (pNN10); low frequency (LF) and high frequency (HF). Results Exposure to MWCNTs increased the percentage of differences between adjacent R-R intervals over 10 ms (pNN10) (p < 0.01), RMSSD (p < 0.01), LF (p < 0.05) and HF (p < 0.01). Conclusions Inhalation of MWCNTs significantly alters the balance between sympathetic and parasympathetic nervous system. Whether such transient alterations in autonomic nervous performance would alter cardiovascular function and raise the risk of cardiovascular events in people with pre-existing cardiovascular conditions warrants further study.
Collapse
Affiliation(s)
- W Zheng
- Health Effects Laboratory Division, Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA.
| | - W McKinney
- Health Effects Laboratory Division, Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA.
| | - M Kashon
- Health Effects Laboratory Division, Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA.
| | - R Salmen
- Health Effects Laboratory Division, Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA.
| | - V Castranova
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, 26505, USA.
| | - H Kan
- Health Effects Laboratory Division, Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA. .,Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, 26505, USA.
| |
Collapse
|
13
|
Ludvigsson L, Isaxon C, Nilsson PT, Tinnerberg H, Messing ME, Rissler J, Skaug V, Gudmundsson A, Bohgard M, Hedmer M, Pagels J. Carbon Nanotube Emissions from Arc Discharge Production: Classification of Particle Types with Electron Microscopy and Comparison with Direct Reading Techniques. ANNALS OF OCCUPATIONAL HYGIENE 2016; 60:493-512. [PMID: 26748380 PMCID: PMC4815937 DOI: 10.1093/annhyg/mev094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Indexed: 12/30/2022]
Abstract
Introduction: An increased production and use of carbon nanotubes (CNTs) is occurring worldwide. In parallel, a growing concern is emerging on the adverse effects the unintentional inhalation of CNTs can have on humans. There is currently a debate regarding which exposure metrics and measurement strategies are the most relevant to investigate workplace exposures to CNTs. This study investigated workplace CNT emissions using a combination of time-integrated filter sampling for scanning electron microscopy (SEM) and direct reading aerosol instruments (DRIs). Material and Methods: Field measurements were performed during small-scale manufacturing of multiwalled carbon nanotubes using the arc discharge technique. Measurements with highly time- and size-resolved DRI techniques were carried out both in the emission and background (far-field) zones. Novel classifications and counting criteria were set up for the SEM method. Three classes of CNT-containing particles were defined: type 1: particles with aspect ratio length:width >3:1 (fibrous particles); type 2: particles without fibre characteristics but with high CNT content; and type 3: particles with visible embedded CNTs. Results: Offline sampling using SEM showed emissions of CNT-containing particles in 5 out of 11 work tasks. The particles were classified into the three classes, of which type 1, fibrous CNT particles contributed 37%. The concentration of all CNT-containing particles and the occurrence of the particle classes varied strongly between work tasks. Based on the emission measurements, it was assessed that more than 85% of the exposure originated from open handling of CNT powder during the Sieving, mechanical work-up, and packaging work task. The DRI measurements provided complementary information, which combined with SEM provided information on: (i) the background adjusted emission concentration from each work task in different particle size ranges, (ii) identification of the key procedures in each work task that lead to emission peaks, (iii) identification of emission events that affect the background, thereby leading to far-field exposure risks for workers other than the operator of the work task, and (iv) the fraction of particles emitted from each source that contains CNTs. Conclusions: There is an urgent need for a standardized/harmonized method for electron microscopy (EM) analysis of CNTs. The SEM method developed in this study can form the basis for such a harmonized protocol for the counting of CNTs. The size-resolved DRI techniques are commonly not specific enough to selective analysis of CNT-containing particles and thus cannot yet replace offline time-integrated filter sampling followed by SEM. A combination of EM and DRI techniques offers the most complete characterization of workplace emissions of CNTs today.
Collapse
Affiliation(s)
- Linus Ludvigsson
- 1.Solid State Physics, Lund University, SE-22100 Lund, Sweden; 2.Ergonomics and Aerosol Technology, Lund University, SE-22100 Lund, Sweden;
| | - Christina Isaxon
- 2.Ergonomics and Aerosol Technology, Lund University, SE-22100 Lund, Sweden
| | - Patrik T Nilsson
- 2.Ergonomics and Aerosol Technology, Lund University, SE-22100 Lund, Sweden
| | - Hakan Tinnerberg
- 3.Occupational and Environmental Medicine, Lund University, SE-22100 Lund, Sweden
| | - Maria E Messing
- 1.Solid State Physics, Lund University, SE-22100 Lund, Sweden
| | - Jenny Rissler
- 2.Ergonomics and Aerosol Technology, Lund University, SE-22100 Lund, Sweden
| | - Vidar Skaug
- 4.National Institute of Occupational Health, P.O. Box 8149 Dep, 0033 Oslo, Norway
| | - Anders Gudmundsson
- 2.Ergonomics and Aerosol Technology, Lund University, SE-22100 Lund, Sweden
| | - Mats Bohgard
- 2.Ergonomics and Aerosol Technology, Lund University, SE-22100 Lund, Sweden
| | - Maria Hedmer
- 3.Occupational and Environmental Medicine, Lund University, SE-22100 Lund, Sweden
| | - Joakim Pagels
- 2.Ergonomics and Aerosol Technology, Lund University, SE-22100 Lund, Sweden
| |
Collapse
|
14
|
Kuijpers E, Bekker C, Fransman W, Brouwer D, Tromp P, Vlaanderen J, Godderis L, Hoet P, Lan Q, Silverman D, Vermeulen R, Pronk A. Occupational Exposure to Multi-Walled Carbon Nanotubes During Commercial Production Synthesis and Handling. ANNALS OF OCCUPATIONAL HYGIENE 2015; 60:305-17. [PMID: 26613611 DOI: 10.1093/annhyg/mev082] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 10/29/2015] [Indexed: 12/30/2022]
Abstract
The world-wide production of carbon nanotubes (CNTs) has increased substantially in the last decade, leading to occupational exposures. There is a paucity of exposure data of workers involved in the commercial production of CNTs. The goals of this study were to assess personal exposure to multi-walled carbon nanotubes (MWCNTs) during the synthesis and handling of MWCNTs in a commercial production facility and to link these exposure levels to specific activities. Personal full-shift filter-based samples were collected, during commercial production and handling of MWCNTs, R&D activities, and office work. The concentrations of MWCNT were evaluated on the basis of EC concentrations. Associations were studied between observed MWCNT exposure levels and location and activities. SEM analyses showed MWCNTs, present as agglomerates ranging between 200 nm and 100 µm. Exposure levels of MWCNTs observed in the production area during the full scale synthesis of MWCNTs (N = 23) were comparable to levels observed during further handling of MWCNTs (N = 19): (GM (95% lower confidence limit-95% upper confidence limit)) 41 μg m(-3) (20-88) versus 43 μg m(-3) (22-86), respectively. In the R&D area (N = 11) and the office (N = 5), exposure levels of MWCNTs were significantly (P < 0.05) lower: 5 μg m(-3) (2-11) and 7 μg m(-3) (2-28), respectively. Bagging, maintenance of the reactor, and powder conditioning were associated with higher exposure levels in the production area, whereas increased exposure levels in the R&D area were related to handling of MWCNTs powder.
Collapse
Affiliation(s)
| | - Cindy Bekker
- 1.TNO - PO Box 360, Zeist, The Netherlands; 2.IRAS - Institute for Risk Assessment Sciences, Molecular Epidemiology and Risk Assessment Utrecht, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | | | | | | | - Jelle Vlaanderen
- 2.IRAS - Institute for Risk Assessment Sciences, Molecular Epidemiology and Risk Assessment Utrecht, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Lode Godderis
- 3.Katholieke Universiteit Leuven - Centre for Environment and Health, Kapucijnenvoer 35/5, 3000, Leuven, Belgium; 4.IDEWE, External Service for Prevention and Protection at Work, Interleuvenlaan 58, 3001, Heverlee, Belgium
| | - Peter Hoet
- 3.Katholieke Universiteit Leuven - Centre for Environment and Health, Kapucijnenvoer 35/5, 3000, Leuven, Belgium
| | - Qing Lan
- 5.Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, 6120 Executive Boulevard, Bethesda, MD, USA
| | - Debra Silverman
- 5.Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, 6120 Executive Boulevard, Bethesda, MD, USA
| | - Roel Vermeulen
- 2.IRAS - Institute for Risk Assessment Sciences, Molecular Epidemiology and Risk Assessment Utrecht, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | | |
Collapse
|
15
|
Rodríguez-Yáñez Y, Bahena-Uribe D, Chávez-Munguía B, López-Marure R, González-Monroy S, Cisneros B, Albores A. Commercial single-walled carbon nanotubes effects in fibrinolysis of human umbilical vein endothelial cells. Toxicol In Vitro 2015; 29:1201-14. [DOI: 10.1016/j.tiv.2015.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/11/2015] [Accepted: 02/16/2015] [Indexed: 12/28/2022]
|
16
|
Thompson D, Chen SC, Wang J, Pui DYH. Aerosol Emission Monitoring and Assessment of Potential Exposure to Multi-walled Carbon Nanotubes in the Manufacture of Polymer Nanocomposites. ANNALS OF OCCUPATIONAL HYGIENE 2015. [PMID: 26209597 DOI: 10.1093/annhyg/mev044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent animal studies have shown that carbon nanotubes (CNTs) may pose a significant health risk to those exposed in the workplace. To further understand this potential risk, effort must be taken to measure the occupational exposure to CNTs. Results from an assessment of potential exposure to multi-walled carbon nanotubes (MWCNTs) conducted at an industrial facility where polymer nanocomposites were manufactured by an extrusion process are presented. Exposure to MWCNTs was quantified by the thermal-optical analysis for elemental carbon (EC) of respirable dust collected by personal sampling. All personal respirable samples collected (n = 8) had estimated 8-h time weighted average (TWA) EC concentrations below the limit of detection for the analysis which was about one-half of the recommended exposure limit for CNTs, 1 µg EC/m(3) as an 8-h TWA respirable mass concentration. Potential exposure sources were identified and characterized by direct-reading instruments and area sampling. Area samples analyzed for EC yielded quantifiable mass concentrations inside an enclosure where unbound MWCNTs were handled and near a pelletizer where nanocomposite was cut, while those analyzed by electron microscopy detected the presence of MWCNTs at six locations throughout the facility. Through size selective area sampling it was identified that the airborne MWCNTs present in the workplace were in the form of large agglomerates. This was confirmed by electron microscopy where most of the MWCNT structures observed were in the form of micrometer-sized ropey agglomerates. However, a small fraction of single, free MWCNTs was also observed. It was found that the high number concentrations of nanoparticles, ~200000 particles/cm(3), present in the manufacturing facility were likely attributable to polymer fumes produced in the extrusion process.
Collapse
Affiliation(s)
- Drew Thompson
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sheng-Chieh Chen
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zurich, 8093 Zurich, Switzerland; Department of Analytical Chemistry, Empa, 8600 Dubendorf, Switzerland
| | - David Y H Pui
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Faculty of Science, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
17
|
Hedmer M, Ludvigsson L, Isaxon C, Nilsson PT, Skaug V, Bohgard M, Pagels JH, Messing ME, Tinnerberg H. Detection of Multi-walled Carbon Nanotubes and Carbon Nanodiscs on Workplace Surfaces at a Small-Scale Producer. ANNALS OF OCCUPATIONAL HYGIENE 2015; 59:836-52. [DOI: 10.1093/annhyg/mev036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 03/23/2015] [Indexed: 12/30/2022]
|
18
|
|
19
|
Dahm MM, Schubauer-Berigan MK, Evans DE, Birch ME, Fernback JE, Deddens JA. Carbon Nanotube and Nanofiber Exposure Assessments: An Analysis of 14 Site Visits. ANNALS OF OCCUPATIONAL HYGIENE 2015; 59:705-23. [PMID: 25851309 DOI: 10.1093/annhyg/mev020] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/22/2015] [Indexed: 12/30/2022]
Abstract
Recent evidence has suggested the potential for wide-ranging health effects that could result from exposure to carbon nanotubes (CNT) and carbon nanofibers (CNF). In response, the National Institute for Occupational Safety and Health (NIOSH) set a recommended exposure limit (REL) for CNT and CNF: 1 µg m(-3) as an 8-h time weighted average (TWA) of elemental carbon (EC) for the respirable size fraction. The purpose of this study was to conduct an industrywide exposure assessment among US CNT and CNF manufacturers and users. Fourteen total sites were visited to assess exposures to CNT (13 sites) and CNF (1 site). Personal breathing zone (PBZ) and area samples were collected for both the inhalable and respirable mass concentration of EC, using NIOSH Method 5040. Inhalable PBZ samples were collected at nine sites while at the remaining five sites both respirable and inhalable PBZ samples were collected side-by-side. Transmission electron microscopy (TEM) PBZ and area samples were also collected at the inhalable size fraction and analyzed to quantify and size CNT and CNF agglomerate and fibrous exposures. Respirable EC PBZ concentrations ranged from 0.02 to 2.94 µg m(-3) with a geometric mean (GM) of 0.34 µg m(-3) and an 8-h TWA of 0.16 µg m(-3). PBZ samples at the inhalable size fraction for EC ranged from 0.01 to 79.57 µg m(-3) with a GM of 1.21 µg m(-3). PBZ samples analyzed by TEM showed concentrations ranging from 0.0001 to 1.613 CNT or CNF-structures per cm(3) with a GM of 0.008 and an 8-h TWA concentration of 0.003. The most common CNT structure sizes were found to be larger agglomerates in the 2-5 µm range as well as agglomerates >5 µm. A statistically significant correlation was observed between the inhalable samples for the mass of EC and structure counts by TEM (Spearman ρ = 0.39, P < 0.0001). Overall, EC PBZ and area TWA samples were below the NIOSH REL (96% were <1 μg m(-3) at the respirable size fraction), while 30% of the inhalable PBZ EC samples were found to be >1 μg m(-3). Until more information is known about health effects associated with larger agglomerates, it seems prudent to assess worker exposure to airborne CNT and CNF materials by monitoring EC at both the respirable and inhalable size fractions. Concurrent TEM samples should be collected to confirm the presence of CNT and CNF.
Collapse
Affiliation(s)
- Matthew M Dahm
- 1.Industrywide Studies Branch, Division of Surveillance, Hazard Evaluations, and Field Studies, National Institute for Occupational Safety and Health, 1090 Tusculum Ave, MS-R14, Cincinnati, OH 45226, USA;
| | - Mary K Schubauer-Berigan
- 1.Industrywide Studies Branch, Division of Surveillance, Hazard Evaluations, and Field Studies, National Institute for Occupational Safety and Health, 1090 Tusculum Ave, MS-R14, Cincinnati, OH 45226, USA
| | - Douglas E Evans
- 2.Chemical Exposure and Monitoring Branch, Division of Applied Research and Technology, National Institute for Occupational Safety and Health, 1090 Tusculum Ave, Cincinnati, OH 45226, USA
| | - M Eileen Birch
- 2.Chemical Exposure and Monitoring Branch, Division of Applied Research and Technology, National Institute for Occupational Safety and Health, 1090 Tusculum Ave, Cincinnati, OH 45226, USA
| | - Joseph E Fernback
- 2.Chemical Exposure and Monitoring Branch, Division of Applied Research and Technology, National Institute for Occupational Safety and Health, 1090 Tusculum Ave, Cincinnati, OH 45226, USA
| | - James A Deddens
- 1.Industrywide Studies Branch, Division of Surveillance, Hazard Evaluations, and Field Studies, National Institute for Occupational Safety and Health, 1090 Tusculum Ave, MS-R14, Cincinnati, OH 45226, USA
| |
Collapse
|
20
|
MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs. Toxicol Appl Pharmacol 2014; 284:16-32. [PMID: 25554681 DOI: 10.1016/j.taap.2014.12.011] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/08/2014] [Accepted: 12/18/2014] [Indexed: 11/20/2022]
Abstract
Multi-walled carbon nanotubes (MWCNTs) are an inhomogeneous group of nanomaterials that vary in lengths, shapes and types of metal contamination, which makes hazard evaluation difficult. Here we present a toxicogenomic analysis of female C57BL/6 mouse lungs following a single intratracheal instillation of 0, 18, 54 or 162 μg/mouse of a small, curled (CNT(Small), 0.8 ± 0.1 μm in length) or large, thick MWCNT (CNT(Large), 4 ± 0.4 μm in length). The two MWCNTs were extensively characterized by SEM and TEM imaging, thermogravimetric analysis, and Brunauer-Emmett-Teller surface area analysis. Lung tissues were harvested 24h, 3 days and 28 days post-exposure. DNA microarrays were used to analyze gene expression, in parallel with analysis of bronchoalveolar lavage fluid, lung histology, DNA damage (comet assay) and the presence of reactive oxygen species (dichlorodihydrofluorescein assay), to profile and characterize related pulmonary endpoints. Overall changes in global transcription following exposure to CNT(Small) or CNT(Large) were similar. Both MWCNTs elicited strong acute phase and inflammatory responses that peaked at day 3, persisted up to 28 days, and were characterized by increased cellular influx in bronchoalveolar lavage fluid, interstitial pneumonia and gene expression changes. However, CNT(Large) elicited an earlier onset of inflammation and DNA damage, and induced more fibrosis and a unique fibrotic gene expression signature at day 28, compared to CNT(Small). The results indicate that the extent of change at the molecular level during early response phases following an acute exposure is greater in mice exposed to CNT(Large), which may eventually lead to the different responses observed at day 28.
Collapse
|