1
|
Pereira JC, de Sousa RWR, Conceição MLP, do Nascimento MLLB, de Almeida ATA, Dos Reis AC, de Sousa Cavalcante ML, Dos Reis Oliveira C, Martins IRR, Torres-Leal FL, Dittz D, de Castro E Sousa JM, Ferreira PMP, Carneiro da Silva FC. Buthionine sulfoximine acts synergistically with doxorubicin as a sensitizer molecule on different tumor cell lines. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:409-431. [PMID: 39815616 DOI: 10.1080/15287394.2024.2448663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The chemotherapeutic drug doxorubicin (DOX) has been widely used for treating solid tumors attributed to its antiproliferative effectiveness; however, its clinical use is limited due to side effects, including cardiotoxicity, myelosuppression, and drug resistance. Combining DOX with buthionine sulfoximine (BSO), a glutathione (GSH) synthesis inhibitor, showed promising results in overcoming these adverse effects, potentially reducing the required DOX dose while maintaining efficacy. The aim of the present study was to examine the effects of different concentrations of BSO and DOX, both individually and in combination, utilizing B16/F10 (murine melanoma), SNB-19 (human glioblastoma), S180 (murine sarcoma), and SVEC4-10 (murine endothelial) cell lines. Cell viability, migration, and clonogenicity were assessed using the following assays MTT, scratch, and colony formation. Antioxidant levels of GSH, as well as activities catalase (CAT), and superoxide dismutase (SOD) were measured. BSO alone exhibited minimal cytotoxic effects, while DOX alone reduced cell viability significantly. The combination of BSO+DOX decreased IC50 values for most cell lines, demonstrating a synergistic effect, especially in B16/F10, S180, and SVEC4-10 cells. BSO+DOX combination significantly inhibited cell migration and clonogenicity compared to DOX alone. While GSH levels were decreased with BSO+DOX treatment activities of CAT and SOD increased following DOX administration but remained unchanged by BSO. These results suggest that BSO may be considered a valuable tool to improve DOX therapeutic efficacy, particularly in cases of chemotherapy-resistant tumors, as BSO enhances DOX activity while potentially reducing systemic chemotherapeutic drug toxicity.
Collapse
Affiliation(s)
- Joedna Cavalcante Pereira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil
| | - Rayran Walter Ramos de Sousa
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil
| | - Micaely Lorrana Pereira Conceição
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil
| | | | - Ana Tárcila Alves de Almeida
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil
| | - Antonielly Campinho Dos Reis
- Laboratory of Toxicological Genetics (Lapgenic), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina-PI, Brazil
| | - Mickael Laudrup de Sousa Cavalcante
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil
| | - Camila Dos Reis Oliveira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil
| | - Italo Rossi Roseno Martins
- Academic Unit of Life Sciences, Teachers' Forming Center, Federal University of Campina Grande, Cajazeiras-PB, Brazil
| | - Francisco Leonardo Torres-Leal
- Metabolic Diseases, Exercise and Nutrition Research Group (Domen), Laboratory of Metabolic Diseases Glauto Tuquarre, Department of Biophysics and Physiology, Federal University of Piaui, Teresina-PI, Brazil
| | - Dalton Dittz
- Laboratory of Antineoplastic Pharmacology (Lafan), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina-PI, Brazil
| | - João Marcelo de Castro E Sousa
- Laboratory of Toxicological Genetics (Lapgenic), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina-PI, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil
| | - Felipe Cavalcanti Carneiro da Silva
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil
- Laboratory of Toxicological Genetics (Lapgenic), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina-PI, Brazil
| |
Collapse
|
2
|
Li X, Kim HJ, Yoo J, Lee Y, Nam CH, Park J, Lee ST, Kim TM, Choi SH, Won JK, Park SH, Ju YS, Park JB, Kim SH, Chang JH, Wu HG, Park CK, Lee JH, Kang SG, Lee JH. Distant origin of glioblastoma recurrence: neural stem cells in the subventricular zone serve as a source of tumor reconstruction after primary resection. Mol Cancer 2025; 24:64. [PMID: 40033380 DOI: 10.1186/s12943-025-02273-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/15/2025] [Indexed: 03/05/2025] Open
Abstract
Glioblastoma (GBM) is the most aggressive and common type of primary malignant brain cancer in adults. GBM often recurs locally near the resection cavity (RC) following the surgical removal of primary tumors. Recent research has reported that neural stem cells (NSCs) in the subventricular zone (SVZ) harboring cancer-driving mutations serve as the cells of origin for human GBM. However, the pathological role of tumor-initiating NSCs in the SVZ in tumor recurrence remains to be elucidated. Here, we explore the potential contribution of mutation-harboring NSCs in the SVZ to tumor recurrence around the RC following surgical resection. Our hypothesis emerged from performing deep sequencing of longitudinal tissues from 10 patients with GBM, including (i) tumor-free SVZ tissue, (ii) primary tumor tissue, (iii) recurrent tumor tissue, and (iv) blood. As a result of this sequencing, we observed evidence suggesting that recurrent tumors show genetic links to the SVZ in 60% (6/10) of patients, which are distinct from the primary tumors. Using a genome-edited mouse model, we further identified that mutation-harboring NSCs appeared to migrate to the RC through the aberrant growth of oligodendrocyte progenitor cells, potentially contributing to the reconstruction of high-grade malignant gliomas in the RC. This process was associated with the CXCR4/CXCL12 axis, as supported by RNA sequencing data from human recurrent GBM. Taken together, our findings suggest that NSCs in human SVZ tissue may play a role in GBM recurrence, potentially highlighting a novel distant contributor of recurrence.
Collapse
Affiliation(s)
- Xue Li
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, People's Republic of China
| | - Hyun Jung Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- Department of Anatomy, Korea University College of Medicine, Seoul, South Korea
| | - Jihwan Yoo
- Department of Neurosurgery, Brain Tumor Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Yeonhee Lee
- Department of Anatomy, Korea University College of Medicine, Seoul, South Korea
| | - Chang Hyun Nam
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jonghan Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Soon-Tae Lee
- Department of Neurology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Tae Min Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Jae-Kyung Won
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jong Bae Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Korea
| | - Se Hoon Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Hong-Gyun Wu
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.
- Sovargen Inc, Daejeon, South Korea.
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
- Department of Medical Sciences, Yonsei University Graduate School, Seoul, South Korea.
| | - Joo Ho Lee
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
- Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
3
|
Bumbaca B, Huggins JR, Birtwistle MR, Gallo JM. Network analyses of brain tumor multiomic data reveal pharmacological opportunities to alter cell state transitions. NPJ Syst Biol Appl 2025; 11:14. [PMID: 39893170 PMCID: PMC11787326 DOI: 10.1038/s41540-025-00493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
Glioblastoma Multiforme (GBM) remains a particularly difficult cancer to treat, and survival outcomes remain poor. In addition to the lack of dedicated drug discovery programs for GBM, extensive intratumor heterogeneity and epigenetic plasticity related to cell-state transitions are major roadblocks to successful drug therapy in GBM. To study these phenomenon, publicly available snRNAseq and bulk RNAseq data from patient samples were used to categorize cells from patients into four cell states (i.e., phenotypes), namely: (i) neural progenitor-like (NPC-like), (ii) oligodendrocyte progenitor-like (OPC-like), (iii) astrocyte-like (AC-like), and (iv) mesenchymal-like (MES-like). Patients were subsequently grouped into subpopulations based on which cell-state was the most dominant in their respective tumor. By incorporating phosphoproteomic measurements from the same patients, a protein-protein interaction network (PPIN) was constructed for each cell state. These four-cell state PPINs were pooled to form a single Boolean network that was used for in silico protein knockout simulations to investigate mechanisms that either promote or prevent cell state transitions. Simulation results were input into a boosted tree machine learning model which predicted the cell states or phenotypes of GBM patients from an independent public data source, the Glioma Longitudinal Analysis (GLASS) Consortium. Combining the simulation results and the machine learning predictions, we generated hypotheses for clinically relevant causal mechanisms of cell state transitions. For example, the transcription factor TFAP2A can be seen to promote a transition from the NPC-like to the MES-like state. Such protein nodes and the associated signaling pathways provide potential drug targets that can be further tested in vitro and support cell state-directed (CSD) therapy.
Collapse
Affiliation(s)
- Brandon Bumbaca
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Jonah R Huggins
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Marc R Birtwistle
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - James M Gallo
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
4
|
Yuan B, Kikuchi H. Harnessing Arsenic Derivatives and Natural Agents for Enhanced Glioblastoma Therapy. Cells 2024; 13:2138. [PMID: 39768226 PMCID: PMC11674460 DOI: 10.3390/cells13242138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 01/05/2025] Open
Abstract
Glioblastoma (GBM) is the most common and lethal intracranial tumor in adults. Despite advances in the understanding of the molecular events responsible for disease development and progression, survival rates and mortality statistics for GBM patients have been virtually unchanged for decades and chemotherapeutic drugs used to treat GBM are limited. Arsenic derivatives, known as highly effective anticancer agents for leukemia therapy, has been demonstrated to exhibit cytocidal effects toward GBM cells by inducing cell death, cell cycle arrest, inhibition of migration/invasion, and angiogenesis. Differentiation induction of glioma stem-like cells (GSCs) and inhibition of neurosphere formation have also been attributed to the cytotoxicity of arsenic derivatives. Intriguingly, similar cytotoxic effects against GBM cells and GSCs have also been observed in natural agents such as anthocyanidins, tetrandrine, and bufadienolides. In the current review, we highlight the available data on the molecular mechanisms underlying the multifaceted anticancer activity of arsenic compounds and natural agents against cancer cells, especially focusing on GBM cells and GCSs. We also outline possible strategies for developing anticancer therapy by combining natural agents and arsenic compounds, as well as temozolomide, an alkylating agent used to treat GBM, in terms of improvement of chemotherapy sensitivity and minimization of side effects.
Collapse
Affiliation(s)
- Bo Yuan
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Hidetomo Kikuchi
- Laboratory of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan;
| |
Collapse
|
5
|
Karabacak M, Jagtiani P, Carrasquilla A, Jain A, Germano IM, Margetis K. Simplifying synthesis of the expanding glioblastoma literature: a topic modeling approach. J Neurooncol 2024; 169:601-611. [PMID: 38990445 DOI: 10.1007/s11060-024-04762-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
PURPOSE Our study aims to discover the leading topics within glioblastoma (GB) research, and to examine if these topics have "hot" or "cold" trends. Additionally, we aim to showcase the potential of natural language processing (NLP) in facilitating research syntheses, offering an efficient strategy to dissect the landscape of academic literature in the realm of GB research. METHODS The Scopus database was queried using "glioblastoma" as the search term, in the "TITLE" and "KEY" fields. BERTopic, an NLP-based topic modeling (TM) method, was used for probabilistic TM. We specified a minimum topic size of 300 documents and 5% probability cutoff for outlier detection. We labeled topics based on keywords and representative documents and visualized them with word clouds. Linear regression models were utilized to identify "hot" and "cold" topic trends per decade. RESULTS Our TM analysis categorized 43,329 articles into 15 distinct topics. The most common topics were Genomics, Survival, Drug Delivery, and Imaging, while the least common topics were Surgical Resection, MGMT Methylation, and Exosomes. The hottest topics over the 2020s were Viruses and Oncolytic Therapy, Anticancer Compounds, and Exosomes, while the cold topics were Surgical Resection, Angiogenesis, and Tumor Metabolism. CONCLUSION Our NLP methodology provided an extensive analysis of GB literature, revealing valuable insights about historical and contemporary patterns difficult to discern with traditional techniques. The outcomes offer guidance for research directions, policy, and identifying emerging trends. Our approach could be applied across research disciplines to summarize and examine scholarly literature, guiding future exploration.
Collapse
Affiliation(s)
- Mert Karabacak
- Department of Neurosurgery, Mount Sinai Health System, 1468 Madison Avenue, Annenberg 8-42, New York, NY, 10029, USA
| | - Pemla Jagtiani
- School of Medicine, SUNY Downstate Health Sciences University, New York, NY, 11203, USA
| | - Alejandro Carrasquilla
- Department of Neurosurgery, Mount Sinai Health System, 1468 Madison Avenue, Annenberg 8-42, New York, NY, 10029, USA
| | - Ankita Jain
- School of Medicine, New York Medical College, Valhalla, NY, 10595, USA
| | - Isabelle M Germano
- Department of Neurosurgery, Mount Sinai Health System, 1468 Madison Avenue, Annenberg 8-42, New York, NY, 10029, USA
| | - Konstantinos Margetis
- Department of Neurosurgery, Mount Sinai Health System, 1468 Madison Avenue, Annenberg 8-42, New York, NY, 10029, USA.
| |
Collapse
|
6
|
Yan X, Chen Q. Polyamidoamine Dendrimers: Brain-Targeted Drug Delivery Systems in Glioma Therapy. Polymers (Basel) 2024; 16:2022. [PMID: 39065339 PMCID: PMC11280609 DOI: 10.3390/polym16142022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Glioma is the most common primary intracranial tumor, which is formed by the malignant transformation of glial cells in the brain and spinal cord. It has the characteristics of high incidence, high recurrence rate, high mortality and low cure rate. The treatments for glioma include surgical removal, chemotherapy and radiotherapy. Due to the obstruction of the biological barrier of brain tissue, it is difficult to achieve the desired therapeutic effects. To address the limitations imposed by the brain's natural barriers and enhance the treatment efficacy, researchers have effectively used brain-targeted drug delivery systems (DDSs) in glioma therapy. Polyamidoamine (PAMAM) dendrimers, as branched macromolecular architectures, represent promising candidates for studies in glioma therapy. This review focuses on PAMAM-based DDSs in the treatment of glioma, highlighting their physicochemical characteristics, structural properties as well as an overview of the toxicity and safety profiles.
Collapse
Affiliation(s)
- Xinyi Yan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
7
|
Hassan MF, Al-Zurfi AN, Abed MH, Ahmed K. An effective ensemble learning approach for classification of glioma grades based on novel MRI features. Sci Rep 2024; 14:11977. [PMID: 38796531 PMCID: PMC11128012 DOI: 10.1038/s41598-024-61444-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/06/2024] [Indexed: 05/28/2024] Open
Abstract
The preoperative diagnosis of brain tumors is important for therapeutic planning as it contributes to the tumors' prognosis. In the last few years, the development in the field of artificial intelligence and machine learning has contributed greatly to the medical area, especially the diagnosis of the grades of brain tumors through radiological images and magnetic resonance images. Due to the complexity of tumor descriptors in medical images, assessing the accurate grade of glioma is a major challenge for physicians. We have proposed a new classification system for glioma grading by integrating novel MRI features with an ensemble learning method, called Ensemble Learning based on Adaptive Power Mean Combiner (EL-APMC). We evaluate and compare the performance of the EL-APMC algorithm with twenty-one classifier models that represent state-of-the-art machine learning algorithms. Results show that the EL-APMC algorithm achieved the best performance in terms of classification accuracy (88.73%) and F1-score (93.12%) over the MRI Brain Tumor dataset called BRATS2015. In addition, we showed that the differences in classification results among twenty-two classifier models have statistical significance. We believe that the EL-APMC algorithm is an effective method for the classification in case of small-size datasets, which are common cases in medical fields. The proposed method provides an effective system for the classification of glioma with high reliability and accurate clinical findings.
Collapse
Affiliation(s)
- Mohammed Falih Hassan
- Faculty of Engineering, University of Kufa, Najaf, Iraq
- VIPBG, Virginia Commonwealth University, Richmond, VA, 23284-3090, USA
| | | | - Mohammed Hamzah Abed
- Department of Computer Science, Faculty of Computer Science and Information Technology, University of Al-Qadisiyah, Al Diwaniyah, Iraq.
| | - Khandakar Ahmed
- Intelligent Technology Innovation Laboratory, Victoria University, Melbourne, VIC, 3011, Australia.
| |
Collapse
|
8
|
Rykkje AM, Carlsen JF, Larsen VA, Skjøth-Rasmussen J, Christensen IJ, Nielsen MB, Poulsen HS, Urup TH, Hansen AE. Prognostic relevance of radiological findings on early postoperative MRI for 187 consecutive glioblastoma patients receiving standard therapy. Sci Rep 2024; 14:10985. [PMID: 38744979 PMCID: PMC11094076 DOI: 10.1038/s41598-024-61925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
Several prognostic factors are known to influence survival for patients treated with IDH-wildtype glioblastoma, but unknown factors may remain. We aimed to investigate the prognostic implications of early postoperative MRI findings. A total of 187 glioblastoma patients treated with standard therapy were consecutively included. Patients either underwent a biopsy or surgery followed by an early postoperative MRI. Progression-free survival (PFS) and overall survival (OS) were analysed for known prognostic factors and MRI-derived candidate factors: resection status as defined by the response assessment in neuro-oncology (RANO)-working group (no contrast-enhancing residual tumour, non-measurable contrast-enhancing residual tumour, or measurable contrast-enhancing residual tumour) with biopsy as reference, contrast enhancement patterns (no enhancement, thin linear, thick linear, diffuse, nodular), and the presence of distant tumours. In the multivariate analysis, patients with no contrast-enhancing residual tumour or non-measurable contrast-enhancing residual tumour on the early postoperative MRI displayed a significantly improved progression-free survival compared with patients receiving only a biopsy. Only patients with non-measurable contrast-enhancing residual tumour showed improved overall survival in the multivariate analysis. Contrast enhancement patterns were not associated with survival. The presence of distant tumours was significantly associated with both poor progression-free survival and overall survival and should be considered incorporated into prognostic models.
Collapse
Affiliation(s)
- Alexander Malcolm Rykkje
- Department of Radiology, Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Jonathan Frederik Carlsen
- Department of Radiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Jane Skjøth-Rasmussen
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
- The DCCC Brain Tumor Center, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Michael Bachmann Nielsen
- Department of Radiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Hans Skovgaard Poulsen
- Department of Oncology, Rigshospitalet, Copenhagen, Denmark
- The DCCC Brain Tumor Center, Rigshospitalet, Copenhagen, Denmark
| | - Thomas Haargaard Urup
- Department of Oncology, Rigshospitalet, Copenhagen, Denmark
- The DCCC Brain Tumor Center, Rigshospitalet, Copenhagen, Denmark
| | - Adam Espe Hansen
- Department of Radiology, Rigshospitalet, Copenhagen, Denmark
- The DCCC Brain Tumor Center, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Bumbaca B, Birtwistle MR, Gallo JM. Network Analyses of Brain Tumor Patients' Multiomic Data Reveals Pharmacological Opportunities to Alter Cell State Transitions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593202. [PMID: 38766170 PMCID: PMC11100715 DOI: 10.1101/2024.05.08.593202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Glioblastoma Multiforme (GBM) remains a particularly difficult cancer to treat, and survival outcomes remain poor. In addition to the lack of dedicated drug discovery programs for GBM, extensive intratumor heterogeneity and epigenetic plasticity related to cell-state transitions are major roadblocks to successful drug therapy in GBM. To study these phenomenon, publicly available snRNAseq and bulk RNAseq data from patient samples were used to categorize cells from patients into four cell states (i.e. phenotypes), namely: (i) neural progenitor-like (NPC-like), (ii) oligodendrocyte progenitor-like (OPC-like), (iii) astrocyte-like (AC-like), and (iv) mesenchymal-like (MES-like). Patients were subsequently grouped into subpopulations based on which cell-state was the most dominant in their respective tumor. By incorporating phosphoproteomic measurements from the same patients, a protein-protein interaction network (PPIN) was constructed for each cell state. These four-cell state PPINs were pooled to form a single Boolean network that was used for in silico protein knockout simulations to investigate mechanisms that either promote or prevent cell state transitions. Simulation results were input into a boosted tree machine learning model which predicted the cell states or phenotypes of GBM patients from an independent public data source, the Glioma Longitudinal Analysis (GLASS) Consortium. Combining the simulation results and the machine learning predictions, we generated hypotheses for clinically relevant causal mechanisms of cell state transitions. For example, the transcription factor TFAP2A can be seen to promote a transition from the NPC-like to the MES-like state. Such protein nodes and the associated signaling pathways provide potential drug targets that can be further tested in vitro and support cell state-directed (CSD) therapy.
Collapse
Affiliation(s)
- Brandon Bumbaca
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo NY, USA
| | - Marc R Birtwistle
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson SC, USA
- Department of Bioengineering, Clemson University, Clemson SC, USA
| | - James M Gallo
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo NY, USA
| |
Collapse
|
10
|
Goacher E, Mathew R, Fayaye O, Chakrabarty A, Feltbower R, Loughrey C, Roberts P, Chumas P. Can quantifying the extent of 'high grade' features help explain prognostic variability in anaplastic astrocytoma? Br J Neurosurg 2024; 38:314-321. [PMID: 33377401 DOI: 10.1080/02688697.2020.1866163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE Both phenotypic and genotypic variations now underpin glioma classification, thus helping to more accurately guide their clinical management. However, WHO Grade III anaplastic astrocytoma (AA) remains an unpredictable, heterogeneous entity; displaying a variable prognosis, clinical course and treatment response. This study aims to examine whether additional tumour characteristics influence either overall survival (OS) or 3-year survival in AA. MATERIALS AND METHODS Data were collected on all newly diagnosed cases of AA between 2003 and 2014, followed up for a minimum of 3 years. Molecular information was obtained from case records and if missing, was re-analysed. Histological slides were independently examined for Ki-67 proliferation index, cellularity and number of mitotic figures. Kaplan-Meier and Cox regression analyses were used to assess OS. RESULTS In total, 50 cases were included with a median OS of 14.5 months (range: 1-150 months). Cumulative 3-year survival was 31.5%. Median age was 50 years (range: 24 - 77). Age, IDH1 mutation status, lobar location, oncological therapy and surgical resection were significant independent prognostic indicators for OS. In cases demonstrating an OS ≥ 3 years (n = 15), Ki-67 index, number of mitotic figures and percentage areas of 'high cellularity' were significantly reduced, i.e. more characteristic of lower-grade/WHO Grade II glioma. CONCLUSIONS IDH1 status, age, treatment and location remain the most significant prognostic indicators for patients with AA. However, Ki-67 index, mitotic figures and cellularity may help identify AA cases more likely to survive < 3 years, i.e. AA cases more similar to glioblastoma and those cases more likely to survive > 3 years, i.e. more similar to a low-grade glioma.
Collapse
Affiliation(s)
- Edward Goacher
- Department of Neurosurgery, Royal Hallamshire Hospital, Sheffield, UK
| | - Ryan Mathew
- Department of Neurosurgery, Leeds General Infirmary, Leeds, UK
- School of Medicine, University of Leeds, Leeds, UK
| | | | - Aruna Chakrabarty
- Department of Histopathology, St. James's University Hospital, Leeds, UK
| | | | - Carmel Loughrey
- Department of Oncology, St. James's University Hospital, Leeds, UK
| | - Paul Roberts
- Department of Cytogenetics, St. James's University Hospital, Leeds, UK
| | - Paul Chumas
- Department of Neurosurgery, Leeds General Infirmary, Leeds, UK
| |
Collapse
|
11
|
Idu AA, Eva L, Covache-Busuioc RA, Glavan LA, Ciurea AV. Progressive Paraparesis and Spinal Glioblastoma in a Young Female. Cureus 2024; 16:e57593. [PMID: 38707088 PMCID: PMC11069329 DOI: 10.7759/cureus.57593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
Glioblastoma, a primary brain tumor known for its adverse prognosis and aggressive nature, presents a significant challenge when occurring in the spinal cord. We report a case of a 20-year-old female with no prior medical history who developed progressive paraparesis and urinary retention, symptoms indicative of an intramedullary glioblastoma in the spinal cord. This case study delves into the clinical presentation, diagnostic process, and therapeutic interventions, highlighting the complexities encountered during the patient's treatment course. Despite the typically poor prognosis associated with glioblastoma, with an average survival rate of approximately 15 months post-diagnosis, our patient's initial response to adjuvant chemotherapy and radiotherapy extended her survival to 34 months. However, tumor recurrence ultimately led to a decision against aggressive treatment, reflecting the challenges in managing this devastating condition. This case emphasizes the importance of a multidisciplinary approach in the care of spinal glioblastoma patients, ranging from neurosurgery, anesthesiology and intensive care, radiology, oncology, anatomic pathology and nuclear medicine, underscoring the complexity of the disease, while highlighting the urgent need for ongoing research and innovation in neuro-oncology to improve treatment outcomes. The use of modern treatment techniques, including the potential role of nanomaterials for drug delivery, suggests avenues for future research. This case report contributes to the scarce literature on spinal glioblastoma, advocating for detailed documentation of cases to enhance understanding and treatment strategies for this formidable disease.
Collapse
Affiliation(s)
- Andreea Anamaria Idu
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
| | - Lucian Eva
- Department of Neurosurgery, Nicolae Oblu Clinical Emergency Hospital, Iasi, ROU
| | | | - Luca-Andrei Glavan
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
| | | |
Collapse
|
12
|
Abdel-Rahman SA, Gabr M. Small Molecule Immunomodulators as Next-Generation Therapeutics for Glioblastoma. Cancers (Basel) 2024; 16:435. [PMID: 38275876 PMCID: PMC10814352 DOI: 10.3390/cancers16020435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Glioblastoma (GBM), the most aggressive astrocytic glioma, remains a therapeutic challenge despite multimodal approaches. Immunotherapy holds promise, but its efficacy is hindered by the highly immunosuppressive GBM microenvironment. This review underscores the urgent need to comprehend the intricate interactions between glioma and immune cells, shaping the immunosuppressive tumor microenvironment (TME) in GBM. Immunotherapeutic advancements have shown limited success, prompting exploration of immunomodulatory approaches targeting tumor-associated macrophages (TAMs) and microglia, constituting a substantial portion of the GBM TME. Converting protumor M2-like TAMs to antitumor M1-like phenotypes emerges as a potential therapeutic strategy for GBM. The blood-brain barrier (BBB) poses an additional challenge to successful immunotherapy, restricting drug delivery to GBM TME. Research efforts to enhance BBB permeability have mainly focused on small molecules, which can traverse the BBB more effectively than biologics. Despite over 200 clinical trials for GBM, studies on small molecule immunomodulators within the GBM TME are scarce. Developing small molecules with optimal brain penetration and selectivity against immunomodulatory pathways presents a promising avenue for combination therapies in GBM. This comprehensive review discusses various immunomodulatory pathways in GBM progression with a focus on immune checkpoints and TAM-related targets. The exploration of such molecules, with the capacity to selectively target key immunomodulatory pathways and penetrate the BBB, holds the key to unlocking new combination therapy approaches for GBM.
Collapse
Affiliation(s)
- Somaya A. Abdel-Rahman
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Moustafa Gabr
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
13
|
Repossi R, Martín-Ramírez R, Gómez-Bernal F, Medina L, Fariña-Jerónimo H, González-Fernández R, Martín-Vasallo P, Plata-Bello J. Evaluation of Zonulin Expression and Its Potential Clinical Significance in Glioblastoma. Cancers (Basel) 2024; 16:356. [PMID: 38254845 PMCID: PMC10814510 DOI: 10.3390/cancers16020356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Glioblastoma, the deadliest adult brain tumor, poses a significant therapeutic challenge with a dismal prognosis despite current treatments. Zonulin, a protein influencing tight junctions and barrier functions, has gained attention for its diverse roles in various diseases. This study aimed to preliminarily analyze the circulating and tumor zonulin levels, evaluating their impact on disease prognosis and clinical-radiological factors. Additionally, we investigated in vitro zonulin expression in different glioblastoma cell lines under two different conditions. The study comprised 34 newly diagnosed glioblastoma patients, with blood samples collected before treatment for zonulin and haptoglobin analysis. Tumor tissue samples from 21 patients were obtained for zonulin expression. Clinical, molecular, and radiological data were collected, and zonulin protein levels were assessed using ELISA and Western blot techniques. Furthermore, zonulin expression was analyzed in vitro in three glioblastoma cell lines cultured under standard and glioma-stem-cell (GSC)-specific conditions. High zonulin expression in glioblastoma tumors correlated with larger preoperative contrast enhancement and edema volumes. Patients with high zonulin levels showed a poorer prognosis (progression-free survival [PFS]). Similarly, elevated serum levels of zonulin were associated with a trend of shorter PFS. Higher haptoglobin levels correlated with MGMT methylation and longer PFS. In vitro, glioblastoma cell lines expressed zonulin under standard cell culture conditions, with increased expression in tumorsphere-specific conditions. Elevated zonulin levels in both the tumor and serum of glioblastoma patients were linked to a poorer prognosis and radiological signs of increased disruption of the blood-brain barrier. In vitro, zonulin expression exhibited a significant increase in tumorspheres.
Collapse
Affiliation(s)
- Roberta Repossi
- Neurogenetics of Rare Disease Group, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
- Clinical Neuroscience Research Group, University of La Laguna, 38320 La Laguna, Spain
| | - Rita Martín-Ramírez
- Clinical Neuroscience Research Group, University of La Laguna, 38320 La Laguna, Spain
- Department of Molecular Biology, Faculty of Biology, University of La Laguna, 38320 La Laguna, Spain
| | - Fuensanta Gómez-Bernal
- Department of Biochemistry, Hospital Universitario de Canarias, 38320 S/C de Tenerife, Spain
| | - Lilian Medina
- Department of Biochemistry, Hospital Universitario de Canarias, 38320 S/C de Tenerife, Spain
| | - Helga Fariña-Jerónimo
- Clinical Neuroscience Research Group, University of La Laguna, 38320 La Laguna, Spain
- Department of Neurosurgery, Hospital Universitario de Canarias, 38320 S/C de Tenerife, Spain
| | - Rebeca González-Fernández
- Department of Molecular Biology, Faculty of Biology, University of La Laguna, 38320 La Laguna, Spain
| | - Pablo Martín-Vasallo
- Department of Molecular Biology, Faculty of Biology, University of La Laguna, 38320 La Laguna, Spain
| | - Julio Plata-Bello
- Clinical Neuroscience Research Group, University of La Laguna, 38320 La Laguna, Spain
- Department of Neurosurgery, Hospital Universitario de Canarias, 38320 S/C de Tenerife, Spain
| |
Collapse
|
14
|
Moubarak MM, Pagano Zottola AC, Larrieu CM, Cuvellier S, Daubon T, Martin OCB. Exploring the multifaceted role of NRF2 in brain physiology and cancer: A comprehensive review. Neurooncol Adv 2024; 6:vdad160. [PMID: 38221979 PMCID: PMC10785770 DOI: 10.1093/noajnl/vdad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Chronic oxidative stress plays a critical role in the development of brain malignancies due to the high rate of brain oxygen utilization and concomitant production of reactive oxygen species. The nuclear factor-erythroid-2-related factor 2 (NRF2), a master regulator of antioxidant signaling, is a key factor in regulating brain physiology and the development of age-related neurodegenerative diseases. Also, NRF2 is known to exert a protective antioxidant effect against the onset of oxidative stress-induced diseases, including cancer, along with its pro-oncogenic activities through regulating various signaling pathways and downstream target genes. In glioblastoma (GB), grade 4 glioma, tumor resistance, and recurrence are caused by the glioblastoma stem cell population constituting a small bulk of the tumor core. The persistence and self-renewal capacity of these cell populations is enhanced by NRF2 expression in GB tissues. This review outlines NRF2's dual involvement in cancer and highlights its regulatory role in human brain physiology and diseases, in addition to the development of primary brain tumors and therapeutic potential, with a focus on GB.
Collapse
Affiliation(s)
- Maya M Moubarak
- University of Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, France
| | | | | | | | - Thomas Daubon
- University of Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, France
| | | |
Collapse
|
15
|
Zahoor W, Pandith AA, Nisar S, Qasim I, Surana M, Ganie FA, Manzoor U, Arif SH, Rasool SUA, Lateef A, Shah P, Bhat RA. EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) POLYMORPHIC VARIATIONS (-216G/T & -191 C/A) POSE A HIGH RISK TO PATIENTS WITH MALIGNANT GLIOMA. Exp Oncol 2023; 45:203-210. [PMID: 37824771 DOI: 10.15407/exp-oncology.2023.02.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Malignant gliomas are the most frequent and lethal brain tumors. Their molecular aspects remain intangible but current studies have pointed to certain genetic polymorphic loci that pose the risk. The polymorphic sequence variations of the epidermal growth factor receptor gene (EGFR) pathway play a vital role in the glioma risk, and the EGFR variants (216G>T and 191C>A) are identified to affect the risk for the development of different tumors including glioma. AIM To examine genetic variations of EGFR T rs712829 (216G/T) and rs712830 (191C>A) with respect to glioma risk. MATERIALS AND METHODS 129 confirmed glioma cases were genotyped against 180 malignancy-free healthy controls by polymerase chain reaction-restriction fragment length polymorphism technique (RFLP). RESULTS The frequency of the TT homozygous variant of the EGFR -216 G/T genotype differed significantly between cases and controls (49.6% vs. 23.0%) (p < 0.0001). The EGFR -216 G>T allele 'T' was found significantly more frequently in cases (0.56 vs. 0.33 in controls; p < 0.0001). The EGFR -191C>A homozygous 'AA' genotype was implicated significantly more frequently in cases than in controls (p < 0.0001). The distribution of the 'A' variant allele was also more frequent in cases (41.9%) than in controls (14.0%) (0.55 vs. 0.30; p < 0.0001). TC and TA haplotypes showed varied frequency in cases and controls. CONCLUSION EGFR -216 G>T and -191 C>A variants and haplotypes (TA and TC) of the EGFR gene are very strong risk factors in the development of glioma in the Kashmiri population.
Collapse
Affiliation(s)
- Wani Zahoor
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences, Srinagar 190011, J&K, India
- Department of Chemistry, Mewar University-Jaipur, India
| | - Arshad A Pandith
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences, Srinagar 190011, J&K, India
| | - Syed Nisar
- Medical Oncology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar 190011, J&K, India
| | - Iqbal Qasim
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences, Srinagar 190011, J&K, India
| | - Menka Surana
- Department of Chemistry, Mewar University-Jaipur, India
| | - Farooq A Ganie
- Department of CVTS, Sher-I-Kashmir Institute of Medical Sciences, Srinagar 190011, J&K, India
| | - Usma Manzoor
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences, Srinagar 190011, J&K, India
| | - Sajad H Arif
- Department of Neurosurgery, Sher-I-Kashmir Institute of Medical Sciences, Srinagar 190011, J&K, India
| | - Shayaq Ul Abeer Rasool
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences, Srinagar 190011, J&K, India
| | - Adil Lateef
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences, Srinagar 190011, J&K, India
| | - Parveen Shah
- Department of Pathology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar 190011, J&K, India
| | - Rashid A Bhat
- Department of Neurosurgery, Sher-I-Kashmir Institute of Medical Sciences, Srinagar 190011, J&K, India
| |
Collapse
|
16
|
Lin IC, Chang CH, Chong YB, Kuo SH, Cheng YW, Lieu AS, Tseng TT, Lin CJ, Tsai HP, Kwan AL. Role of Nucleobindin-2 in the Clinical Pathogenesis and Treatment Resistance of Glioblastoma. Cells 2023; 12:2420. [PMID: 37830634 PMCID: PMC10572158 DOI: 10.3390/cells12192420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023] Open
Abstract
Glioblastoma (GBM) stands as the most prevalent primary malignant brain tumor, typically resulting in a median survival period of approximately thirteen to fifteen months after undergoing surgery, chemotherapy, and radiotherapy. Nucleobindin-2 (NUCB2) is a protein involved in appetite regulation and energy homeostasis. In this study, we assessed the impact of NUCB2 expression on tumor progression and prognosis of GBM. We further evaluated the relationship between NUCB2 expression and the sensitivity to chemotherapy and radiotherapy in GBM cells. Additionally, we compared the survival of mice intracranially implanted with GBM cells. High NUCB2 expression was associated with poor prognosis in patients with GBM. Knockdown of NUCB2 reduced cell viability, migration ability, and invasion ability of GBM cells. Overexpression of NUCB2 resulted in reduced apoptosis following temozolomide treatment and increased levels of DNA damage repair proteins after radiotherapy. Furthermore, mice intracranially implanted with NUCB2 knockdown GBM cells exhibited longer survival compared to the control group. NUCB2 may serve as a prognostic biomarker for poor outcomes in patients with GBM. Additionally, NUCB2 not only contributes to tumor progression but also influences the sensitivity of GBM cells to chemotherapy and radiotherapy. Therefore, targeting NUCB2 protein expression may represent a novel therapeutic approach for the treatment of GBM.
Collapse
Affiliation(s)
- I-Cheng Lin
- Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 81267, Taiwan;
| | - Chih-Hui Chang
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (C.-H.C.); (Y.B.C.); (A.-S.L.); (T.-T.T.)
| | - Yoon Bin Chong
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (C.-H.C.); (Y.B.C.); (A.-S.L.); (T.-T.T.)
| | - Shih-Hsun Kuo
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
| | - Yu-Wen Cheng
- Gradate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Neurosurgery, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Ann-Shung Lieu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (C.-H.C.); (Y.B.C.); (A.-S.L.); (T.-T.T.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Tzu-Ting Tseng
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (C.-H.C.); (Y.B.C.); (A.-S.L.); (T.-T.T.)
| | - Chien-Ju Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (C.-H.C.); (Y.B.C.); (A.-S.L.); (T.-T.T.)
| | - Aij-Lie Kwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (C.-H.C.); (Y.B.C.); (A.-S.L.); (T.-T.T.)
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- Department of Neurosurgery, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
17
|
Karaca F, Keskin S, Menteş S, Boğa Z, Çavuş G, Köksal F. Evaluating interleukin-16 expression in patients with grade-3 and grade-4 glial cell tumors and healthy individuals. Niger J Clin Pract 2023; 26:1456-1462. [PMID: 37929521 DOI: 10.4103/njcp.njcp_800_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Background This study evaluated the change in IL-16 levels in patients with high-grade glial tumors undergoing radiotherapy (RT) and healthy individuals (control group). Materials and Methods Serum IL-16 levels of 35 high-grade glioma patients receiving radiotherapy (RT) and 30 healthy individuals were compared. We compared the IL-16 levels before (RT0) and after the (RT1) and IL-16 levels were measured and the relationship of this change with other characteristics such as age, gender, weight, height, and blood test results. Results The RT0-IL-16 level was approximately 15 pg/ml higher than the RT1 measurement in the patient group. The mean RT0-IL-16 levels in the patient group were approximately 10 pg/ml higher than the mean IL-16 levels in the control group. Likewise, at the RT1 time-point, the mean IL-16 levels for the patient group were approximately 5 pg/ml lower than the mean IL-16 for the control group. The mean RT0-RT1-IL-16 value tended to be higher in female patients than in male patients. Conclusion The application of RT reduces the overall IL-16 levels, suggesting the efficacy of RT, as well as the role of IL-16 in tumorigenesis.
Collapse
Affiliation(s)
- F Karaca
- Department of Radiation Oncology, Adana City Training and Research Hospital, Adana, Turkey
| | - S Keskin
- Department of Biostatistics, Faculty of Medicine, Van Yüzüncü Yıl University, Van, Turkey
| | - S Menteş
- Department of Radiation Oncology, Adana City Training and Research Hospital, Adana, Turkey
| | - Z Boğa
- Department of Neurosurgery, Adana City Training and Research Hospital, Adana, Turkey
| | - G Çavuş
- Department of Neurosurgery, Adana City Training and Research Hospital, Adana, Turkey
| | - F Köksal
- Department of Microbiology, Çukurova University School of Medicine, Adana, Turkey
| |
Collapse
|
18
|
Mohammad AH, Jatana S, Ruiz-Barerra MA, Khalaf R, Al-Saadi T, Diaz RJ. Metformin use is associated with longer survival in glioblastoma patients with MGMT gene silencing. J Neurooncol 2023; 165:209-218. [PMID: 37889443 DOI: 10.1007/s11060-023-04485-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
PURPOSE New treatments are needed to improve the overall survival of patients with glioblastoma Metformin is known for anti-tumorigenic effects in cancers, including breast and pancreas cancers. In this study, we assessed the association between metformin use and overall survival in glioblastoma patients. METHODS We retrospectively studied 241 patients who underwent surgery at diagnosis of glioblastoma between 2014 and 2018. Metformin was used for pre-existing type 2 diabetes mellitus or in the prevention or management of glucocorticoid induced hyperglycemia. Kaplan-Meier curves and log-rank p test were used for univariate analysis. Cox-proportional hazards model was used to generate adjusted hazard ratios for multivariate analysis. RESULTS Metformin use was associated with longer survival in patients with tumors that had a methylated O6-methylguanine DNA methyltransferase gene (MGMT) promoter (484 days 95% CI: 56-911 vs. 394 days 95% CI: 249-538, Log-Rank test: 6.5, p = 0.01). Cox regression analysis shows that metformin associates with lower risk of death at 2 years in patients with glioblastoma containing a methylated MGMT promoter (aHR = 0.497, 95% CI 0.26-0.93, p = 0.028). CONCLUSION Our findings suggest a survival benefit with metformin use in patients with glioblastomas having methylation of the MGMT promoter.
Collapse
Affiliation(s)
| | | | - Miguel Angel Ruiz-Barerra
- Neuro-Oncology Research Group, National Institute of Cancer, Bogotá, Colombia
- Department of Neurosurgery, National Institute of Cancer, Bogotá, Colombia
| | - Roy Khalaf
- Faculty of Medicine, McGill University, Montreal, Canada
| | - Tariq Al-Saadi
- Faculty of Medicine, McGill University, Montreal, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute - McGill University Health Centre, Montreal, Canada
| | - Roberto J Diaz
- Faculty of Medicine, McGill University, Montreal, Canada.
- Department of Neurology and Neurosurgery, Montreal Neurological Institute - McGill University Health Centre, Montreal, Canada.
- Neurosurgical Oncology, Department of Neurology and Neurosurgery, Montreal Neurological Hospital - McGill University Health Centre, Montreal, Canada.
- Neurosurgical Oncology, Department of Neurology and Neurosurgery, Montreal Neurological Hospital, Faculty of Medicine, Faculty of Medicine, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada.
| |
Collapse
|
19
|
Uram Ł, Wróbel K, Walczak M, Szymaszek Ż, Twardowska M, Wołowiec S. Exploring the Potential of Lapatinib, Fulvestrant, and Paclitaxel Conjugated with Glycidylated PAMAM G4 Dendrimers for Cancer and Parasite Treatment. Molecules 2023; 28:6334. [PMID: 37687164 PMCID: PMC10489794 DOI: 10.3390/molecules28176334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/06/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Fulvestrant (F), lapatinib (L), and paclitaxel (P) are hydrophobic, anticancer drugs used in the treatment of estrogen receptor (ER) and epidermal growth factor receptor (EGFR)-positive breast cancer. In this study, glycidylated PAMAM G4 dendrimers, substituted with F, L, and/or P and targeting tumor cells, were synthesized and characterized, and their antitumor activity against glioma U-118 MG and non-small cell lung cancer A549 cells was tested comparatively with human non-tumorogenic keratinocytes (HaCaT). All cell lines were ER+ and EGFR+. In addition, the described drugs were tested in the context of antinematode therapy on C. elegans. The results show that the water-soluble conjugates of G4P, G4F, G4L, and G4PFL actively entered the tested cells via endocytosis due to the positive zeta potential (between 13.57-40.29 mV) and the nanoparticle diameter of 99-138 nm. The conjugates of G4P and G4PFL at nanomolar concentrations were the most active, and the least active conjugate was G4F. The tested conjugates inhibited the proliferation of HaCaT and A549 cells; in glioma cells, cytotoxicity was associated mainly with cell damage (mitochondria and membrane transport). The toxicity of the conjugates was proportional to the number of drug residues attached, with the exception of G4L; its action was two- and eight-fold stronger against glioma and keratinocytes, respectively, than the equivalent of lapatinib alone. Unfortunately, non-cancer HaCaT cells were the most sensitive to the tested constructs, which forced a change in the approach to the use of ER and EGFR receptors as a goal in cancer therapy. In vivo studies on C. elegans have shown that all compounds, most notably G4PFL, may be potentially useful in anthelmintic therapy.
Collapse
Affiliation(s)
- Łukasz Uram
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańcow Warszawy Ave., 35-959 Rzeszów, Poland; (Ł.U.); (M.W.); (Ż.S.); (M.T.)
| | - Konrad Wróbel
- Medical College, Rzeszów University, 1a Warzywna Street, 35-310 Rzeszów, Poland;
| | - Małgorzata Walczak
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańcow Warszawy Ave., 35-959 Rzeszów, Poland; (Ł.U.); (M.W.); (Ż.S.); (M.T.)
| | - Żaneta Szymaszek
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańcow Warszawy Ave., 35-959 Rzeszów, Poland; (Ł.U.); (M.W.); (Ż.S.); (M.T.)
| | - Magdalena Twardowska
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańcow Warszawy Ave., 35-959 Rzeszów, Poland; (Ł.U.); (M.W.); (Ż.S.); (M.T.)
| | - Stanisław Wołowiec
- Medical College, Rzeszów University, 1a Warzywna Street, 35-310 Rzeszów, Poland;
| |
Collapse
|
20
|
Pando A, Patel AM, Choudhry HS, Eloy JA, Goldstein IM, Liu JK. Palliative Care Effects on Survival in Glioblastoma: Who Receives Palliative Care? World Neurosurg 2023; 170:e847-e857. [PMID: 36481442 DOI: 10.1016/j.wneu.2022.11.143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND High-grade glioma has a poor overall survival with profoundly negative effects on the patient's quality of life and their caregivers. In this study, we investigate the factors associated with receiving palliative care in patients diagnosed with glioblastoma (GBM) and the association of receiving or not receiving palliative care with overall survival. METHODS The National Cancer Database was analyzed for patterns of care in patients ≥18 years old who were diagnosed with histologically confirmed grade IV GBM between 2004 and 2017. All statistical analyses were conducted based on univariate and multivariate regression models. RESULTS A total of 85,380 patients with the diagnosis of GBM were identified. Of the study population, 2803 patients (3.28%) received palliative therapy. On multivariate logistic regression analysis, age ≥70 years (odds ratio [OR], 1.28; 95% confidence interval [CI], 1.04-1.58; P < 0.001), Medicare (OR, 1.348; CI, 1.13-1.61; P = 0.001), tumor size ≥5 cm (OR, 1.15; CI, 1.01-1.31; P = 0.036), tumor multifocality (OR, 1.69; CI, 1.47-1.96; P < 0.001), lobe overlapping tumor (OR, 2.09; CI, 1.13-3.86; P = 0.018), Charlson-Deyo score >0, receiving treatment at a nonacademic/research program, and medium volume of cancers managed at the treatment facility (OR, 1.19; CI, 1.02-1.38; P = 0.026) were independent risk factors associated with an increased chance of receiving palliative care. In contrast, a household income of ≥$40,227 and high volume of cancer managed at the treatment facility (OR, 0.75; CI, 0.58-0.96; P = 0.02) were independent risk factors associated with decreased palliative care. Patients who received no palliative care had a 2-year overall survival longer than those who received palliative care (22% vs. 8.8%; P < 0.001). In patients receiving palliative care, those who received recommended treatment had a 2-year overall survival longer than those who declined part or whole recommended treatment (9.1% vs. 3.8%; P = 0.009). CONCLUSIONS In patients with high-grade glioma, receiving palliative care is associated with decreased survival. When receiving palliative care, recommended treatment increases the number of patients who survive more than 2 years approximately 3-fold compared with those declining part or whole treatment.
Collapse
Affiliation(s)
- Alejandro Pando
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA.
| | - Aman M Patel
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Hannaan S Choudhry
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Jean Anderson Eloy
- Department of Otolaryngology-Head and Neck Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Ira M Goldstein
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - James K Liu
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
21
|
Lindemann M, Oteiza A, Martin-Armas M, Guttormsen Y, Moldes-Anaya A, Berzaghi R, Bogsrud TV, Bach-Gansmo T, Sundset R, Kranz M. Glioblastoma PET/MRI: kinetic investigation of [ 18F]rhPSMA-7.3, [ 18F]FET and [ 18F]fluciclovine in an orthotopic mouse model of cancer. Eur J Nucl Med Mol Imaging 2023; 50:1183-1194. [PMID: 36416908 PMCID: PMC9931868 DOI: 10.1007/s00259-022-06040-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Glioblastoma multiforme (GBM) is the most common glioma and standard therapies can only slightly prolong the survival. Neo-vascularization is a potential target to image tumor microenvironment, as it defines its brain invasion. We investigate [18F]rhPSMA-7.3 with PET/MRI for quantitative imaging of neo-vascularization in GBM bearing mice and human tumor tissue and compare it to [18F]FET and [18F]fluciclovine using PET pharmacokinetic modeling (PKM). METHODS [18F]rhPSMA-7.3, [18F]FET, and [18F]fluciclovine were i.v. injected with 10.5 ± 3.1 MBq, 8.0 ± 2.2 MBq, 11.5 ± 1.9 MBq (n = 28, GL261-luc2) and up to 90 min PET/MR imaged 21/28 days after surgery. Regions of interest were delineated on T2-weighted MRI for (i) tumor, (ii) brain, and (iii) the inferior vena cava. Time-activity curves were expressed as SUV mean, SUVR and PKM performed using 1-/2-tissue-compartment models (1TCM, 2TCM), Patlak and Logan analysis (LA). Immunofluorescent staining (IFS), western blotting, and autoradiography of tumor tissue were performed for result validation. RESULTS [18F]rhPSMA-7.3 showed a tumor uptake with a tumor-to-background-ratio (TBR) = 2.1-2.5, in 15-60 min. PKM (2TCM) confirmed higher K1 (0.34/0.08, p = 0.0012) and volume of distribution VT (0.24/0.1, p = 0.0017) in the tumor region compared to the brain. Linearity in LA and similar k3 = 0.6 and k4 = 0.47 (2TCM, tumor, p = ns) indicated reversible binding. K1, an indicator for vascularization, increased (0.1/0.34, 21 to 28 days, p < 0.005). IFS confirmed co-expression of PSMA and tumor vascularization. [18F]fluciclovine showed higher TBR (2.5/1.8, p < 0.001, 60 min) and VS (1.3/0.7, p < 0.05, tumor) compared to [18F]FET and LA indicated reversible binding. VT increased (p < 0.001, tumor, 21 to 28 days) for [18F]FET (0.5-1.4) and [18F]fluciclovine (0.84-1.5). CONCLUSION [18F]rhPSMA-7.3 showed to be a potential candidate to investigate the tumor microenvironment of GBM. Following PKM, this uptake was associated with tumor vascularization. In contrast to what is known from PSMA-PET in prostate cancer, reversible binding was found for [18F]rhPSMA-7.3 in GBM, contradicting cellular trapping. Finally, [18F]fluciclovine was superior to [18F]FET rendering it more suitable for PET imaging of GBM.
Collapse
Affiliation(s)
- Marcel Lindemann
- PET Imaging Center Tromsø, University Hospital of North Norway (UNN), Tromsø, Norway
- Nuclear Medicine and Radiation Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ana Oteiza
- PET Imaging Center Tromsø, University Hospital of North Norway (UNN), Tromsø, Norway
- Nuclear Medicine and Radiation Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Montserrat Martin-Armas
- PET Imaging Center Tromsø, University Hospital of North Norway (UNN), Tromsø, Norway
- Nuclear Medicine and Radiation Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Yngve Guttormsen
- PET Imaging Center Tromsø, University Hospital of North Norway (UNN), Tromsø, Norway
- Nuclear Medicine and Radiation Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Angel Moldes-Anaya
- PET Imaging Center Tromsø, University Hospital of North Norway (UNN), Tromsø, Norway
- Nuclear Medicine and Radiation Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Rodrigo Berzaghi
- Nuclear Medicine and Radiation Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Trond Velde Bogsrud
- PET Imaging Center Tromsø, University Hospital of North Norway (UNN), Tromsø, Norway
- PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Tore Bach-Gansmo
- PET Imaging Center Tromsø, University Hospital of North Norway (UNN), Tromsø, Norway
| | - Rune Sundset
- PET Imaging Center Tromsø, University Hospital of North Norway (UNN), Tromsø, Norway
- Nuclear Medicine and Radiation Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Mathias Kranz
- PET Imaging Center Tromsø, University Hospital of North Norway (UNN), Tromsø, Norway.
- Nuclear Medicine and Radiation Biology, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
22
|
Balaha HM, Hassan AES. A variate brain tumor segmentation, optimization, and recognition framework. Artif Intell Rev 2022. [DOI: 10.1007/s10462-022-10337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Li T, Ge H, Yang Q, Wang J, Yin Q, Wang H, Hou G. Oncogenic role of microRNA-19b-3p-mediated SOCS3 in glioma through activation of JAK-STAT pathway. Metab Brain Dis 2022; 38:945-960. [PMID: 36484970 DOI: 10.1007/s11011-022-01136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022]
Abstract
The altered expression of microRNA (miRNA) has been implicated in glioma. Here, the current study aimed to clarify the oncogenic effects of miR-19b-3p on cellular processes of glioma and to elucidate the underlying mechanism associated with SOCS3 and the JAK-STAT signaling pathway. Differentially expressed genes related to glioma were initially identified via microarray analysis. Twenty-five glioma patients were selected for clinical data collection, while additional 12 patients with traumatic brain injuries were selected as controls. Cell senescence was assessed by β-galactosidase staining, proliferation by MTT assay and apoptosis by flow cytometry following gain- and/or loss-of-function of miR-19b-3p or SOCS3. Glioma xenograft mouse model was developed through subcutaneous injection to nude mice to provide evidence in vivo. The glioma patients exhibited overexpressed miR-19b-3p and poorly-expressed SOCS3. SOCS3 was identified as a target gene of miR-19b-3p through dual-luciferase reporter gene assay. miR-19b-3p repressed SOCS3 expression and activated the JAK-STAT signaling pathway. Furthermore, miR-19b-3p inhibition promoted apoptosis and senescence, and suppressed cell proliferation through inactivation of the JAK-STAT signaling pathway and up-regulation of SOCS3. The reported regulatory axis was validated in nude mice as evidenced by suppressed tumor growth. Taken together, this study demonstrates that miR-19b-3p facilitates glioma progression via activation of the JAK-STAT signaling pathway by targeting SOCS3, highlighting a novel therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Tao Li
- The Second Department of Neurosurgery, Affiliated Hospital of Hebei Engineering University, No. 81, Congtai Road, Congtai District, 056000, Handan, Hebei Province, P. R. China
| | - Hong Ge
- Personnel Department, Handan Psychiatric Hospital, 056000, Handan, P. R. China
| | - Qingyan Yang
- Department of Otolaryngology, Affiliated Hospital of Hebei Engineering University, 056000, Handan, P. R. China
| | - Junmei Wang
- The Fourth Department of Neurosurgery, Handan Central Hospital, 056000, Handan, P. R. China
| | - Qian Yin
- Department of Laboratory Medicine, Han Gang Hospital, 056000, Handan, P. R. China
| | - Hongbin Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei Engineering University, 056000, Handan, P. R. China
| | - Gaolei Hou
- The Second Department of Neurosurgery, Affiliated Hospital of Hebei Engineering University, No. 81, Congtai Road, Congtai District, 056000, Handan, Hebei Province, P. R. China.
| |
Collapse
|
24
|
Muacevic A, Adler JR, Cirino M, Trevisan FA, Peria F, Tirapelli D, Carlotti Jr CG. Modulation of Genes and MicroRNAs in the Neurospheres of Glioblastoma Cell Lines U343 and T98G Induced by Ionizing Radiation and Temozolomide Therapy. Cureus 2022; 14:e32211. [PMID: 36620850 PMCID: PMC9812005 DOI: 10.7759/cureus.32211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Glioblastoma is the most prevalent primary malignant neoplasm of the central nervous system. It has increased its incidence, while the overall survival remains over 14 months. PURPOSE The purpose is to evaluate the expression of the genes EGFR, PTEN, MGMT, and IDH1/2, and microRNAs miR-181b, miR-145, miR-149, and miR-128a in adhered cells (AC) and neurospheres (NS) from cell lines (T98G and U343) submitted to temozolomide (TMZ) and ionizing radiation (IR). METHODS T98G and U343 were treated with TMZ, IR, and TMZ+IR. The analysis of gene expression and miRNAs was performed using real-time PCR. RESULTS This study demonstrated: a) an improvement in the expression of IDH1 after IR and TMZ + IR in the NS (T98G); b) an increase in the expression of MGMT in NS (T98G) in IR groups and TMZ + IR. The expression of miRNAs results as a) AC (U343) expressed more miR-181b after TMZ, IR, and TMZ + IR; and miR-128a improved after TMZ, IR, and TMZ + IR; b) NS (T98G) after TMZ + IR expressed: miR-181b; miR-149; miR-145 and miR-128a; c) NS (U343) after IR huge expressed miR-149 and miR-145. CONCLUSION IR was an independent and determining radioresistance factor in NS. However, we observed no complementarity action of oncomiRs regulation.
Collapse
|
25
|
Huang B, Pan W, Wang W, Wang Y, Liu P, Geng W. Overexpression of Pleckstrin Homology Domain-Containing Family A Member 4 Is Correlated with Poor Prognostic Outcomes and Immune Infiltration in Lower-Grade Glioma. DISEASE MARKERS 2022; 2022:1292648. [PMID: 36408463 PMCID: PMC9674417 DOI: 10.1155/2022/1292648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/28/2022] [Accepted: 10/22/2022] [Indexed: 10/12/2023]
Abstract
INTRODUCTION The global incidence of brain tumors, the most common of which is lower grade glioma (LGG), remains high. Pleckstrin homology domain-containing family A member 4 (PLEKHA4) has been reported to be related to tumor invasion and growth. However, its role and correlation with immunity in LGG remain elusive. METHODS We evaluated the expression pattern, prognostic value, biological functions, and immune effects of PLEKHA4 in LGG. We also analyzed the association between PLEKHA4 levels in different tumors, patient prognosis, and its role in tumor immunity. Depending on the type of research data, we used statistical methods such as Student's t-tests, Mann-Whitney U tests one-way ANOVA tests Kruskal-Wallis tests Pearson's or Spearman's correlation analysis Chi-square and Fisher's exact tests in this paper. Results and Conclusions. The results revealed that PLEKHA4 levels were markedly elevated in most tumors (such as LGG). High PLEKHA4 levels are associated with poor overall survival (OS), progression-free interval (PFI) rates, and disease-specific survival (DSS) in LGG patients. Cox regression analysis and nomograms showed that PLEKHA4 levels are independent prognostic factors for LGG patients. According to functional enrichment analysis, PLEKHA4 levels in LGG are associated with immune infiltration and immunotherapy. In conclusion, PLEKHA4 is a potential prognostic marker and immunotherapy target for LGG.
Collapse
Affiliation(s)
- Baojun Huang
- Department of Anaesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weijun Pan
- Southern Medical University, Guangzhou, Guangdong, China
| | - Wenchao Wang
- Department of Anaesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yijian Wang
- Department of Anaesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Pan Liu
- Department of Anaesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wujun Geng
- Department of Anaesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou, Zhejiang, China
| |
Collapse
|
26
|
D’Amato Figueiredo MV, Alexiou GA, Vartholomatos G, Rehder R. Advances in Intraoperative Flow Cytometry. Int J Mol Sci 2022; 23:ijms232113430. [PMID: 36362215 PMCID: PMC9655491 DOI: 10.3390/ijms232113430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Flow cytometry is the gold-standard laser-based technique to measure and analyze fluorescence levels of immunostaining and DNA content in individual cells. It provides a valuable tool to assess cells in the G0/G1, S, and G2/M phases, and those with polyploidy, which holds prognostic significance. Frozen section analysis is the standard intraoperative assessment for tumor margin evaluation and tumor resection. Here, we present flow cytometry as a promising technique for intraoperative tumor analysis in different pathologies, including brain tumors, leptomeningeal dissemination, breast cancer, head and neck cancer, pancreatic tumor, and hepatic cancer. Flow cytometry is a valuable tool that can provide substantial information on tumor analysis and, consequently, maximize cancer treatment and expedite patients’ survival.
Collapse
Affiliation(s)
- Marcos V. D’Amato Figueiredo
- Department of Neurosurgery, Hospital Estadual Mario Covas, Santo Andre 09190-615, Brazil
- Department of Neurosurgery, Hospital do Coracao, Sao Paulo 04004-030, Brazil
| | - George A. Alexiou
- Department of Neurosurgery, School of Medicine, University of Ioannina, 45500 Ioannina, Greece
- Neurosurgical Institute, University of Ioannina, 45500 Ioannina, Greece
- Correspondence: ; Tel.: +30-6948-525134
| | - George Vartholomatos
- Neurosurgical Institute, University of Ioannina, 45500 Ioannina, Greece
- Hematology Laboratory, Unit of Molecular Biology and Translational Flow Cytometry, University Hospital of Ioannina, 45500 Ioannina, Greece
| | - Roberta Rehder
- Department of Neurosurgery, Hospital do Coracao, Sao Paulo 04004-030, Brazil
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Hospital Santa Marcelina, Sao Paulo 08270-070, Brazil
| |
Collapse
|
27
|
Yuan B, Li J, Miyashita SI, Kikuchi H, Xuan M, Matsuzaki H, Iwata N, Kamiuchi S, Sunaga K, Sakamoto T, Hibino Y, Okazaki M. Enhanced Cytotoxic Effects of Arenite in Combination with Active Bufadienolide Compounds against Human Glioblastoma Cell Line U-87. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196577. [PMID: 36235115 PMCID: PMC9571627 DOI: 10.3390/molecules27196577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022]
Abstract
The cytotoxicity of a trivalent arsenic derivative (arsenite, AsIII) combined with arenobufagin or gamabufotalin was evaluated in human U-87 glioblastoma cells. Synergistic cytotoxicity with upregulated intracellular arsenic levels was observed, when treated with AsIII combined with arenobufagin instead of gamabufotalin. Apoptosis and the activation of caspase-9/-8/-3 were induced by AsIII and further strengthened by arenobufagin. The magnitude of increase in the activities of caspase-9/-3 was much greater than that of caspase-8, suggesting that the intrinsic pathway played a much more important role in the apoptosis. An increase in the number of necrotic cells, enhanced LDH leakage, and intensified G2/M phase arrest were observed. A remarkable increase in the expression level of γH2AX, a DNA damage marker, was induced by AsIII+arenobufagin. Concomitantly, the activation of autophagy was observed, suggesting that autophagic cell death associated with DNA damage was partially attributed to the cytotoxicity of AsIII+arenobufagin. Suppression of Notch signaling was confirmed in the combined regimen-treated cells, suggesting that inactivation of Jagged1/Notch signaling would probably contribute to the synergistic cytotoxic effect of AsIII+arenobufagin. Given that both AsIII and arenobufagin are capable of penetrating into the blood-brain barrier, our findings may provide fundamental insight into the clinical application of the combined regimen for glioblastoma.
Collapse
Affiliation(s)
- Bo Yuan
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
- Correspondence: ; Tel./Fax: +81-49-271-8026
| | - Jingmei Li
- Laboratory of Immunobiochemistry, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Shin-Ich Miyashita
- National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 3, 1-1-1 Umezono, Tsukuba 305-8563, Ibaraki, Japan
| | - Hidetomo Kikuchi
- Laboratory of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Meiyan Xuan
- Laboratory of Organic and Medicinal Chemistry; Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Hirokazu Matsuzaki
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Naohiro Iwata
- Laboratory of Immunobiochemistry, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Shinya Kamiuchi
- Laboratory of Immunobiochemistry, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Katsuyoshi Sunaga
- Laboratory of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Takeshi Sakamoto
- Laboratory of Organic and Medicinal Chemistry; Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Yasuhide Hibino
- Laboratory of Immunobiochemistry, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Mari Okazaki
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| |
Collapse
|
28
|
Fiore G, Abete-Fornara G, Forgione A, Tariciotti L, Pluderi M, Borsa S, Bana C, Cogiamanian F, Vergari M, Conte V, Caroli M, Locatelli M, Bertani GA. Indication and eligibility of glioma patients for awake surgery: A scoping review by a multidisciplinary perspective. Front Oncol 2022; 12:951246. [PMID: 36212495 PMCID: PMC9532968 DOI: 10.3389/fonc.2022.951246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background Awake surgery (AS) permits intraoperative mapping of cognitive and motor functions, allowing neurosurgeons to tailor the resection according to patient functional boundaries thus preserving long-term patient integrity and maximizing extent of resection. Given the increased risks of the awake scenario, the growing importance of AS in surgical practice favored the debate about patient selection concerning both indication and eligibility criteria. Nonetheless, a systematic investigation is lacking in the literature. Objective To provide a scoping review of the literature concerning indication and eligibility criteria for AS in patients with gliomas to answer the questions:1) "What are the functions mostly tested during AS protocols?" and 2) "When and why should a patient be excluded from AS?". Materials and methods Pertinent studies were retrieved from PubMed, PsycArticles and Cochrane Central Register of Controlled Trials (CENTRAL), published until April 2021 according to the PRISMA Statement Extension for Scoping Reviews. The retrieved abstracts were checked for the following features being clearly stated: 1) the population described as being composed of glioma(LGG or HGG) patients; 2) the paper had to declare which cognitive or sensorimotor function was tested, or 2bis)the decisional process of inclusion/exclusion for AS had to be described from at least one of the following perspectives: neurosurgical, neurophysiological, anesthesiologic and psychological/neuropsychological. Results One hundred and seventy-eight studies stated the functions being tested on 8004 patients. Language is the main indication for AS, even if tasks and stimulation techniques changed over the years. It is followed by monitoring of sensorimotor and visuospatial pathways. This review demonstrated an increasing interest in addressing other superior cognitive functions, such as executive functions and emotions. Forty-five studies on 2645 glioma patients stated the inclusion/exclusion criteria for AS eligibility. Inability to cooperate due to psychological disorder(i.e. anxiety),severe language deficits and other medical conditions(i.e.cardiovascular diseases, obesity, etc.)are widely reported as exclusion criteria for AS. However, a very few papers gave scale exact cut-off. Likewise, age and tumor histology are not standardized parameters for patient selection. Conclusion Given the broad spectrum of functions that might be safely and effectively monitored via AS, neurosurgeons and their teams should tailor intraoperative testing on patient needs and background as well as on tumor location and features. Whenever the aforementioned exclusion criteria are not fulfilled, AS should be strongly considered for glioma patients.
Collapse
Affiliation(s)
- Giorgio Fiore
- Department of Neurosurgery, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giorgia Abete-Fornara
- Department of Neurosurgery, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Arianna Forgione
- Department of Neurosurgery, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Leonardo Tariciotti
- Department of Neurosurgery, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Mauro Pluderi
- Department of Neurosurgery, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Borsa
- Department of Neurosurgery, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cristina Bana
- Department of Neuropathophysiology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Filippo Cogiamanian
- Department of Neuropathophysiology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Vergari
- Department of Neuropathophysiology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valeria Conte
- Neuro Intensive Care Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Manuela Caroli
- Department of Neurosurgery, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Locatelli
- Department of Neurosurgery, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giulio Andrea Bertani
- Department of Neurosurgery, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
29
|
Liu K, Jiang L, Shi Y, Liu B, He Y, Shen Q, Jiang X, Nie Z, Pu J, Yang C, Chen Y. Hypoxia-induced GLT8D1 promotes glioma stem cell maintenance by inhibiting CD133 degradation through N-linked glycosylation. Cell Death Differ 2022; 29:1834-1849. [PMID: 35301431 PMCID: PMC9433395 DOI: 10.1038/s41418-022-00969-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
Gliomas are the most aggressive primary brain tumors. However, no significant improvement in survival has been achieved with the addition of temozolomide (TMZ) or radiation as initial therapy, although many clinical efforts have been carried out to target various signaling pathways or putative driver mutations. Here, we report that glycosyltransferase 8 domain containing 1 (GLT8D1), induced by HIF-1α under a hypoxic niche, significantly correlates with a higher grade of glioma, and a worse clinical outcome. Depletion of GLT8D1 inhibits self-renewal of glioma stem cell (GSC) in vitro and represses tumor growth in glioma mouse models. GLT8D1 knockdown promotes cell cycle arrest at G2/M phase and cellular apoptosis with or without TMZ treatment. We reveal that GLT8D1 impedes CD133 degradation through the endosomal-lysosomal pathway by N-linked glycosylation and protein-protein interaction. Directly blocking the GLT8D1/CD133 complex formation by CD133N1~108 (referred to as FECD133), or inhibiting GLT8D1 expression by lercanidipine, suppresses Wnt/β-catenin signaling dependent tumorigenesis both in vitro and in patient-derived xenografts mouse model. Collectively, these findings offer mechanistic insights into how hypoxia promotes GLT8D1/CD133/Wnt/β-catenin signaling during glioma progression, and identify GLT8D1 as a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Kun Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liping Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Yulin Shi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baiyang Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaomei He
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiushuo Shen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Xiulin Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi Nie
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Kunming Medical University, Kunming, 650500, China
| | - Jun Pu
- Kunming Medical University, Kunming, 650500, China
| | - Cuiping Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yongbin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| |
Collapse
|
30
|
Candiota AP, Arús C. Establishing Imaging Biomarkers of Host Immune System Efficacy during Glioblastoma Therapy Response: Challenges, Obstacles and Future Perspectives. Metabolites 2022; 12:metabo12030243. [PMID: 35323686 PMCID: PMC8950145 DOI: 10.3390/metabo12030243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
This hypothesis proposal addresses three major questions: (1) Why do we need imaging biomarkers for assessing the efficacy of immune system participation in glioblastoma therapy response? (2) Why are they not available yet? and (3) How can we produce them? We summarize the literature data supporting the claim that the immune system is behind the efficacy of most successful glioblastoma therapies but, unfortunately, there are no current short-term imaging biomarkers of its activity. We also discuss how using an immunocompetent murine model of glioblastoma, allowing the cure of mice and the generation of immune memory, provides a suitable framework for glioblastoma therapy response biomarker studies. Both magnetic resonance imaging and magnetic resonance-based metabolomic data (i.e., magnetic resonance spectroscopic imaging) can provide non-invasive assessments of such a system. A predictor based in nosological images, generated from magnetic resonance spectroscopic imaging analyses and their oscillatory patterns, should be translational to clinics. We also review hurdles that may explain why such an oscillatory biomarker was not reported in previous imaging glioblastoma work. Single shot explorations that neglect short-term oscillatory behavior derived from immune system attack on tumors may mislead actual response extent detection. Finally, we consider improvements required to properly predict immune system-mediated early response (1–2 weeks) to therapy. The sensible use of improved biomarkers may enable translatable evidence-based therapeutic protocols, with the possibility of extending preclinical results to human patients.
Collapse
Affiliation(s)
- Ana Paula Candiota
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, 08193 Barcelona, Spain;
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Carles Arús
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, 08193 Barcelona, Spain;
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Correspondence:
| |
Collapse
|
31
|
Beiriger J, Habib A, Jovanovich N, Kodavali CV, Edwards L, Amankulor N, Zinn PO. The Subventricular Zone in Glioblastoma: Genesis, Maintenance, and Modeling. Front Oncol 2022; 12:790976. [PMID: 35359410 PMCID: PMC8960165 DOI: 10.3389/fonc.2022.790976] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is a malignant tumor with a median survival rate of 15-16 months with standard care; however, cases of successful treatment offer hope that an enhanced understanding of the pathology will improve the prognosis. The cell of origin in GBM remains controversial. Recent evidence has implicated stem cells as cells of origin in many cancers. Neural stem/precursor cells (NSCs) are being evaluated as potential initiators of GBM tumorigenesis. The NSCs in the subventricular zone (SVZ) have demonstrated similar molecular profiles and share several distinctive characteristics to proliferative glioblastoma stem cells (GSCs) in GBM. Genomic and proteomic studies comparing the SVZ and GBM support the hypothesis that the tumor cells and SVZ cells are related. Animal models corroborate this connection, demonstrating migratory patterns from the SVZ to the tumor. Along with laboratory and animal research, clinical studies have demonstrated improved progression-free survival in patients with GBM after radiation to the ipsilateral SVZ. Additionally, key genetic mutations in GBM for the most part carry regulatory roles in the SVZ as well. An exciting avenue towards SVZ modeling and determining its role in gliomagenesis in the human context is human brain organoids. Here we comprehensively discuss and review the role of the SVZ in GBM genesis, maintenance, and modeling.
Collapse
Affiliation(s)
- Jamison Beiriger
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Nicolina Jovanovich
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Chowdari V. Kodavali
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Lincoln Edwards
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Nduka Amankulor
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Pascal O. Zinn
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| |
Collapse
|
32
|
Fierro J, DiPasquale J, Perez J, Chin B, Chokpapone Y, Tran AM, Holden A, Factoriza C, Sivagnanakumar N, Aguilar R, Mazal S, Lopez M, Dou H. Dual-sgRNA CRISPR/Cas9 knockout of PD-L1 in human U87 glioblastoma tumor cells inhibits proliferation, invasion, and tumor-associated macrophage polarization. Sci Rep 2022; 12:2417. [PMID: 35165339 PMCID: PMC8844083 DOI: 10.1038/s41598-022-06430-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Programmed death ligand 1 (PD-L1) plays a key role in glioblastoma multiforme (GBM) immunosuppression, vitality, proliferation, and migration, and is therefore a promising target for treating GBM. CRISPR/Cas9-mediated genomic editing can delete both cell surface and intracellular PD-L1. This systemic deliverable genomic PD-L1 deletion system can be used as an effective anti-GBM therapy by inhibiting tumor growth and migration, and overcoming immunosuppression. To target PD-L1 for CRISPR/Cas9 gene editing, we first identified two single guide RNA (sgRNA) sequences located on PD-L1 exon 3. The first sgRNA recognizes the forward strand of human PD-L1 near the beginning of exon 3 that allows editing by Cas9 at approximately base pair 82 (g82). The second sgRNA recognizes the forward strand of exon 3 that directs cutting at base pair 165 (g165). A homology-directed repair template (HDR) combined with the dual-sgRNAs was used to improve PD-L1 knockout specificity and efficiency. sgRNAs g82 and g165 were cloned into the multiplex CRISPR/Cas9 assembly system and co-transfected with the HDR template in human U87 GBM cells (g82/165 + HDR). T7E1 analysis suggests that the dual-sgRNA CRISPR/Cas9 strategy with a repair template was capable of editing the genomic level of PD-L1. This was further confirmed by examining PD-L1 protein levels by western blot and immunofluorescence assays. Western blot analysis showed that the dual-sgRNAs with the repair template caused a 64% reduction of PD-L1 protein levels in U87 cells, while immunostaining showed a significant reduction of intracellular PD-L1. PD-L1 deletion inhibited proliferation, growth, invasion and migration of U87 cells, indicating intracellular PD-L1 is necessary for tumor progression. Importantly, U87 cells treated with g82/165 + HDR polarized tumor-associated macrophages (TAM) toward an M1 phenotype, as indicated by an increase in TNF-α and a decrease in IL-4 secretions. This was further confirmed with flow cytometry that showed an increase in the M1 markers Ly6C + and CD80 +, and a decrease in the M2 marker CD206 + both in vitro and in vivo. Utilizing dual-sgRNAs and an HDR template with the CRISPR/Cas9 gene-editing system is a promising avenue for the treatment of GBM.
Collapse
Affiliation(s)
- Javier Fierro
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA
| | - Jake DiPasquale
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA
| | - Joshua Perez
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Brandon Chin
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA
| | - Yathip Chokpapone
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA
| | - An M Tran
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA
| | - Arabella Holden
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Chris Factoriza
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA
| | - Nikhi Sivagnanakumar
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Rocio Aguilar
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Sarah Mazal
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA
| | - Melissa Lopez
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Huanyu Dou
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA.
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA.
| |
Collapse
|
33
|
ZC3H15 promotes glioblastoma progression through regulating EGFR stability. Cell Death Dis 2022; 13:55. [PMID: 35027542 PMCID: PMC8758739 DOI: 10.1038/s41419-021-04496-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 12/27/2022]
Abstract
Zinc finger CCCH-type containing 15 (ZC3H15), a highly conserved protein involved in several cellular processes, which was responsible for tumorigenesis and may be a promising marker in myeloid leukemia (AML) and hepatocellular carcinoma (HCC). However, little is known about the biological significance and molecular mechanisms of ZC3H15 in GBM. In this study, we revealed that ZC3H15 was overexpressed in GBM and high ZC3H15 expression was associated with poor survival of patients with GBM. We found that ZC3H15 promoted the proliferation, migration, invasion, and tumorigenesis of GBM cells by activating the EGFR signaling pathway. We also revealed that ZC3H15 reduced EGFR ubiquitination, which was responsible for EGFR protein stabilization. In addition, we demonstrated that ZC3H15 inhibited the transcription of CBL, which was an E3 ubiquitin ligase for EGFR proteasomal degradation. And silencing of CBL could partly abrogate the inhibitory effects on cell proliferation, migration, and invasion of GBM cells induced by ZC3H15 knockdown. Thus, our research revealed the important roles of ZC3H15 in GBM development and provided a brand-new insight for improving the treatment of GBMs.
Collapse
|
34
|
Byrne A, Torrens-Burton A, Sivell S, Moraes FY, Bulbeck H, Bernstein M, Nelson A, Fielding H. Early palliative interventions for improving outcomes in people with a primary malignant brain tumour and their carers. Cochrane Database Syst Rev 2022; 1:CD013440. [PMID: 34988973 PMCID: PMC8733789 DOI: 10.1002/14651858.cd013440.pub2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Primary malignant brain tumours can have an unpredictable course, but high-grade gliomas typically have a relentlessly progressive disease trajectory. They can cause profound symptom burden, affecting physical, neurocognitive, and social functioning from an early stage in the illness. This can significantly impact on role function and on the experiences and needs of informal caregivers. Access to specialist palliative and supportive care early in the disease trajectory, for those with high-grade tumours in particular, has the potential to improve patients' and caregivers' quality of life. However, provision of palliative and supportive care for people with primary brain tumours - and their informal caregivers - is historically ill-defined and ad hoc, and the benefits of early palliative interventions have not been confirmed. It is therefore important to define the role and effectiveness of early referral to specialist palliative care services and/or the effectiveness of other interventions focused on palliating disease impact on people and their informal caregivers. This would help guide improvement to service provision, by defining those interventions which are effective across a range of domains, and developing an evidence-based model of integrated supportive and palliative care for this population. OBJECTIVES To assess the evidence base for early palliative care interventions, including referral to specialist palliative care services compared to usual care, for improving outcomes in adults diagnosed with a primary brain tumour and their carers. SEARCH METHODS We conducted searches of electronic databases, CENTRAL, MEDLINE, CINAHL, Web of Science, and PsycINFO (last searched 16 November 2021). We conducted searches to incorporate both qualitative and quantitative search terms. In addition to this, we searched for any currently recruiting trials in ClinicalTrials.gov and in the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) search portal, and undertook citation tracking via Scopus. We also handsearched reference lists of potentially eligible systematic review articles to identify any other relevant studies, contacted experts in the field and searched key authors via Web of Science and searched SIGLE (System of Information on Grey Literature in Europe). SELECTION CRITERIA We included studies looking at early referral to specialist palliative care services - or early targeted palliative interventions by other healthcare professionals - for improving quality of life, symptom control, psychological outcomes, or overall survival as a primary or secondary outcome measure. Studies included randomised controlled trials (RCTs), non-randomised studies (NRS), as well as qualitative and mixed-methods studies where both qualitative and quantitative data were included. Participants were adults with a confirmed radiological and/or histological diagnosis of a primary malignant brain tumour, and/or informal adult carers (either at individual or family level) of people with a primary malignant brain tumour. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodological procedures for data extraction, management, and analysis. We used GRADE to assess the certainty of the evidence for symptom control, i.e. cognitive function. MAIN RESULTS We identified 9748 references from the searches, with 8337 remaining after duplicates were removed. After full-text review, we included one trial. There were no studies of early specialist palliative care interventions or of early, co-ordinated generalist palliative care approaches. The included randomised trial addressed a single symptom area, focusing on early cognitive rehabilitation, administered within two weeks of surgery in a mixed brain tumour population, of whom approximately half had a high-grade glioma. The intervention was administered individually as therapist-led computerised exercises over 16 one-hour sessions, four times/week for four weeks. Sessions addressed several cognitive domains including time orientation, spatial orientation, visual attention, logical reasoning, memory, and executive function. There were no between-group differences in outcome for tests of logical-executive function, but differences were observed in the domains of visual attention and verbal memory. Risk of bias was assessed and stated as high for performance bias and attrition bias but for selective reporting it was unclear whether all outcomes were reported. We considered the certainty of the evidence, as assessed by GRADE, to be very low. AUTHORS' CONCLUSIONS Currently there is a lack of research focusing on the introduction of early palliative interventions specifically for people with primary brain tumours, either as co-ordinated specialist palliative care approaches or interventions focusing on a specific aspect of palliation. Future research should address the methodological shortcomings described in early palliative intervention studies in other cancers and chronic conditions. In particular, the specific population under investigation, the timing and the setting of the intervention should be clearly described and the standardised palliative care-specific components of the intervention should be defined in detail.
Collapse
Affiliation(s)
- Anthony Byrne
- Cardiff and Vale University Health Board, Llandough Hospital, Penarth, UK
- Marie Curie Palliative Care Research Centre (MCPCRC), Division of Population Medicine, School of Medicine, Cardiff University, Cardiff, UK
| | - Anna Torrens-Burton
- Marie Curie Palliative Care Research Centre (MCPCRC), Division of Population Medicine, School of Medicine, Cardiff University, Cardiff, UK
- PRIME Centre Wales, Division of Population Medicine, Cardiff University, Cardiff, UK
| | - Stephanie Sivell
- Marie Curie Palliative Care Research Centre (MCPCRC), Division of Population Medicine, School of Medicine, Cardiff University, Cardiff, UK
| | - Fabio Ynoe Moraes
- Department of Oncology, Division of Radiation Oncology, Kingston Health Sciences Centre, Kingston, Canada
| | | | - Mark Bernstein
- Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Annmarie Nelson
- Marie Curie Palliative Care Research Centre (MCPCRC), Division of Population Medicine, School of Medicine, Cardiff University, Cardiff, UK
| | - Helen Fielding
- Palliative Medicine, Abertawe Bro Morgannwg University Health Board, Swansea, UK
| |
Collapse
|
35
|
Liu H, Wang J, Luo T, Zhen Z, Liu L, Zheng Y, Zhang C, Hu X. Correlation between ITGB2 expression and clinical characterization of glioma and the prognostic significance of its methylation in low-grade glioma(LGG). Front Endocrinol (Lausanne) 2022; 13:1106120. [PMID: 36714574 PMCID: PMC9880157 DOI: 10.3389/fendo.2022.1106120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Glioma is the most common primary tumor in the brain.Integrin beta 2(ITGB2) is a member of the leukocyte integrin family (leukocyte integrin), participating in lymphocyte recycling and homing, cell adhesion, and cell surface-mediated signal transduction. However, few studies on ITGB2 in gliomas have been reported yet.This study first discussed the relationship between ITGB2 expression and clinical characterization of glioma and the prognostic significance of its methylation in low-grade glioma. METHODS We collected Clinical data and transcription of glioma patients from TCGA, CGGA, and Rembrant datasets to analyze the differential expression of ITGB2 mRNA in glioma tissues and normal tissues. The box polts to evaluated the expression patterns of ITGB2 in different molecular subtypes. Receiver operating characteristic curve (ROC) were used to evaluate and verify the reliability of the model. Kaplan-Meier survival curves to evaluated the relationship between the level of ITGB2 mRNA expression and overall survival (OS). Using cox regression analysis to verify the ability of ITGB2 as an independent predictor of OS in glioma patients. We use TIMER to analyze and visualize the association between immune infiltration levels and a range of variables. The methylation of GBMLGG patients were obtained from the TCGA database through the biological portal. RESULTS ITGB2 can be a potential marker for mesenchymal molecular subtype gliomas. COX regression analysis shows that ITGB2 is an independent predictive marker of OS in malignant glioma patients. Biological processes show that ITGB2 has involved glioma immune-related activities, especially closely related to B cells, CD4+Tcells, macrophages, neutrophils, and dendritic cells. ITGB2 is negatively regulated by ITGB2 methylation, resulting in low expression in LGG tissues. Low expression of ITGB2 and high methylation indicate good OS in patients with LGG. The ITGB2 methylation risk score (ITMRS) obtained from the ITGB2 methylation CpG site can better predict the OS of LGG patients. We used univariate and multivariate cox regression analysis of methylationsites, used the R language predict function to obtain the risk score of these ITGB2 methylation sites(ITMRS). DISCUSSION ITGB2 can be used as a potential marker of mesenchymal molecular subtypes of gliomas and as an independent predictive marker of OS in patients with malignant gliomas. The ITMRS we established can be used as an independent prognostic factor for LGG and provide a new idea for the diagnosis and treatment of LGG.
Collapse
Affiliation(s)
- He Liu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiao Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Tao Luo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Zhiming Zhen
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Li Liu
- Department of Digital Medicine, School of Biomedical Engineering and Medical Imaging, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yalan Zheng
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chaobin Zhang
- Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Chaobin Zhang, ; Xiaofei Hu,
| | - Xiaofei Hu
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Chaobin Zhang, ; Xiaofei Hu,
| |
Collapse
|
36
|
Datta S, Luthra R, Bharadvaja N. Medicinal Plants for Glioblastoma Treatment. Anticancer Agents Med Chem 2021; 22:2367-2384. [PMID: 34939551 DOI: 10.2174/1871520622666211221144739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/26/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022]
Abstract
Glioblastoma, an aggressive brain cancer, demonstrates the least life expectancy among all brain cancers. Because of the regulation of diverse signaling pathways in cancers, the chemotherapeutic approaches used to suppress their multiplication and spreading are restricted. Sensitivity towards chemotherapeutic agents has developed because of the pathological and drug-evading abilities of these diverse mechanisms. As a result, the identification and exploration of strategies or treatments, which can overcome such refractory obstacles to improve glioblastoma response to treatment as well as recovery, is essential. Medicinal herbs contain a wide variety of bioactive compounds, which could trigger aggressive brain cancers, regulate their anti-cancer mechanisms and immune responses to assist in cancer elimination, and cause cell death. Numerous tumor-causing proteins, which facilitate invasion as well as metastasis of cancer, tolerance of chemotherapies, and angiogenesis, are also inhibited by these phytochemicals. Such herbs remain valuable for glioblastoma prevention and its incidence by effectively being used as anti-glioma therapies. This review thus presents the latest findings on medicinal plants using which the extracts or bioactive components are being used against glioblastoma, their mechanism of functioning, pharmacological description as well as recent clinical studies conducted on them.
Collapse
Affiliation(s)
- Shreeja Datta
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi-110042. India
| | - Ritika Luthra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi-110042. India
| | - Navneeta Bharadvaja
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi-110042. India
| |
Collapse
|
37
|
Multifunctional lipidic nanocarriers for effective therapy of glioblastoma: recent advances in stimuli-responsive, receptor and subcellular targeted approaches. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00548-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Background
Glioblastoma, or glioblastoma multiforme (GBM), remains a fatal cancer type despite the remarkable progress in understanding the genesis and propagation of the tumor. Current treatment modalities, comprising mainly of surgery followed by adjuvant chemoradiation, are insufficient for improving patients' survival owing to existing hurdles, including the blood–brain barrier (BBB). In contemporary practice, the prospect of long-term survival or cure continues to be a challenge for patients suffering from GBM. This review provides an insight into the drug delivery strategies and the significant efforts made in lipid-based nanoplatform research to circumvent the challenges in optimal drug delivery in GBM.
Area covered
Owing to the unique properties of lipid-based nanoplatforms and advancements in clinical translation, this article describes the application of various stimuli-responsive lipid nanocarriers and tumor subcellular organelle-targeted therapy to give an idea about the strategies that can be applied to enhance site-specific drug delivery for GBM. Furthermore, active targeting of drugs via surface-modified lipid-based nanostructures and recent findings in alternative therapeutic platforms such as gene therapy, immunotherapy, and multimodal therapy have also been overviewed.
Expert opinion
Lipid-based nanoparticles stand out among the other nanocarriers explored for GBM drug delivery, as they support both passive and active drug targeting by crossing/bypassing the BBB at the same time minimizing toxicity and projects better pharmacological parameters. Although these nanocarriers could be a plausible choice for treating GBM, in-depth research is essential to advance neuro-oncology research and enhance outcomes in patients with brain tumors.
Collapse
|
38
|
Discriminating surgical bed cysts from bacterial brain abscesses after Carmustine wafer implantation in newly diagnosed IDH-wildtype glioblastomas. Neurosurg Rev 2021; 45:1501-1511. [PMID: 34651215 DOI: 10.1007/s10143-021-01670-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
Carmustine wafers can be implanted in the surgical bed of high-grade gliomas, which can induce surgical bed cyst formation, leading to clinically relevant mass effect. An observational retrospective monocentric study was conducted including 122 consecutive adult patients with a newly diagnosed supratentorial glioblastoma who underwent a surgical resection with Carmustine wafer implantation as first line treatment (2005-2018). Twenty-two patients (18.0%) developed a postoperative contrast-enhancing cyst within the surgical bed: 16 surgical bed cysts and six bacterial abscesses. All patients with a surgical bed cyst were managed conservatively, all resolved on imaging follow-up, and no patient stopped the radiochemotherapy. Independent risk factors of formation of a postoperative surgical bed cyst were age ≥ 60 years (p = 0.019), number of Carmustine wafers implanted ≥ 8 (p = 0.040), and partial resection (p = 0.025). Compared to surgical bed cysts, the occurrence of a postoperative bacterial abscess requiring surgical management was associated more frequently with a shorter time to diagnosis from surgery (p = 0.009), new neurological deficit (p < 0.001), fever (p < 0.001), residual air in the cyst (p = 0.018), a cyst diameter greater than that of the initial tumor (p = 0.027), and increased mass effect and brain edema compared to early postoperative MRI (p = 0.024). Contrast enhancement (p = 0.473) and diffusion signal abnormalities (p = 0.471) did not differ between postoperative bacterial abscesses and surgical bed cysts. Clinical and imaging findings help discriminate between surgical bed cysts and bacterial abscesses following Carmustine wafer implantation. Surgical bed cysts can be managed conservatively. Individual risk factors will help tailor their steroid therapy and imaging follow-up.
Collapse
|
39
|
Slow Off-Rate Modified Aptamer (SOMAmer) Proteomic Analysis of Patient-Derived Malignant Glioma Identifies Distinct Cellular Proteomes. Int J Mol Sci 2021; 22:ijms22179566. [PMID: 34502484 PMCID: PMC8431317 DOI: 10.3390/ijms22179566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 02/04/2023] Open
Abstract
Malignant gliomas derive from brain glial cells and represent >75% of primary brain tumors. This includes anaplastic astrocytoma (grade III; AS), the most common and fatal glioblastoma multiforme (grade IV; GBM), and oligodendroglioma (ODG). We have generated patient-derived AS, GBM, and ODG cell models to study disease mechanisms and test patient-centered therapeutic strategies. We have used an aptamer-based high-throughput SOMAscan® 1.3K assay to determine the proteomic profiles of 1307 different analytes. SOMAscan® proteomes of AS and GBM self-organized into closely adjacent proteomes which were clearly distinct from ODG proteomes. GBM self-organized into four proteomic clusters of which SOMAscan® cluster 4 proteome predicted a highly inter-connected proteomic network. Several up- and down-regulated proteins relevant to glioma were successfully validated in GBM cell isolates across different SOMAscan® clusters and in corresponding GBM tissues. Slow off-rate modified aptamer proteomics is an attractive analytical tool for rapid proteomic stratification of different malignant gliomas and identified cluster-specific SOMAscan® signatures and functionalities in patient GBM cells.
Collapse
|
40
|
Liu S, Shi W, Zhao Q, Zheng Z, Liu Z, Meng L, Dong L, Jiang X. Progress and prospect in tumor treating fields treatment of glioblastoma. Biomed Pharmacother 2021; 141:111810. [PMID: 34214730 DOI: 10.1016/j.biopha.2021.111810] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) is a challenging cancer with poor prognosis. The classical standard for treatment is safe resection, followed by concurrent chemoradiotherapy with subsequent adjuvant temozolomide (TMZ). Despite several attempts at different treatments, the 5-year survival rate remains poor. In recent years, with the continuous progress of treatment technology, tumor treating fields (TTFields) were preferable. The device could generate an intermediate frequency alternating electric field and induce apoptosis of some specific types of cancer cells with few toxic and side effects. TTFields induced apoptosis through multiple activations of the pathway. TTFields have been Food and Drug Administration (FDA)-approved for diagnosis and recurrent GBM as additional clinical trial results are revealed. This study reviewed the current status, mechanisms, correlations with immune pathways, the prospects of applying TTFields for GBM, and the adverse events.
Collapse
Affiliation(s)
- Shiyu Liu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Weiyan Shi
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Qin Zhao
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Zhuangzhuang Zheng
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Zijing Liu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Lihua Dong
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
41
|
Reed MR, Maddukuri L, Ketkar A, Byrum SD, Zafar MK, Bostian ACL, Tackett AJ, Eoff RL. Inhibition of tryptophan 2,3-dioxygenase impairs DNA damage tolerance and repair in glioma cells. NAR Cancer 2021; 3:zcab014. [PMID: 33870196 PMCID: PMC8034706 DOI: 10.1093/narcan/zcab014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 01/21/2023] Open
Abstract
Expression of tryptophan 2,3-dioxygenase (TDO) is a determinant of malignancy in gliomas through kynurenine (KYN) signaling. We report that inhibition of TDO activity attenuated recovery from replication stress and increased the genotoxic effects of bis-chloroethylnitrosourea (BCNU). Activation of the Chk1 arm of the replication stress response (RSR) was reduced when TDO activity was blocked prior to BCNU treatment, whereas phosphorylation of serine 33 (pS33) on replication protein A (RPA) was enhanced—indicative of increased fork collapse. Analysis of quantitative proteomic results revealed that TDO inhibition reduced nuclear 53BP1 and sirtuin levels. We confirmed that cells lacking TDO activity exhibited elevated gamma-H2AX signal and defective recruitment of 53BP1 to chromatin following BCNU treatment, which corresponded with delayed repair of DNA breaks. Addition of exogenous KYN increased the rate of break repair. TDO inhibition diminished SIRT7 deacetylase recruitment to chromatin, which increased histone H3K18 acetylation—a key mark involved in preventing 53BP1 recruitment to sites of DNA damage. TDO inhibition also sensitized cells to ionizing radiation (IR)-induced damage, but this effect did not involve altered 53BP1 recruitment. These experiments support a model where TDO-mediated KYN signaling helps fuel a robust response to replication stress and DNA damage.
Collapse
Affiliation(s)
- Megan R Reed
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Leena Maddukuri
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Amit Ketkar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Maroof K Zafar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - April C L Bostian
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Robert L Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
42
|
Huang K, Zhao W, Wang X, Qiu Y, Liu Z, Chen R, Liu W, Liu B. Akt Inhibition Enhanced the Growth Inhibition Effects of Low-Dose Heavy-Ion Radiation via the PI3K/Akt/p53 Signaling Pathway in C6 Glioblastoma Cells. Front Oncol 2021; 11:649176. [PMID: 33869050 PMCID: PMC8047659 DOI: 10.3389/fonc.2021.649176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/15/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Glioma has one of the highest mortality rates of all tumors of the nervous system and commonly used treatments almost always fail to achieve tumor control. Low-dose carbon-ion radiation can effectively target cancer and tumor cells, but the mechanisms of growth inhibition induced by heavy-ion radiation via the PI3K/Akt signaling pathway are unknown, and inhibition by heavy-ion radiation is minor in C6 cells. METHODS Carbon-ion radiation was used to investigate the effects of heavy-ion radiation on C6 cells, and suppression of Akt was performed using perifosine. MTT assays were used to investigate optimal perifosine treatment concentrations. Clone formation assays were used to investigate the growth inhibition effects of carbon-ion radiation and the effects of radiation with Akt inhibition. Lactate dehydrogenase release, superoxide dismutase activity, and malondialdehyde content were assessed to investigate oxidative stress levels. Expression levels of proteins in the PI3K/Akt/p53 signaling pathway were assessed via western blotting. RESULTS The 10% maximum inhibitory concentration of perifosine was 19.95 μM. In clone formation assays there was no significant inhibition of cell growth after treatment with heavy-ion irradiation, whereas perifosine enhanced inhibition. Heavy-ion radiation induced lactate dehydrogenase release, increased the level of malondialdehyde, and reduced superoxide dismutase activity. Akt inhibition promoted these processes. Heavy-ion radiation treatment downregulated Akt expression, and upregulated B-cell lymphoma-2 (Bcl-2) expression. p53 and Bcl-2 expression were significantly upregulated, and Bcl-2-associated X protein (Bax) expression was downregulated. The expression profiles of pAkt, Bcl-2, and Bax were reversed by perifosine treatment. Caspase 3 expression was upregulated in all radiation groups. CONCLUSIONS The growth inhibition effects of low-dose heavy-ion irradiation were not substantial in C6 cells, and Akt inhibition induced by perifosine enhanced the growth inhibition effects via proliferation inhibition, apoptosis, and oxidative stress. Akt inhibition enhanced the effects of heavy-ion radiation, and the PI3K/Akt/p53 signaling pathway may be a critical component involved in the process.
Collapse
Affiliation(s)
- Ke Huang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Wei Zhao
- Peking University People’s Hospital, Peking University, Beijing, China
| | - Xuqiao Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Yingfei Qiu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Zelin Liu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Rui Chen
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Wei Liu
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- The School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
| | - Bin Liu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
- The School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
43
|
Yuan B, Xu K, Shimada R, Li J, Hayashi H, Okazaki M, Takagi N. Cytotoxic Effects of Arsenite in Combination With Gamabufotalin Against Human Glioblastoma Cell Lines. Front Oncol 2021; 11:628914. [PMID: 33796463 PMCID: PMC8009626 DOI: 10.3389/fonc.2021.628914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is a fatal primary malignant brain tumor, and the 5-year survival rate of treated glioblastoma patients still remains <5%. Considering the sustained development of metastasis, tumor recurrence, and drug resistance, there is an urgent need for the novel therapeutic approaches to combat glioblastoma. Trivalent arsenic derivative (arsenite, AsIII) with remarkable clinical efficacy in leukemia has been shown to exert cytocidal effect against glioblastoma cells. Gamabufotalin, an active bufadienolide compound, also shows selective cytocidal effect against glioblastoma cells, and has been suggested to serve as a promising adjuvant therapeutic agent to potentiate therapeutic effect of conventional anticancer drugs. In order to gain novel insight into therapeutic approaches against glioblastoma, the cytotoxicity of AsIII and gamabufotalin was explored in the human glioblastoma cell lines U-87 and U-251. In comparison with U-251 cells, U-87 cells were highly susceptible to the two drugs, alone or in combination. More importantly, clinically achieved concentrations of AsIII combined with gamabufotalin exhibited synergistic cytotoxicity against U-87 cells, whereas showed much less cytotoxicity to human normal peripheral blood mononuclear cells. G2/M cell cycle arrest was induced by each single drug, and further augmented by their combination in U-87 cells. Downregulation of the expression levels of cdc25C, Cyclin B1, cdc2, and survivin was observed in U-87 cells treated with the combined regimen and occurred in parallel with G2/M arrest. Concomitantly, lactate dehydrogenase leakage was also observed. Intriguingly, SB203580, a specific inhibitor of p38 MAPK, intensified the cytotoxicity of the combined regimen in U-87 cells, whereas wortmannin, a potent autophagy inhibitor, significantly rescued the cells. Collectively, G2/M arrest, necrosis and autophagy appeared to cooperatively contribute to the synergistic cytotoxicity of AsIII and gamabufotalin. Given that p38 MAPK serves an essential role in promoting glioblastoma cell survival, developing a possible strategy composed of AsIII, gamabufotalin, and a p38 MAPK inhibitor may provide novel insight into approaches designed to combat glioblastoma.
Collapse
Affiliation(s)
- Bo Yuan
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Japan.,Department of Applied Biochemistry, Tokyo University of Pharmacy & Life Sciences, Hachioji, Japan
| | - Kang Xu
- Department of Applied Biochemistry, Tokyo University of Pharmacy & Life Sciences, Hachioji, Japan
| | - Ryota Shimada
- Department of Applied Biochemistry, Tokyo University of Pharmacy & Life Sciences, Hachioji, Japan
| | - JingZhe Li
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hideki Hayashi
- Department of Applied Biochemistry, Tokyo University of Pharmacy & Life Sciences, Hachioji, Japan
| | - Mari Okazaki
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, Tokyo University of Pharmacy & Life Sciences, Hachioji, Japan
| |
Collapse
|
44
|
Powter B, Jeffreys SA, Sareen H, Cooper A, Brungs D, Po J, Roberts T, Koh ES, Scott KF, Sajinovic M, Vessey JY, de Souza P, Becker TM. Human TERT promoter mutations as a prognostic biomarker in glioma. J Cancer Res Clin Oncol 2021; 147:1007-1017. [PMID: 33547950 PMCID: PMC7954705 DOI: 10.1007/s00432-021-03536-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/15/2021] [Indexed: 12/27/2022]
Abstract
The TERT promoter (pTERT) mutations, C228T and C250T, play a significant role in malignant transformation by telomerase activation, oncogenesis and immortalisation of cells. C228T and C250T are emerging as important biomarkers in many cancers including glioblastoma multiforme (GBM), where the prevalence of these mutations is as high as 80%. Additionally, the rs2853669 single nucleotide polymorphism (SNP) may cooperate with these pTERT mutations in modulating progression and overall survival in GBM. Using liquid biopsies, pTERT mutations, C228T and C250T, and other clinically relevant biomarkers can be easily detected with high precision and sensitivity, facilitating longitudinal analysis throughout therapy and aid in cancer patient management. In this review, we explore the potential for pTERT mutation analysis, via liquid biopsy, for its potential use in personalised cancer therapy. We evaluate the relationship between pTERT mutations and other biomarkers as well as their potential clinical utility in early detection, prognostication, monitoring of cancer progress, with the main focus being on brain cancer.
Collapse
Affiliation(s)
- Branka Powter
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.
| | - Sarah A Jeffreys
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.,School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Heena Sareen
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.,Western Clinical School, University of New South Wales South, Goulburn St, Liverpool, NSW, 2170, Australia
| | - Adam Cooper
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.,School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia.,Cancer Therapy Centre, Liverpool Hospital, Elizabeth St and Goulburn St, Liverpool, NSW, 2170, Australia
| | - Daniel Brungs
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Joseph Po
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia
| | - Tara Roberts
- School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia.,Western Clinical School, University of New South Wales South, Goulburn St, Liverpool, NSW, 2170, Australia
| | - Eng-Siew Koh
- Western Clinical School, University of New South Wales South, Goulburn St, Liverpool, NSW, 2170, Australia.,Cancer Therapy Centre, Liverpool Hospital, Elizabeth St and Goulburn St, Liverpool, NSW, 2170, Australia
| | - Kieran F Scott
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.,School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Mila Sajinovic
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia
| | - Joey Y Vessey
- Cancer Therapy Centre, Liverpool Hospital, Elizabeth St and Goulburn St, Liverpool, NSW, 2170, Australia
| | - Paul de Souza
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.,School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia.,Western Clinical School, University of New South Wales South, Goulburn St, Liverpool, NSW, 2170, Australia.,Cancer Therapy Centre, Liverpool Hospital, Elizabeth St and Goulburn St, Liverpool, NSW, 2170, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Therese M Becker
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.,School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia.,Western Clinical School, University of New South Wales South, Goulburn St, Liverpool, NSW, 2170, Australia
| |
Collapse
|
45
|
Oronsky B, Reid TR, Oronsky A, Sandhu N, Knox SJ. A Review of Newly Diagnosed Glioblastoma. Front Oncol 2021; 10:574012. [PMID: 33614476 PMCID: PMC7892469 DOI: 10.3389/fonc.2020.574012] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma is an aggressive and inevitably recurrent primary intra-axial brain tumor with a dismal prognosis. The current mainstay of treatment involves maximally safe surgical resection followed by radiotherapy over a 6-week period with concomitant temozolomide chemotherapy followed by temozolomide maintenance. This review provides a summary of the epidemiological, clinical, histologic and genetic characteristics of newly diagnosed disease as well as the current standard of care and potential future therapeutic prospects.
Collapse
Affiliation(s)
- Bryan Oronsky
- Department of Clinical Research, EpicentRx, San Diego, CA, United States
| | - Tony R. Reid
- Department of Medical Oncology, UC San Diego School of Medicine, San Diego, CA, United States
| | - Arnold Oronsky
- Department of Clinical Research, InterWest Partners, Menlo Park, CA, United States
| | - Navjot Sandhu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
| | - Susan J. Knox
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
46
|
Hua D, Tang L, Wang W, Tang S, Yu L, Zhou X, Wang Q, Sun C, Shi C, Luo W, Jiang Z, Li H, Yu S. Improved Antiglioblastoma Activity and BBB Permeability by Conjugation of Paclitaxel to a Cell-Penetrative MMP-2-Cleavable Peptide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001960. [PMID: 33552853 PMCID: PMC7856885 DOI: 10.1002/advs.202001960] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/12/2020] [Indexed: 05/25/2023]
Abstract
In order to solve the problems of receptor promiscuity and poor blood-brain barrier (BBB) penetration in the treatment of glioblastomas (GBM), a novel dual-functional nanocomplex drug delivery system is developed based on the strategy of peptide-drug conjugates. In this study, SynB3-PVGLIG-PTX is designed and screened out by matrix metalloproteinase-2 (MMP-2), to which it exhibits the best affinity. The MMP-2-sensitive peptide (PVGLIG) and a cell-penetration peptide (SynB3) are combined to form a dual-functional peptide. Moreover, as a drug-peptide nanocomplex, SynB3-PVGLIG-PTX exhibited a high potential to form an aggregation with good solubility that can release paclitaxel (PTX) through the cleavage of MMP-2. From a functional perspective, it is found that SynB3-PVGLIG-PTX can specifically inhibit the proliferation, migration, and invasion of GBM cells in vitro in the presence of MMP-2, in contrast to that observed in MMP-2 siRNA transfected cells. Further investigation in vivo shows that SynB3-PVGLIG-PTX easily enters the brain of U87MG xenograft nude mice and can generate a better suppressive effect on GBM through a controlled release of PTX from SynB3-PVGLIG-PTX compared with PTX and temozolomide. Thus, it is proposed that SynB3-PVGLIG-PTX can be used as a novel drug-loading delivery system to treat GBM due to its specificity and BBB permeability.
Collapse
Affiliation(s)
- Dan Hua
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Lida Tang
- Tianjin Institute of Pharmaceutical ResearchTianjin300301China
| | - Weiting Wang
- Tianjin Institute of Pharmaceutical ResearchTianjin300301China
| | - Shengan Tang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)School of PharmacyTianjin Medical UniversityTianjin300070China
| | - Lin Yu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical Sciences of Tianjin Medical UniversityTianjin300070China
| | - Xuexia Zhou
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Qian Wang
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Cuiyun Sun
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Cuijuan Shi
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Wenjun Luo
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Zhendong Jiang
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Huining Li
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Shizhu Yu
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| |
Collapse
|
47
|
Ribeiro Reily Rocha C, Reily Rocha A, Molina Silva M, Rodrigues Gomes L, Teatin Latancia M, Andrade Tomaz M, de Souza I, Karolynne Seregni Monteiro L, Frederico Martins Menck C. Revealing Temozolomide Resistance Mechanisms via Genome-Wide CRISPR Libraries. Cells 2020; 9:cells9122573. [PMID: 33271924 PMCID: PMC7760831 DOI: 10.3390/cells9122573] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is a severe type of brain tumor with a poor prognosis and few therapy options. Temozolomide (TMZ) is one of these options, however, with limited success, and failure is mainly due to tumor resistance. In this work, genome-wide CRISPR-Cas9 lentiviral screen libraries for gene knockout or activation were transduced in the human glioblastoma cell line, aiming to identify genes that modulate TMZ resistance. The sgRNAs enriched in both libraries in surviving cells after TMZ treatment were identified by next-generation sequencing (NGS). Pathway analyses of gene candidates on knockout screening revealed several enriched pathways, including the mismatch repair and the Sonic Hedgehog pathways. Silencing three genes ranked on the top 10 list (MSH2, PTCH2, and CLCA2) confirm cell protection from TMZ-induced death. In addition, a CRISPR activation library revealed that NRF2 and Wnt pathways are involved in TMZ resistance. Consistently, overexpression of FZD6, CTNNB1, or NRF2 genes significantly increased cell survival upon TMZ treatment. Moreover, NRF2 and related genes detected in this screen presented a robust negative correlation with glioblastoma patient survival rates. Finally, several gene candidates from knockout or activation screening are targetable by inhibitors or small molecules, and some of them have already been used in the clinic.
Collapse
Affiliation(s)
- Clarissa Ribeiro Reily Rocha
- Department of Clinical and Experimental Oncology, Federal University of São Paulo (UNIFESP), São Paulo 04037-003, Brazil; (C.R.R.R.); (M.A.T.); (I.d.S.); (L.K.S.M.)
| | - Alexandre Reily Rocha
- Institute of Theoretical Physics, State University of São Paulo (UNESP), São Paulo 01140-070, Brazil;
| | - Matheus Molina Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil; (M.M.S.); (M.T.L.)
| | - Luciana Rodrigues Gomes
- Laboratory of Cell Cycle, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo 05503-001, Brazil;
| | - Marcela Teatin Latancia
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil; (M.M.S.); (M.T.L.)
| | - Marina Andrade Tomaz
- Department of Clinical and Experimental Oncology, Federal University of São Paulo (UNIFESP), São Paulo 04037-003, Brazil; (C.R.R.R.); (M.A.T.); (I.d.S.); (L.K.S.M.)
| | - Izadora de Souza
- Department of Clinical and Experimental Oncology, Federal University of São Paulo (UNIFESP), São Paulo 04037-003, Brazil; (C.R.R.R.); (M.A.T.); (I.d.S.); (L.K.S.M.)
| | - Linda Karolynne Seregni Monteiro
- Department of Clinical and Experimental Oncology, Federal University of São Paulo (UNIFESP), São Paulo 04037-003, Brazil; (C.R.R.R.); (M.A.T.); (I.d.S.); (L.K.S.M.)
| | - Carlos Frederico Martins Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil; (M.M.S.); (M.T.L.)
- Correspondence: ; Tel.: +55-1130917499
| |
Collapse
|
48
|
Goryawala M, Roy B, Gupta RK, Maudsley AA. T1-weighted and T2-weighted Subtraction MR Images for Glioma Visualization and Grading. J Neuroimaging 2020; 31:124-131. [PMID: 33253433 DOI: 10.1111/jon.12800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/14/2020] [Accepted: 09/25/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE To evaluate the performance of multiparametric MR images in differentiation of different regions of the gross tumor area and for assessment of glioma grade. METHODS Forty-six glioma subjects (18 grade II, 11 grade III, and 17 grade IV) underwent a comprehensive MR and spectroscopic imaging procedure. Maps were generated by subtraction of T1-weighted images from contrast-enhanced T1-weighted images (ΔT1 map) and T1-weighted images from T2-weighted images (ΔT2 map). Regions of interest (ROIs) were positioned in normal-appearing white matter (NAWM), enhancing tumor, hyperintense T2, necrotic region, and immediate and distal peritumoral regions (IPR and DPR). Relative signal contrast was estimated as difference between mean intensities in ROIs and NAWM. Classification using support vector machines was applied to all image series to determine the efficacy of regional contrast measures for differentiation of low- and high-grade lesions and grade III and IV lesions. RESULTS ΔT1 and ΔT2 maps offered higher contrast as compared to other parametric maps in differentiating enhancing tumor and edematous regions, respectively, and provided the highest classification accuracy for differentiating low- and high-grade tumors, of 91% and 90.4%. Choline/N-acetylaspartate maps provided significant contrast for delineating IPR and DPR. For differentiating high-grade gliomas, ΔT2 and ΔT1 maps provided a mean accuracy of 90.9% and 88.2%, which was lower than that obtained using cerebral blood volume (93.7%) and choline/creatine (93.3%) maps. CONCLUSION This study showed that subtraction maps provided significant contrast in differentiating several regions of the gross tumor area and are of benefit for accurate tumor grading.
Collapse
Affiliation(s)
| | - Bhaswati Roy
- Department of Radiology, Fortis Memorial Research Institute, Gurgaon, India
| | - Rakesh K Gupta
- Department of Radiology, Fortis Memorial Research Institute, Gurgaon, India
| | | |
Collapse
|
49
|
Zhang HW, Lyu GW, He WJ, Lei Y, Lin F, Feng YN, Wang MZ. Differential diagnosis of central lymphoma and high-grade glioma: dynamic contrast-enhanced histogram. Acta Radiol 2020; 61:1221-1227. [PMID: 31902220 DOI: 10.1177/0284185119896519] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND In clinical diagnosis, some central nervous system lymphomas (CNSL) are difficult to distinguish from high-grade gliomas (HGG). PURPOSE To evaluate the diagnostic efficacy of the histogram analysis of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) in the identification of CNSL and HGG. MATERIAL AND METHODS In all, 43 patients diagnosed with HGG (n = 28) and CNSL (n = 15) by histopathology underwent DCE-MRI scanning. Differences in histogram parameters based on DCE-MRI between HGG and CNSL were analyzed by Mann-Whitney U test. In addition, receiver operating characteristic (ROC) analysis was performed. Short-term follow-up of patients was performed using Kaplan-Meier analysis to explore the survival rates of HGG and CNSL. RESULTS For the ROC curve analysis, we demonstrate that the 10th percentile of Ktrans (area under the curve [AUC] = 0.912, sensitivity = 86.7%, specificity = 92.9%), Kep (AUC = 0.940, sensitivity = 93.3%, specificity = 79.6%), Ve (AUC = 0.907, sensitivity = 86.7%, specificity = 89.3%), and AUC (AUC = 0.904, sensitivity = 86.7%, specificity = 92.9%) were significantly different between the CNSL and HGG groups (P < 0.001), with high diagnostic efficiency. Table 2 shows that the histogram features based on AUC maps (10th, 25th, median, 75th, 90th, and mean) were always significantly higher in the CNSL group than in the HGG group (P < 0.001). There was no significant difference in Vp or in the 75th, 90th and mean of Ktrans, Kep, and Ve between the CNSL and HGG groups (P > 0.05). CONCLUSION A histogram analysis of DCE-MRI identified significant differences between HGG and CNSL, and this will help in the clinical differential diagnosis of these conditions.
Collapse
Affiliation(s)
- Han-wen Zhang
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, PR China
| | - Gui-wen Lyu
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, PR China
| | - Wen-jie He
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, PR China
| | - Yi Lei
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, PR China
| | - Fan Lin
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, PR China
| | - Yu-ning Feng
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, PR China
| | - Meng-zhu Wang
- Department of MR Scientific Marketing, Siemens Healthineers, Guangzhou, Guangdong Province, PR China
| |
Collapse
|
50
|
5-Aminolevulinic acid for recurrent malignant gliomas: A systematic review. Clin Neurol Neurosurg 2020; 195:105913. [DOI: 10.1016/j.clineuro.2020.105913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/28/2020] [Accepted: 05/10/2020] [Indexed: 11/24/2022]
|