1
|
Huang Z, Huang L, Zhang C, Chen G, Mai H. Blocking β2-AR and Inhibiting COX-2: A Promising Approach to Suppress OSCC Development. Int Dent J 2025; 75:807-816. [PMID: 39043526 PMCID: PMC11976482 DOI: 10.1016/j.identj.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
OBJECTIVES β2-adrenergic receptor (β2-AR) and cyclooxygenase-2 (COX-2) are overexpressed in various malignant tumours including oral squamous cell carcinoma (OSCC), suggesting that they may contribute to the development of OSCC. This study aims to investigate the potential synergistic effect of β2-AR blockade and COX-2 inhibition on suppressing the development of OSCC. METHODS Effects of blocking β2-AR and inhibiting COX-2 on migration and invasion of OSCC cells were detected by wound-healing assay and transwell invasion assay. Western blot and enzyme-linked immunosorbent assay (ELISA) were used to detect the expression of genes related to the progression of OSCC. In vivo, OSCC xenograft models were established to evaluate the effect of combined treatment on survival time, tumour size, and submandibular lymph node metastasis. Immunohistochemistry, Western blot, and ELISA were used to detect the expression of invasion and metastasis relative genes. RESULTS In vitro, blocking β2-AR or inhibiting COX-2 alone could suppress invasion and metastasis of OSCC cells, and suppression with combined treatment was more significant. Expression of genes related to invasion and metastasis, including EGFR, TGF-β1, IL-1β, MMP2, and VEGFA, were downregulated significantly, especially in the combined treatment group. In vivo, the combined treatment could significantly prolong survival time in tumour-bearing mice and inhibit the growth of tumours. Furthermore, submandibular lymph node metastasis was less in the combined treatment group, and expression of the abovementioned genes was also downregulated. CONCLUSIONS The combination of β2-AR blockade and COX-2 inhibition can significantly suppress the development of OSCC via downregulating EGFR, TGF-β1, IL-1β, MMP2, and VEGFA. Findings suggest that the combined use of a β2-AR blocker and a COX-2 inhibitor could be a promising adjuvant therapy in OSCC. Both drugs are commonly prescribed, and their safety and efficacy are well established. Their use in adjuvants in OSCC should therefore be promoted in clinical practice.
Collapse
Affiliation(s)
- Zeliu Huang
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, China; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, Guangxi, China; Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, China
| | - Laifeng Huang
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, China; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, Guangxi, China; Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, China
| | - Chong Zhang
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, China; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, Guangxi, China; Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, China
| | - Guosheng Chen
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, China; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, Guangxi, China; Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, China
| | - Huaming Mai
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, China; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, Guangxi, China; Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, China.
| |
Collapse
|
2
|
Hillmann J, Maass N, Bauerschlag DO, Flörkemeier I. Promising new drugs and therapeutic approaches for treatment of ovarian cancer-targeting the hallmarks of cancer. BMC Med 2025; 23:10. [PMID: 39762846 PMCID: PMC11706140 DOI: 10.1186/s12916-024-03826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Ovarian cancer remains the most lethal gynecological malignancy. Despite the approval of promising targeted therapy such as bevacizumab and PARP inhibitors, 5-year survival has not improved significantly. Thus, there is an urgent need for new therapeutics. New advancements in therapeutic strategies target the pivotal hallmarks of cancer. This review is giving an updated overview of innovative and upcoming therapies for the treatment of ovarian cancer that focuses specific on the hallmarks of cancer. The hallmarks of cancer constitute a broad concept to reenact complexity of malignancies and furthermore identify possible targets for new treatment strategies. For this purpose, we analyzed approvals and current clinical phase III studies (registered at ClinicalTrials.gov (National Library of Medicine, National Institutes of Health; U.S. Department of Health and Human Services, 2024)) for new drugs on the basis of their mechanisms of action and identified new target approaches. A broad spectrum of new promising drugs is currently under investigation in clinical phase III studies targeting mainly the hallmarks "self-sufficiency in growth signals," "genomic instability," and "angiogenesis." The benefit of immune checkpoint inhibitors in ovarian cancer has been demonstrated for the first time. Besides, targeting the tumor microenvironment is of growing interest. Replicative immortality, energy metabolism, tumor promoting inflammation, and the microbiome of ovarian cancer are still barely targeted by drugs. Nevertheless, precision medicine, which focuses on specific disease characteristics, is becoming increasingly important in cancer treatment.
Collapse
Affiliation(s)
- Julia Hillmann
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Nicolai Maass
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Dirk O Bauerschlag
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany.
- Department of Gynaecology, Jena University Hospital, Jena, Germany.
| | - Inken Flörkemeier
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany.
| |
Collapse
|
3
|
Benjamin DJ, Haslam A, Prasad V. Cardiovascular/anti-inflammatory drugs repurposed for treating or preventing cancer: A systematic review and meta-analysis of randomized trials. Cancer Med 2024; 13:e7049. [PMID: 38491813 PMCID: PMC10943275 DOI: 10.1002/cam4.7049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 01/09/2024] [Accepted: 02/08/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Due to encouraging pre-clinical data and supportive observational studies, there has been growing interest in applying cardiovascular drugs (including aspirin, angiotensin-converting enzyme [ACE] inhibitors, statins, and metformin) approved to treat diseases such as hypertension, hyperlipidemia, and diabetes mellitus to the field of oncology. Moreover, given growing costs with cancer care, these medications have offered a potentially more affordable avenue to treat or prevent recurrence of cancer. We sought to investigate the anti-cancer effects of drugs repurposed from cardiology or anti-inflammatories to treat cancer. We specifically evaluated the following drug classes: HMG-CoA reductase inhibitors (statins), cyclo-oxygenase inhibitors, aspirin, metformin, and both angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors. We also included non-steroidal anti-inflammatory drugs (NSAIDs) because they exert a similar mechanism to aspirin by blocking prostaglandins and reducing inflammation that is thought to promote the development of cancer. METHODS We performed a systematic literature review using PubMed and Web of Science with search terms including "aspirin," "NSAID," "statin" (including specific statin drug names), "metformin," "ACE inhibitors," and "ARBs" (including specific anti-hypertensive drug names) in combination with "cancer." Searches were limited to human studies published between 2000 and 2023. MAIN OUTCOMES AND MEASURES The number and percentage of studies reported positive results and pooled estimates of overall survival, progression-free survival, response, and disease-free survival. RESULTS We reviewed 3094 titles and included 67 randomized clinical trials. The most common drugs that were tested were metformin (n = 21; 30.9%), celecoxib (n = 20; 29.4%), and simvastatin (n = 8; 11.8%). There was only one study that tested cardiac glycosides and none that studied ACE inhibitors. The most common tumor types were non-small-cell lung cancer (n = 19; 27.9%); breast (n = 8; 20.6%), colorectal (n = 7; 10.3%), and hepatocellular (n = 6; 8.8%). Most studies were conducted in a phase II trial (n = 38; 55.9%). Most studies were tested in metastatic cancers (n = 49; 72.1%) and in the first-line setting (n = 36; 521.9%). Four studies (5.9%) were stopped early because of difficulty with accrual. The majority of studies did not demonstrate an improvement in either progression-free survival (86.1% of studies testing progression-free survival) or in overall survival (94.3% of studies testing overall survival). Progression-free survival was improved in five studies (7.4%), and overall survival was improved in three studies (4.4%). Overall survival was significantly worse in two studies (3.8% of studies testing overall survival), and progression-free survival was worse in one study (2.8% of studies testing progression-free survival). CONCLUSIONS AND RELEVANCE Despite promising pre-clinical and population-based data, cardiovascular drugs and anti-inflammatory medications have overall not demonstrated benefit in the treatment or preventing recurrence of cancer. These findings may help guide future potential clinical trials involving these medications when applied in oncology.
Collapse
Affiliation(s)
| | - Alyson Haslam
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUnited States
| | - Vinay Prasad
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUnited States
| |
Collapse
|
4
|
Mecca M, Picerno S, Cortellino S. The Killer's Web: Interconnection between Inflammation, Epigenetics and Nutrition in Cancer. Int J Mol Sci 2024; 25:2750. [PMID: 38473997 DOI: 10.3390/ijms25052750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Inflammation is a key contributor to both the initiation and progression of tumors, and it can be triggered by genetic instability within tumors, as well as by lifestyle and dietary factors. The inflammatory response plays a critical role in the genetic and epigenetic reprogramming of tumor cells, as well as in the cells that comprise the tumor microenvironment. Cells in the microenvironment acquire a phenotype that promotes immune evasion, progression, and metastasis. We will review the mechanisms and pathways involved in the interaction between tumors, inflammation, and nutrition, the limitations of current therapies, and discuss potential future therapeutic approaches.
Collapse
Affiliation(s)
- Marisabel Mecca
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Simona Picerno
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Salvatore Cortellino
- Laboratory of Preclinical and Translational Research, Responsible Research Hospital, 86100 Campobasso, CB, Italy
- Scuola Superiore Meridionale (SSM), Clinical and Translational Oncology, 80138 Naples, NA, Italy
- S.H.R.O. Italia Foundation ETS, 10060 Candiolo, TO, Italy
| |
Collapse
|
5
|
Wilczyński JR, Wilczyński M, Paradowska E. "DEPHENCE" system-a novel regimen of therapy that is urgently needed in the high-grade serous ovarian cancer-a focus on anti-cancer stem cell and anti-tumor microenvironment targeted therapies. Front Oncol 2023; 13:1201497. [PMID: 37448521 PMCID: PMC10338102 DOI: 10.3389/fonc.2023.1201497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Ovarian cancer, especially high-grade serous type, is the most lethal gynecological malignancy. The lack of screening programs and the scarcity of symptomatology result in the late diagnosis in about 75% of affected women. Despite very demanding and aggressive surgical treatment, multiple-line chemotherapy regimens and both approved and clinically tested targeted therapies, the overall survival of patients is still unsatisfactory and disappointing. Research studies have recently brought some more understanding of the molecular diversity of the ovarian cancer, its unique intraperitoneal biology, the role of cancer stem cells, and the complexity of tumor microenvironment. There is a growing body of evidence that individualization of the treatment adjusted to the molecular and biochemical signature of the tumor as well as to the medical status of the patient should replace or supplement the foregoing therapy. In this review, we have proposed the principles of the novel regimen of the therapy that we called the "DEPHENCE" system, and we have extensively discussed the results of the studies focused on the ovarian cancer stem cells, other components of cancer metastatic niche, and, finally, clinical trials targeting these two environments. Through this, we have tried to present the evolving landscape of treatment options and put flesh on the experimental approach to attack the high-grade serous ovarian cancer multidirectionally, corresponding to the "DEPHENCE" system postulates.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, Lodz, Poland
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother's Health Center-Research Institute, Lodz, Poland
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
6
|
Gaitskell K, Rogozińska E, Platt S, Chen Y, Abd El Aziz M, Tattersall A, Morrison J. Angiogenesis inhibitors for the treatment of epithelial ovarian cancer. Cochrane Database Syst Rev 2023; 4:CD007930. [PMID: 37185961 PMCID: PMC10111509 DOI: 10.1002/14651858.cd007930.pub3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND Many women, and other females, with epithelial ovarian cancer (EOC) develop resistance to conventional chemotherapy drugs. Drugs that inhibit angiogenesis (development of new blood vessels), essential for tumour growth, control cancer growth by denying blood supply to tumour nodules. OBJECTIVES To compare the effectiveness and toxicities of angiogenesis inhibitors for treatment of epithelial ovarian cancer (EOC). SEARCH METHODS We identified randomised controlled trials (RCTs) by searching CENTRAL, MEDLINE and Embase (from 1990 to 30 September 2022). We searched clinical trials registers and contacted investigators of completed and ongoing trials for further information. SELECTION CRITERIA RCTs comparing angiogenesis inhibitors with standard chemotherapy, other types of anti-cancer treatment, other angiogenesis inhibitors with or without other treatments, or placebo/no treatment in a maintenance setting, in women with EOC. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane. Our outcomes were overall survival (OS), progression-free survival (PFS), quality of life (QoL), adverse events (grade 3 and above) and hypertension (grade 2 and above). MAIN RESULTS We identified 50 studies (14,836 participants) for inclusion (including five studies from the previous version of this review): 13 solely in females with newly-diagnosed EOC and 37 in females with recurrent EOC (nine studies in platinum-sensitive EOC; 19 in platinum-resistant EOC; nine with studies with mixed or unclear platinum sensitivity). The main results are presented below. Newly-diagnosed EOC Bevacizumab, a monoclonal antibody that binds vascular endothelial growth factor (VEGF), given with chemotherapy and continued as maintenance, likely results in little to no difference in OS compared to chemotherapy alone (hazard ratio (HR) 0.97, 95% confidence interval (CI) 0.88 to 1.07; 2 studies, 2776 participants; moderate-certainty evidence). Evidence is very uncertain for PFS (HR 0.82, 95% CI 0.64 to 1.05; 2 studies, 2746 participants; very low-certainty evidence), although the combination results in a slight reduction in global QoL (mean difference (MD) -6.4, 95% CI -8.86 to -3.94; 1 study, 890 participants; high-certainty evidence). The combination likely increases any adverse event (grade ≥ 3) (risk ratio (RR) 1.16, 95% CI 1.07 to 1.26; 1 study, 1485 participants; moderate-certainty evidence) and may result in a large increase in hypertension (grade ≥ 2) (RR 4.27, 95% CI 3.25 to 5.60; 2 studies, 2707 participants; low-certainty evidence). Tyrosine kinase inhibitors (TKIs) to block VEGF receptors (VEGF-R), given with chemotherapy and continued as maintenance, likely result in little to no difference in OS (HR 0.99, 95% CI 0.84 to 1.17; 2 studies, 1451 participants; moderate-certainty evidence) and likely increase PFS slightly (HR 0.88, 95% CI 0.77 to 1.00; 2 studies, 2466 participants; moderate-certainty evidence). The combination likely reduces QoL slightly (MD -1.86, 95% CI -3.46 to -0.26; 1 study, 1340 participants; moderate-certainty evidence), but it increases any adverse event (grade ≥ 3) slightly (RR 1.31, 95% CI 1.11 to 1.55; 1 study, 188 participants; moderate-certainty evidence) and may result in a large increase in hypertension (grade ≥ 3) (RR 6.49, 95% CI 2.02 to 20.87; 1 study, 1352 participants; low-certainty evidence). Recurrent EOC (platinum-sensitive) Moderate-certainty evidence from three studies (with 1564 participants) indicates that bevacizumab with chemotherapy, and continued as maintenance, likely results in little to no difference in OS (HR 0.90, 95% CI 0.79 to 1.02), but likely improves PFS (HR 0.56, 95% CI 0.50 to 0.63) compared to chemotherapy alone. The combination may result in little to no difference in QoL (MD 0.8, 95% CI -2.11 to 3.71; 1 study, 486 participants; low-certainty evidence), but it increases the rate of any adverse event (grade ≥ 3) slightly (RR 1.11, 1.07 to 1.16; 3 studies, 1538 participants; high-certainty evidence). Hypertension (grade ≥ 3) was more common in arms with bevacizumab (RR 5.82, 95% CI 3.84 to 8.83; 3 studies, 1538 participants). TKIs with chemotherapy may result in little to no difference in OS (HR 0.86, 95% CI 0.67 to 1.11; 1 study, 282 participants; low-certainty evidence), likely increase PFS (HR 0.56, 95% CI 0.44 to 0.72; 1 study, 282 participants; moderate-certainty evidence), and may have little to no effect on QoL (MD 6.1, 95% CI -0.96 to 13.16; 1 study, 146 participants; low-certainty evidence). Hypertension (grade ≥ 3) was more common with TKIs (RR 3.32, 95% CI 1.21 to 9.10). Recurrent EOC (platinum-resistant) Bevacizumab with chemotherapy and continued as maintenance increases OS (HR 0.73, 95% CI 0.61 to 0.88; 5 studies, 778 participants; high-certainty evidence) and likely results in a large increase in PFS (HR 0.49, 95% CI 0.42 to 0.58; 5 studies, 778 participants; moderate-certainty evidence). The combination may result in a large increase in hypertension (grade ≥ 2) (RR 3.11, 95% CI 1.83 to 5.27; 2 studies, 436 participants; low-certainty evidence). The rate of bowel fistula/perforation (grade ≥ 2) may be slightly higher with bevacizumab (RR 6.89, 95% CI 0.86 to 55.09; 2 studies, 436 participants). Evidence from eight studies suggest TKIs with chemotherapy likely result in little to no difference in OS (HR 0.85, 95% CI 0.68 to 1.08; 940 participants; moderate-certainty evidence), with low-certainty evidence that it may increase PFS (HR 0.70, 95% CI 0.55 to 0.89; 940 participants), and may result in little to no meaningful difference in QoL (MD ranged from -0.19 at 6 weeks to -3.40 at 4 months). The combination increases any adverse event (grade ≥ 3) slightly (RR 1.23, 95% CI 1.02 to 1.49; 3 studies, 402 participants; high-certainty evidence). The effect on bowel fistula/perforation rates is uncertain (RR 2.74, 95% CI 0.77 to 9.75; 5 studies, 557 participants; very low-certainty evidence). AUTHORS' CONCLUSIONS Bevacizumab likely improves both OS and PFS in platinum-resistant relapsed EOC. In platinum-sensitive relapsed disease, bevacizumab and TKIs probably improve PFS, but may or may not improve OS. The results for TKIs in platinum-resistant relapsed EOC are similar. The effects on OS or PFS in newly-diagnosed EOC are less certain, with a decrease in QoL and increase in adverse events. Overall adverse events and QoL data were more variably reported than were PFS data. There appears to be a role for anti-angiogenesis treatment, but given the additional treatment burden and economic costs of maintenance treatments, benefits and risks of anti-angiogenesis treatments should be carefully considered.
Collapse
Affiliation(s)
- Kezia Gaitskell
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | - Sarah Platt
- Obstetrics and Gynaecology, St Mary's Hospital, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
- Department of Gynaecological Oncology, St. Michael's Hospital, Bristol, UK
| | - Yifan Chen
- Oxford Medical School, University of Oxford, Oxford, UK
| | | | | | - Jo Morrison
- Department of Gynaecological Oncology, Musgrove Park Hospital, Somerset NHS Foundation Trust, Taunton, UK
| |
Collapse
|
7
|
Li L, Zhang Y, Qin L. Effect of celecoxib plus standard chemotherapy on cancer prognosis: A systematic review and meta-analysis. Eur J Clin Invest 2023; 53:e13973. [PMID: 36807298 DOI: 10.1111/eci.13973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/20/2023]
Abstract
BACKGROUND Inflammation is closely related to cancer prognosis. The effect of celecoxib, a nonsteroidal anti-inflammatory drug, on the prognosis of patients with cancer remains uncertain. To assess the association between celecoxib plus standard chemotherapy and cancer prognosis, we conducted a systematic review and meta-analysis of published studies. METHODS PubMed, EMBASE, and the Cochrane Library were searched from inception until July 2022 for randomized controlled trials reporting the prognosis of patients with cancer treated with celecoxib plus standard chemotherapy. The primary endpoints were overall survival (OS) and progression-free survival (PFS). Meta-analysis was performed using Review Manager software version 5.4. The following search terms were used in the databases: ((((celecoxib)) AND ((((((((cancer) OR (carcinoma)) OR (sarcoma)) OR (neoplasms)) OR (tumor)) OR (tumour)) OR (tumors)) OR (tumours))) AND ((survival) OR (mortality))) AND (((Clinical Trials, Randomized) OR (Trials, Randomized Clinical)) OR (Controlled Clinical Trials, Randomized)). RESULTS Overall, 13 randomized controlled trials, including 8957 patients with cancer, were included in the analysis. Compared to conventional chemotherapy alone, 1-year OS and 1-year PFS rates were not significantly improved with celecoxib adjuvant therapy (OS: p = .38; PFS: p = .65). In addition, no differences were observed between the celecoxib and placebo groups in 3-year overall (p = .98), 3-year progression-free (p = .40), 5-year overall (p = .59), or 5-year progression-free (p = .56) survival rates. An increase in the risk ratio of leukopenia (p = .02) and thrombocytopenia (p = .05) was also observed, suggesting that celecoxib promotes hematologic toxicity. No increased risk of cardiovascular (p = .96) and gastrointestinal (p = .10-.91) events was observed. CONCLUSIONS The addition of celecoxib to standard chemotherapy did not improve OS or PFS rates of patients with cancer. Additionally, celecoxib can increase hematologic toxicity without increasing the risk of gastrointestinal or cardiovascular reactions. Further randomized controlled trials are necessary to clarify its effects and applications.
Collapse
Affiliation(s)
- Liangyu Li
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Yingrui Zhang
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Lizheng Qin
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Thiruchenthooran V, Sánchez-López E, Gliszczyńska A. Perspectives of the Application of Non-Steroidal Anti-Inflammatory Drugs in Cancer Therapy: Attempts to Overcome Their Unfavorable Side Effects. Cancers (Basel) 2023; 15:cancers15020475. [PMID: 36672424 PMCID: PMC9856583 DOI: 10.3390/cancers15020475] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) express anti-tumoral activity mainly by blocking cyclooxygenase-2 involved in the synthesis of prostaglandins. Therefore, in the last few decades, many have attempted to explore the possibilities of applying this group of drugs as effective agents for the inhibition of neoplastic processes. This review summarizes the evidence presented in the literature regarding the anti-tumoral actions of NSAIDs used as monotherapies as well as in combination with conventional chemotherapeutics and natural products. In several clinical trials, it was proven that combinations of NSAIDs and chemotherapeutic drugs (CTDs) were able to obtain suitable results. The combination with phospholipids may resolve the adverse effects of NSAIDs and deliver derivatives with increased antitumor activity, whereas hybrids with terpenoids exhibit superior activity against their parent drugs or physical mixtures. Therefore, the application of NSAIDs in cancer therapy seems to be still an open chapter and requires deep and careful evaluation. The literature's data indicate the possibilities of re-purposing anti-inflammatory drugs currently approved for cancer treatments.
Collapse
Affiliation(s)
- Vaikunthavasan Thiruchenthooran
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain
- Correspondence: (E.S.-L.); or (A.G.)
| | - Anna Gliszczyńska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
- Correspondence: (E.S.-L.); or (A.G.)
| |
Collapse
|
9
|
Ye SY, Li JY, Li TH, Song YX, Sun JX, Chen XW, Zhao JH, Li Y, Wu ZH, Gao P, Huang XZ. The Efficacy and Safety of Celecoxib in Addition to Standard Cancer Therapy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Curr Oncol 2022; 29:6137-6153. [PMID: 36135051 PMCID: PMC9497539 DOI: 10.3390/curroncol29090482] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
The purpose of this meta-analysis was to evaluate the efficacy and safety of celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, in addition to standard anticancer therapy. Randomized controlled trials (RCTs) that evaluated the efficacy and safety of celecoxib-combined cancer therapy were systematically searched in PubMed and Embase databases. The endpoints were overall survival (OS), progression-free survival (PFS), disease-free survival (DFS), objective response rate (ORR), disease control rate (DCR), pathological complete response (pCR), and adverse events (AEs). The results of 30 RCTs containing 9655 patients showed limited benefits in celecoxib-combined cancer therapy. However, celecoxib-combined palliative therapy prolonged PFS in epidermal growth factor receptor (EGFR) wild-type patients (HR = 0.57, 95%CI = 0.35–0.94). Moreover, despite a slight increase in thrombocytopenia (RR = 1.35, 95%CI = 1.08–1.69), there was no increase in other toxicities. Celecoxib combined with adjuvant therapy indicated a better OS (HR = 0.850, 95%CI = 0.725–0.996). Furthermore, celecoxib plus neoadjuvant therapy improved the ORR in standard cancer therapy, especially neoadjuvant therapy (overall: RR = 1.13, 95%CI = 1.03–1.23; neoadjuvant therapy: RR = 1.25, 95%CI = 1.09–1.44), but not pCR. Our study indicated that adding celecoxib to palliative therapy prolongs the PFS of EGFR wild-type patients, with good safety profiles. Celecoxib combined with adjuvant therapy prolongs OS, and celecoxib plus neoadjuvant therapy improves the ORR. Thus, celecoxib-combined cancer therapy may be a promising therapy strategy.
Collapse
Affiliation(s)
- Shi-Yu Ye
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N. Nanjing Street, Shenyang 110002, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, China
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
| | - Jia-Yi Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N. Nanjing Street, Shenyang 110002, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, China
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
| | - Teng-Hui Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N. Nanjing Street, Shenyang 110002, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, China
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
| | - Yong-Xi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N. Nanjing Street, Shenyang 110002, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, China
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
| | - Jing-Xu Sun
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N. Nanjing Street, Shenyang 110002, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, China
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
| | - Xiao-Wan Chen
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N. Nanjing Street, Shenyang 110002, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, China
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
| | - Jun-Hua Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N. Nanjing Street, Shenyang 110002, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, China
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
| | - Yuan Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N. Nanjing Street, Shenyang 110002, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, China
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
| | - Zhong-Hua Wu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N. Nanjing Street, Shenyang 110002, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, China
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
| | - Peng Gao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N. Nanjing Street, Shenyang 110002, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, China
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
- Correspondence: (P.G.); (X.-Z.H.); Tel.: +86-24-83283556 (P.G. & X.-Z.H.)
| | - Xuan-Zhang Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N. Nanjing Street, Shenyang 110002, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, China
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
- Correspondence: (P.G.); (X.-Z.H.); Tel.: +86-24-83283556 (P.G. & X.-Z.H.)
| |
Collapse
|
10
|
Cusano E, Wong C, Taguedong E, Vaska M, Abedin T, Nixon N, Karim S, Tang P, Heng DYC, Ezeife D. Impact of Value Frameworks on the Magnitude of Clinical Benefit: Evaluating a Decade of Randomized Trials for Systemic Therapy in Solid Malignancies. Curr Oncol 2021; 28:4894-4928. [PMID: 34898590 PMCID: PMC8628676 DOI: 10.3390/curroncol28060412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/23/2022] Open
Abstract
In the era of rapid development of new, expensive cancer therapies, value frameworks have been developed to quantify clinical benefit (CB). We assessed the evolution of CB since the 2015 introduction of The American Society of Clinical Oncology and The European Society of Medical Oncology value frameworks. Randomized clinical trials (RCTs) assessing systemic therapies for solid malignancies from 2010 to 2020 were evaluated and CB (Δ) in 2010–2014 (pre-value frameworks (PRE)) were compared to 2015–2020 (POST) for overall survival (OS), progression-free survival (PFS), response rate (RR), and quality of life (QoL). In the 485 studies analyzed (12% PRE and 88% POST), the most common primary endpoint was PFS (49%), followed by OS (20%), RR (12%), and QoL (6%), with a significant increase in OS and decrease in RR as primary endpoints in the POST era (p = 0.011). Multivariable analyses revealed significant improvement in ΔOS POST (OR 2.86, 95% CI 0.46 to 5.26, p = 0.02) while controlling for other variables. After the development of value frameworks, median ΔOS improved minimally. The impact of value frameworks has yet to be fully realized in RCTs. Efforts to include endpoints shown to impact value, such as QoL, into clinical trials are warranted.
Collapse
Affiliation(s)
- Ellen Cusano
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Correspondence:
| | - Chelsea Wong
- Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Eddy Taguedong
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada;
| | - Marcus Vaska
- Tom Baker Cancer Centre, Calgary, AB T2N 4N2, Canada; (M.V.); (T.A.); (N.N.); (S.K.); (P.T.); (D.Y.C.H.); (D.E.)
| | - Tasnima Abedin
- Tom Baker Cancer Centre, Calgary, AB T2N 4N2, Canada; (M.V.); (T.A.); (N.N.); (S.K.); (P.T.); (D.Y.C.H.); (D.E.)
| | - Nancy Nixon
- Tom Baker Cancer Centre, Calgary, AB T2N 4N2, Canada; (M.V.); (T.A.); (N.N.); (S.K.); (P.T.); (D.Y.C.H.); (D.E.)
| | - Safiya Karim
- Tom Baker Cancer Centre, Calgary, AB T2N 4N2, Canada; (M.V.); (T.A.); (N.N.); (S.K.); (P.T.); (D.Y.C.H.); (D.E.)
| | - Patricia Tang
- Tom Baker Cancer Centre, Calgary, AB T2N 4N2, Canada; (M.V.); (T.A.); (N.N.); (S.K.); (P.T.); (D.Y.C.H.); (D.E.)
| | - Daniel Y. C. Heng
- Tom Baker Cancer Centre, Calgary, AB T2N 4N2, Canada; (M.V.); (T.A.); (N.N.); (S.K.); (P.T.); (D.Y.C.H.); (D.E.)
| | - Doreen Ezeife
- Tom Baker Cancer Centre, Calgary, AB T2N 4N2, Canada; (M.V.); (T.A.); (N.N.); (S.K.); (P.T.); (D.Y.C.H.); (D.E.)
| |
Collapse
|
11
|
Majidi A, Na R, Dixon-Suen S, Jordan SJ, Webb PM. Common medications and survival in women with ovarian cancer: A systematic review and meta-analysis. Gynecol Oncol 2020; 157:678-685. [DOI: 10.1016/j.ygyno.2020.03.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/21/2020] [Indexed: 01/30/2023]
|
12
|
Jiang Y, Wang C, Zhou S. Targeting tumor microenvironment in ovarian cancer: Premise and promise. Biochim Biophys Acta Rev Cancer 2020; 1873:188361. [PMID: 32234508 DOI: 10.1016/j.bbcan.2020.188361] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 02/05/2023]
Abstract
Ovarian cancer is the leading cause of gynecological cancer-related mortality globally. The majority of ovarian cancer patients suffer from relapse after standard of care therapies and the clinical benefits from cancer therapies are not satisfactory owing to drug resistance. Certain novel drugs targeting the components of tumor microenvironment (TME) have been approved by US Food and Drug Administration in solid cancers. As such, the passion is rekindled to exploit the role of TME in ovarian cancer progression and metastasis for discovery of novel therapeutics for this deadly disease. In the current review, we revisit the recent mechanistic insights into the contributions of TME to the development, progression, prognosis prediction and therapeutic efficacy of ovarian cancer via modulating cancer hallmarks. We also explored potentially promising predictive and prognostic biomarkers for ovarian cancer patients.
Collapse
Affiliation(s)
- Yuting Jiang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, PR China
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, PR China.
| |
Collapse
|
13
|
Paoletti X, Lewsley LA, Daniele G, Cook A, Yanaihara N, Tinker A, Kristensen G, Ottevanger PB, Aravantinos G, Miller A, Boere IA, Fruscio R, Reyners AKL, Pujade-Lauraine E, Harkin A, Pignata S, Kagimura T, Welch S, Paul J, Karamouza E, Glasspool RM. Assessment of Progression-Free Survival as a Surrogate End Point of Overall Survival in First-Line Treatment of Ovarian Cancer: A Systematic Review and Meta-analysis. JAMA Netw Open 2020; 3:e1918939. [PMID: 31922558 PMCID: PMC6991254 DOI: 10.1001/jamanetworkopen.2019.18939] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/21/2019] [Indexed: 11/20/2022] Open
Abstract
Importance The Gynecologic Cancer InterGroup (GCIG) recommended that progression-free survival (PFS) can serve as a primary end point instead of overall survival (OS) in advanced ovarian cancer. Evidence is lacking for the validity of PFS as a surrogate marker of OS in the modern era of different treatment types. Objective To evaluate whether PFS is a surrogate end point for OS in patients with advanced ovarian cancer. Data Sources In September 2016, a comprehensive search of publications in MEDLINE was conducted for randomized clinical trials of systematic treatment in patients with newly diagnosed ovarian, fallopian tube, or primary peritoneal cancer. The GCIG groups were also queried for potentially completed but unpublished trials. Study Selection Studies with a minimum sample size of 60 patients published since 2001 with PFS and OS rates available were eligible. Investigational treatments considered included initial, maintenance, and intensification therapy consisting of agents delivered at a higher dose and/or frequency compared with that in the control arm. Data Extraction and Synthesis Using the meta-analytic approach on randomized clinical trials published from January 1, 2001, through September 25, 2016, correlations between PFS and OS at the individual level were estimated using the Kendall τ model; between-treatment effects on PFS and OS at the trial level were estimated using the Plackett copula bivariate (R2) model. Criteria for PFS surrogacy required R2 ≥ 0.80 at the trial level. Analysis was performed from January 7 through March 20, 2019. Main Outcomes and Measures Overall survival and PFS based on measurement of cancer antigen 125 levels confirmed by radiological examination results or by combined GCIG criteria. Results In this meta-analysis of 17 unique randomized trials of standard (n = 7), intensification (n = 5), and maintenance (n = 5) chemotherapies or targeted treatments with data from 11 029 unique patients (median age, 58 years [range, 18-88 years]), a high correlation was found between PFS and OS at the individual level (τ = 0.724; 95% CI, 0.717-0.732), but a low correlation was found at the trial level (R2 = 0.24; 95% CI, 0-0.59). Subgroup analyses led to similar results. In the external validation, 14 of the 16 hazard ratios for OS in the published reports fell within the 95% prediction interval from PFS. Conclusions and Relevance This large meta-analysis of individual patient data did not establish PFS as a surrogate end point for OS in first-line treatment of advanced ovarian cancer, but the analysis was limited by the narrow range of treatment effects observed or by poststudy treatment. These results suggest that if PFS is chosen as a primary end point, OS must be measured as a secondary end point.
Collapse
Affiliation(s)
- Xavier Paoletti
- Groupe d’investigateurs national des Etudes des Cancers Ovariens (GINECO), Paris, France
- Gustave Roussy Cancer Center and Institut National de la Santé et de la Recherche Medicale Oncostat, Villejuif, France
- Department of Biostatistics, University of Versailles St Quentin, Institut Curie, Saint-Cloud, France
| | - Liz-Anne Lewsley
- Scottish Gynaecological Cancer Trials Group (SGCTG), Cancer Research United Kingdom Clinical Trial Unit, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gennaro Daniele
- Multicenter Italian Trials in Ovarian Cancer and Gynecologic Malignancies (MITO), Clinical Trials Unit, Istituto Nazionale Tumori– Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G. Pascale, Napoli, Italia
| | - Adrian Cook
- Medical Research Counsel Clinical Trials Unit, University College London, London, United Kingdom
| | - Nozomu Yanaihara
- Japanese Gynecologic Oncology Group (JGOG), Jikei University School of Medicine, Tokyo, Japan
| | - Anna Tinker
- Canadian Cancer Trials Group (CCTG), University of British Columbia, Vancouver, British Columbia, Canada
| | - Gunnar Kristensen
- Nordic Society of Gynaecological Oncology, Norwegian Radium Hospital, Oslo, Norway
| | - Petronella B. Ottevanger
- European Organisation for Research and Treatment of Cancer, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gerasimos Aravantinos
- Hellenic Cooperative Oncology Group, General Oncology Hospital of Kifissia, Nea Kifissia, Greece
| | - Austin Miller
- Gynecologic Oncology Group (GOG), Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Ingrid A. Boere
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Robert Fruscio
- University of Milan Bicocca, San Gerardo Hospital, Monza, Italy
| | - Anna K. L. Reyners
- University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Eric Pujade-Lauraine
- Association de Recherche sur les Cancers dont Gynécologiques–GINECO, Université Paris Descartes, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Andrea Harkin
- Scottish Gynaecological Cancer Trials Group (SGCTG), Cancer Research United Kingdom Clinical Trial Unit, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sandro Pignata
- MITO, Istituto Nazionale Tumori di Napoli IRCCS Fondazione G Pascale, Napoli, Italy
| | - Tatsuo Kagimura
- JGOG, Foundation for Biomedical Research and Innovation at Kobe, Translational Research Center for Medical Innovation, Kobe, Japan
| | - Stephen Welch
- CCTG, London Health Sciences Centre, London, Ontario, Canada
| | - James Paul
- Scottish Gynaecological Cancer Trials Group (SGCTG), Cancer Research United Kingdom Clinical Trial Unit, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Rosalind M. Glasspool
- SGCTG, Beatson West of Scotland Cancer Centre, NHS (National Health Service) Greater Glasgow and Clyde, Glasgow, United Kingdom
| |
Collapse
|
14
|
Reader J, Harper AK, Legesse T, Staats PN, Goloubeva O, Rao GG, Fulton A, Roque DM. EP4 and Class III β-Tubulin Expression in Uterine Smooth Muscle Tumors: Implications for Prognosis and Treatment. Cancers (Basel) 2019; 11:cancers11101590. [PMID: 31635323 PMCID: PMC6826612 DOI: 10.3390/cancers11101590] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 02/07/2023] Open
Abstract
The microtubule-stabilizing agent docetaxel in combination with gemcitabine represents one of the most effective regimens against the aggressive gynecologic tumor leiomyosarcoma (LMS). Upregulation of class III β-tubulin has previously been shown to confer taxane resistance in a variety of human cancers. Prostaglandin E2 receptor EP4 is linked to progression of a variety of human cancers and may represent a novel target for tumor inhibition in LMS. We evaluated the hypotheses that EP4 and class III β-tubulin have increased expression in LMS in comparison to normal myometrium or benign tumors and that expression of class III β-tubulin correlates with resistance to taxanes and poor clinical outcome. Gene expression was examined using TCGA data and correlated with clinicopathologic outcome which demonstrated that class III β-tubulin is more highly expressed in more aggressive sarcomas with EP4 being widely expressed in all subtypes of sarcoma. Immunohistochemistry for EP4 and class III β-tubulin was performed on patients with LMS, leiomyomatosis/STUMP, leiomyoma, and normal myometrium. Expression of EP4 and class III β-tubulin were characterized for cell lines SK-UT-1, SK-UT-1B, and PHM-41 and these cell lines were treated with docetaxel alone and in combination with EP4 inhibitors. In taxane-resistant cell lines that overexpress class III β-tubulin and EP4, treatment with EP4 inhibitor resulted in at least 2-fold sensitization to docetaxel. Expression of class III β-tubulin and EP4 in LMS may identify patients at risk of resistance to standard chemotherapies and candidates for augmentation of therapy through EP4 inhibition.
Collapse
Affiliation(s)
- Jocelyn Reader
- Division of Gynecologic Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA.
| | - Amy K Harper
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Teklu Legesse
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Paul N Staats
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Olga Goloubeva
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Gautam G Rao
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA.
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Amy Fulton
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA.
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA.
| | - Dana M Roque
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA.
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
15
|
Dual Actions of Ketorolac in Metastatic Ovarian Cancer. Cancers (Basel) 2019; 11:cancers11081049. [PMID: 31344967 PMCID: PMC6721416 DOI: 10.3390/cancers11081049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
Cytoreductive surgery and chemotherapy are cornerstones of ovarian cancer treatment, yet disease recurrence remains a significant clinical issue. Surgery can release cancer cells into the circulation, suppress anti-tumor immunity, and induce inflammatory responses that support the growth of residual disease. Intervention within the peri-operative window is an under-explored opportunity to mitigate these consequences of surgery and influence the course of metastatic disease to improve patient outcomes. One drug associated with improved survival in cancer patients is ketorolac. Ketorolac is a chiral molecule administered as a 1:1 racemic mixture of the S- and R-enantiomers. The S-enantiomer is considered the active component for its FDA indication in pain management with selective activity against cyclooxygenase (COX) enzymes. The R-enantiomer has a previously unrecognized activity as an inhibitor of Rac1 (Ras-related C3 botulinum toxin substrate) and Cdc42 (cell division control protein 42) GTPases. Therefore, ketorolac differs from other non-steroidal anti-inflammatory drugs (NSAIDs) by functioning as two distinct pharmacologic entities due to the independent actions of each enantiomer. In this review, we summarize evidence supporting the benefits of ketorolac administration for ovarian cancer patients. We also discuss how simultaneous inhibition of these two distinct classes of targets, COX enzymes and Rac1/Cdc42, by S-ketorolac and R-ketorolac respectively, could each contribute to anti-cancer activity.
Collapse
|
16
|
Kouba S, Ouldamer L, Garcia C, Fontaine D, Chantome A, Vandier C, Goupille C, Potier-Cartereau M. Lipid metabolism and Calcium signaling in epithelial ovarian cancer. Cell Calcium 2019; 81:38-50. [PMID: 31200184 DOI: 10.1016/j.ceca.2019.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023]
Abstract
Epithelial Ovarian cancer (EOC) is the deadliest gynecologic malignancy and represents the fifth leading cause of all cancer-related deaths in women. The majority of patients are diagnosed at an advanced stage of the disease that has spread beyond the ovaries to the peritoneum or to distant organs (stage FIGO III-IV) with a 5-year overall survival of about 29%. Consequently, it is necessary to understand the pathogenesis of this disease. Among the factors that contribute to cancer development, lipids and ion channels have been described to be associated to cancerous diseases particularly in breast, colorectal and prostate cancers. Here, we reviewed the literature data to determine how lipids or lipid metabolites may influence EOC risk or progression. We also highlighted the role and the expression of the calcium (Ca2+) and calcium-activated potassium (KCa) channels in EOC and how lipids might regulate them. Although lipids and some subclasses of nutritional lipids may be associated to EOC risk, lipid metabolism of LPA (lysophosphatidic acid) and AA (arachidonic acid) emerges as an important signaling network in EOC. Clinical data showed that they are found at high concentrations in EOC patients and in vitro and in vivo studies referred to them as triggers of the Ca2+entry in the cancer cells inducing their proliferation, migration or drug resistance. The cross-talk between lipid mediators and Ca2+ and/or KCa channels needs to be elucidated in EOC in order to facilitate the understanding of its outcomes and potentially suggest novel therapeutic strategies including treatment and prevention.
Collapse
Affiliation(s)
- Sana Kouba
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France
| | - Lobna Ouldamer
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Université de Tours, INSERM, N2C UMR 1069, CHRU de Tours, Service de gynécologie et d'obstétrique, Tours, France
| | - Céline Garcia
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France
| | - Delphine Fontaine
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France
| | - Aurélie Chantome
- Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France; Université de Tours, INSERM, N2C UMR 1069, Faculté de Pharmacie, Tours, France
| | - Christophe Vandier
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France
| | - Caroline Goupille
- Réseau CASTOR du Cancéropôle Grand Ouest, France; Université de Tours, INSERM, N2C UMR 1069, CHRU de Tours, Faculté de Médecine, Tours, France
| | - Marie Potier-Cartereau
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France.
| |
Collapse
|
17
|
Hamy AS, Tury S, Wang X, Gao J, Pierga JY, Giacchetti S, Brain E, Pistilli B, Marty M, Espié M, Benchimol G, Laas E, Laé M, Asselain B, Aouchiche B, Edelman M, Reyal F. Celecoxib With Neoadjuvant Chemotherapy for Breast Cancer Might Worsen Outcomes Differentially by COX-2 Expression and ER Status: Exploratory Analysis of the REMAGUS02 Trial. J Clin Oncol 2019; 37:624-635. [PMID: 30702971 DOI: 10.1200/jco.18.00636] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE The overexpression of cyclooxygenase 2 (COX-2) gene, also known as prostaglandin-endoperoxide synthase 2 ( PTGS2), occurs in breast cancer, but whether it affects response to anticox drugs remains unclear. We investigated the relationships between PTGS2 expression, celecoxib use during neoadjuvant chemotherapy (NAC), and both event-free survival (EFS) and overall survival (OS). MATERIALS AND METHODS We analyzed a cohort of 156 patients with human epidermal growth factor receptor 2 -negative breast cancer from the REMAGUS02 (ISRCTN Registry No. 10059974) trial with pretreatment PTGS2 expression data. Patients were treated by sequential NAC (epirubicin plus cyclophosphamide followed by docetaxel with or without celecoxib). Experimental validation was performed on breast cancer cell lines. The Cancer and Leukemia Group B (CALGB) 30801 ( ClinicalTrials.gov identifier: NCT01041781) trial that tested chemotherapy with or without celecoxib in patients with lung cancer served as an independent validation cohort. RESULTS After 94.5 months of follow-up, EFS was significantly lower in the celecoxib group (hazard ratio [HR], 1.7; 95% CI, 1 to 2.88; P = .046). A significant interaction between PTGS2 expression and celecoxib use was detected ( Pinteraction = .01). In the PTGS2-low group (n = 100), EFS was lower in the celecoxib arm (HR, 3.01; 95% CI, 1.45 to 6.24; P = .002) than in the standard treatment arm. Celecoxib use was an independent predictor of poor EFS, distant relapse-free survival, and OS. Celecoxib in addition to docetaxel enhanced cell viability in PTGS2-low cell lines but not in PTGS2-high cell lines. In CALGB 30801, a trend toward poorer progression-free survival was observed in the patients with low urinary metabolite of prostaglandin E2 who received celecoxib (HR = 1.57; 95% CI, 0.87 to 2.84; P = .13). CONCLUSION Celecoxib use during chemotherapy adversely affected survival in patients with breast cancer, and the effect was more marked in PTGS2-low and/or estrogen receptor-negative tumors. COX-2 inhibitors should preferably be avoided during docetaxel use in patients with breast cancer who are undergoing NAC.
Collapse
Affiliation(s)
| | - Sandrine Tury
- 1 Institut Curie, Université Paris Descartes, Paris, France
| | - Xiaofei Wang
- 2 Alliance Statistics and Data Center, Durham, NC
| | - Junheng Gao
- 2 Alliance Statistics and Data Center, Durham, NC
| | | | - Sylvie Giacchetti
- 3 Hôpital Saint Louis (APHP), Université Paris Diderot, Paris, France
| | - Etienne Brain
- 1 Institut Curie, Université Paris Descartes, Paris, France
| | | | - Michel Marty
- 3 Hôpital Saint Louis (APHP), Université Paris Diderot, Paris, France
| | - Marc Espié
- 3 Hôpital Saint Louis (APHP), Université Paris Diderot, Paris, France
| | | | - Enora Laas
- 1 Institut Curie, Université Paris Descartes, Paris, France
| | - Marick Laé
- 1 Institut Curie, Université Paris Descartes, Paris, France
| | | | | | | | - Fabien Reyal
- 1 Institut Curie, Université Paris Descartes, Paris, France
| |
Collapse
|
18
|
Preventative effect of celecoxib in dimethylbenz[a]anthracene-induced ovarian cancer in rats. Arch Gynecol Obstet 2018; 298:981-989. [PMID: 30242499 DOI: 10.1007/s00404-018-4898-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/06/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE The present study investigated the preventive effect of the cyclooxygenase (COX)-2 inhibitor, celecoxib, in 7,12-dimethylbenz[a]anthracene (DMBA)-induced ovarian cancer in a rat model. METHODS A diet containing celecoxib (1500 ppm) was started 2 weeks before the introduction of DMBA. DMBA-soaked cotton threads were surgically applied to induce ovarian cancer in female Wistar rats. Tumor growth and survival were observed for 24 weeks. RESULTS During the study period, an overall tumor incidence of 97.5% was observed and 65% of tumors were ovarian adenocarcinoma. The celecoxib diet significantly reduced the incidence and size of DMBA-induced ovarian cancers and significantly improved survival of tumor-bearing rats. The preventive effect of celecoxib was associated with increased apoptosis. CONCLUSION DMBA-induced ovarian cancer in rats recapitulates many pathophysiological features of the human counterpart. Our results provide supportive evidence that celecoxib has a preventive effect on development of ovarian cancer in a rat model.
Collapse
|
19
|
Verdoodt F, Dehlendorff C, Friis S, Kjaer SK. Non-aspirin NSAID use and ovarian cancer mortality. Gynecol Oncol 2018; 150:331-337. [PMID: 29960709 DOI: 10.1016/j.ygyno.2018.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Preclinical studies suggest that non-aspirin non-steroidal anti-inflammatory drugs (NSAIDs) may improve survival of ovarian cancer. We examined the association between non-aspirin NSAID use and ovarian cancer mortality. METHODS All women in Denmark with a first diagnosis of epithelial ovarian cancer between 2000 and 2012 were identified. We obtained information on drug use, mortality outcomes, and potential confounding factors from nationwide registries. Cox regression models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between postdiagnosis non-aspirin NSAID use (≥1 prescription) and ovarian cancer-specific or other-cause mortality compared with non-use (no prescriptions). The influence of competing risks was evaluated using the sub-distribution hazards model proposed by Fine and Gray. RESULTS Among 4117 patients, any postdiagnosis use of non-aspirin NSAIDs was not associated with either ovarian cancer (HR = 0.97, 95% CI = 0.87-1.08) or other-cause (HR = 0.99, 95% CI = 0.77-1.27) mortality, however, inverse associations for ovarian cancer mortality were observed with high cumulative (HR = 0.75, 95% CI = 0.60-0.94) or high-intensity (HR = 0.86, 95% CI = 0.72-1.03) postdiagnosis use of non-aspirin NSAIDs. The associations differed substantially with histological subtype of ovarian cancer, with only inverse associations observed for serous ovarian cancer (HR = 0.87, 95% CI = 0.77-0.99). Among a smaller number of patients with a non-serous tumor, postdiagnosis non-aspirin NSAID use was associated with increased ovarian cancer mortality. CONCLUSIONS Any postdiagnosis use of non-aspirin NSAIDs did not influence ovarian cancer mortality overall, however, more intensive use was associated with improved survival of serous ovarian cancer.
Collapse
Affiliation(s)
- Freija Verdoodt
- Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Christian Dehlendorff
- Statistics and Pharmacoepidemiology, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Søren Friis
- Statistics and Pharmacoepidemiology, Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Susanne K Kjaer
- Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
20
|
The effect of celecoxib on tumor growth in ovarian cancer cells and a genetically engineered mouse model of serous ovarian cancer. Oncotarget 2018; 7:39582-39594. [PMID: 27074576 PMCID: PMC5129955 DOI: 10.18632/oncotarget.8659] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/28/2016] [Indexed: 12/20/2022] Open
Abstract
Our objective was to evaluate the effect of the COX-2 inhibitor, celecoxib, on (1) proliferation and apoptosis in human ovarian cancer cell lines and primary cultures of ovarian cancer cells, and (2) inhibition of tumor growth in a genetically engineered mouse model of serous ovarian cancer under obese and non-obese conditions. Celecoxib inhibited cell proliferation in three ovarian cancer cell lines and five primary cultures of human ovarian cancer after 72 hours of exposure. Treatment with celecoxib resulted in G1 cell cycle arrest, induction of apoptosis, inhibition of cellular adhesion and invasion and reduction of expression of hTERT mRNA and COX-2 protein in all of the ovarian cancer cell lines. In the KpB mice fed a high fat diet (obese) and treated with celecoxib, tumor weight decreased by 66% when compared with control animals. Among KpB mice fed a low fat diet (non-obese), tumor weight decreased by 46% after treatment with celecoxib. In the ovarian tumors from obese and non-obese KpB mice, treatment with celecoxib as compared to control resulted in decreased proliferation, increased apoptosis and reduced COX-2 and MMP9 protein expression, as assessed by immunohistochemistry. Celecoxib strongly decreased the serum level of VEGF and blood vessel density in the tumors from the KpB ovarian cancer mouse model under obese and non-obese conditions. This work suggests that celecoxib may be a novel chemotherapeutic agent for ovarian cancer prevention and treatment and be potentially beneficial in both obese and non-obese women.
Collapse
|
21
|
Dixon SC, Nagle CM, Wentzensen N, Trabert B, Beeghly-Fadiel A, Schildkraut JM, Moysich KB, deFazio A, Risch HA, Rossing MA, Doherty JA, Wicklund KG, Goodman MT, Modugno F, Ness RB, Edwards RP, Jensen A, Kjær SK, Høgdall E, Berchuck A, Cramer DW, Terry KL, Poole EM, Bandera EV, Paddock LE, Anton-Culver H, Ziogas A, Menon U, Gayther SA, Ramus SJ, Gentry-Maharaj A, Pearce CL, Wu AH, Pike MC, Webb PM. Use of common analgesic medications and ovarian cancer survival: results from a pooled analysis in the Ovarian Cancer Association Consortium. Br J Cancer 2017; 116:1223-1228. [PMID: 28350790 PMCID: PMC5418444 DOI: 10.1038/bjc.2017.68] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 12/09/2016] [Accepted: 02/04/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drugs (NSAIDs) have been associated with improved survival in some cancers, but evidence for ovarian cancer is limited. METHODS Pooling individual-level data from 12 Ovarian Cancer Association Consortium studies, we evaluated the association between self-reported, pre-diagnosis use of common analgesics and overall/progression-free/disease-specific survival among 7694 women with invasive epithelial ovarian cancer (4273 deaths). RESULTS Regular analgesic use (at least once per week) was not associated with overall survival (pooled hazard ratios, pHRs (95% confidence intervals): aspirin 0.96 (0.88-1.04); non-aspirin NSAIDs 0.97 (0.89-1.05); acetaminophen 1.01 (0.93-1.10)), nor with progression-free/disease-specific survival. There was however a survival advantage for users of any NSAIDs in studies clearly defining non-use as less than once per week (pHR=0.89 (0.82-0.98)). CONCLUSIONS Although this study did not show a clear association between analgesic use and ovarian cancer survival, further investigation with clearer definitions of use and information about post-diagnosis use is warranted.
Collapse
Affiliation(s)
- Suzanne C Dixon
- Gynaecological Cancers Group, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland 4006, Australia
- The University of Queensland, School of Public Health, Level 2 Public Health Building (887), Corner of Herston Road & Wyndham Street, Brisbane, Queensland 4006, Australia
| | - Christina M Nagle
- Gynaecological Cancers Group, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland 4006, Australia
- The University of Queensland, School of Public Health, Level 2 Public Health Building (887), Corner of Herston Road & Wyndham Street, Brisbane, Queensland 4006, Australia
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Bethesda, MD 20892-9774, USA
| | - Britton Trabert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Bethesda, MD 20892-9774, USA
| | - Alicia Beeghly-Fadiel
- Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, 2525 West End Avenue, Nashville, TN 37203, USA
| | - Joellen M Schildkraut
- Department of Community and Family Medicine, Duke University Medical Center, 2424 Erwin Road, Suite 602, Durham, NC 27710, USA
- Cancer Control and Population Sciences, Duke Cancer Institute, DUMC Box 3917, 10 Bryan Searle Drive, Seeley Mudd Building, 2nd floor, Durham, NC 27710, USA
| | - Kirsten B Moysich
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Anna deFazio
- Centre for Cancer Research, the Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Road, Sydney, NSW 2145, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Cnr Hawkesbury Road and Darcy Road, Sydney, New South Wales 2145, Australia
| | - Australian Ovarian Cancer Study Group
- Gynaecological Cancers Group, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland 4006, Australia
- The University of Queensland, School of Public Health, Level 2 Public Health Building (887), Corner of Herston Road & Wyndham Street, Brisbane, Queensland 4006, Australia
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Bethesda, MD 20892-9774, USA
- Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, 2525 West End Avenue, Nashville, TN 37203, USA
- Department of Community and Family Medicine, Duke University Medical Center, 2424 Erwin Road, Suite 602, Durham, NC 27710, USA
- Cancer Control and Population Sciences, Duke Cancer Institute, DUMC Box 3917, 10 Bryan Searle Drive, Seeley Mudd Building, 2nd floor, Durham, NC 27710, USA
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
- Centre for Cancer Research, the Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Road, Sydney, NSW 2145, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Cnr Hawkesbury Road and Darcy Road, Sydney, New South Wales 2145, Australia
- Cancer Genetics and Genomics Laboratory, Peter MacCallum Cancer Centre, St Andrews Place, Melbourne, Victoria 3002, Australia
- Department of Chronic Disease Epidemiology, Yale School of Public Health, LEPH 413, 60 College Street, New Haven, CT 06510, USA
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA
- Department of Epidemiology, University of Washington, 1959 NE Pacific Street, Health Sciences Bldg, F-262, Seattle, WA 98195, USA
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, 7927 Rubin Building, Lebanon, NH 03756, USA
- Cancer Prevention and Control, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
- Community and Population Health Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 300 Halket Street, Pittsburgh, PA 15213, USA
- Ovarian Cancer Center of Excellence, Women's Cancer Research Program, Magee-Women's Research Institute and University of Pittsburgh Cancer Institute, 204 Craft Avenue, Pittsburgh, PA 15213, USA
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, 130 De Soto Street, Pittsburgh, PA 15261, USA
- The University of Texas School of Public Health, 1200 Herman Pressler, Suite W130, Houston, TX 77030, USA
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Strandboulevarden 49, Copenhagen Ø DK-2100, Denmark
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen Ø DK-2100, Denmark
- Molecular Unit, Department of Pathology, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, Herlev DK-2370, Denmark
- Department of Obstetrics and Gynecology, Duke University Medical Center, 25171 Morris Bldg, Durham, NC 27710, USA
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital, 221 Longwood Avenue, Richardson Fuller Building, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
- Cancer Prevention and Control Program, Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
- Rutgers School of Public Health, 683 Hoes Lane West, Piscataway, NJ 08854, USA
- Cancer Surveillance Research Program, Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
- Department of Epidemiology, University of California Irvine, 224 Irvine Hall, Irvine, CA 92697-7550, USA
- Genetic Epidemiology Research Institute, UCI Center for Cancer Genetics Research & Prevention, School of Medicine, University of California Irvine, 224 Irvine Hall, Irvine, CA 92697-7550, USA
- Women's Cancer, Institute for Women's Health, University College London, Maple House 1st Floor, 149 Tottenham Court Road, London W1T 7DN, UK
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
- School of Women's and Children's Health, University of New South Wales, Level 1, Women's Health Institute, Royal Hospital for Women, Barker Street, Randwick, New South Wales 2031, Australia
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia
- Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, SPH Tower, Ann Arbor, MI 48109-2029, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 307 East 63rd Street, New York, NY 10065, USA
| | - Harvey A Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, LEPH 413, 60 College Street, New Haven, CT 06510, USA
| | - Mary Anne Rossing
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA
- Department of Epidemiology, University of Washington, 1959 NE Pacific Street, Health Sciences Bldg, F-262, Seattle, WA 98195, USA
| | - Jennifer A Doherty
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, 7927 Rubin Building, Lebanon, NH 03756, USA
| | - Kristine G Wicklund
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA
| | - Marc T Goodman
- Cancer Prevention and Control, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
- Community and Population Health Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Francesmary Modugno
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 300 Halket Street, Pittsburgh, PA 15213, USA
- Ovarian Cancer Center of Excellence, Women's Cancer Research Program, Magee-Women's Research Institute and University of Pittsburgh Cancer Institute, 204 Craft Avenue, Pittsburgh, PA 15213, USA
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, 130 De Soto Street, Pittsburgh, PA 15261, USA
| | - Roberta B Ness
- The University of Texas School of Public Health, 1200 Herman Pressler, Suite W130, Houston, TX 77030, USA
| | - Robert P Edwards
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 300 Halket Street, Pittsburgh, PA 15213, USA
- Ovarian Cancer Center of Excellence, Women's Cancer Research Program, Magee-Women's Research Institute and University of Pittsburgh Cancer Institute, 204 Craft Avenue, Pittsburgh, PA 15213, USA
| | - Allan Jensen
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Strandboulevarden 49, Copenhagen Ø DK-2100, Denmark
| | - Susanne K Kjær
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Strandboulevarden 49, Copenhagen Ø DK-2100, Denmark
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen Ø DK-2100, Denmark
| | - Estrid Høgdall
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Strandboulevarden 49, Copenhagen Ø DK-2100, Denmark
- Molecular Unit, Department of Pathology, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, Herlev DK-2370, Denmark
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Duke University Medical Center, 25171 Morris Bldg, Durham, NC 27710, USA
| | - Daniel W Cramer
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital, 221 Longwood Avenue, Richardson Fuller Building, Boston, MA 02115, USA
| | - Kathryn L Terry
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital, 221 Longwood Avenue, Richardson Fuller Building, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - Elizabeth M Poole
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Elisa V Bandera
- Cancer Prevention and Control Program, Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
- Rutgers School of Public Health, 683 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Lisa E Paddock
- Rutgers School of Public Health, 683 Hoes Lane West, Piscataway, NJ 08854, USA
- Cancer Surveillance Research Program, Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Hoda Anton-Culver
- Department of Epidemiology, University of California Irvine, 224 Irvine Hall, Irvine, CA 92697-7550, USA
- Genetic Epidemiology Research Institute, UCI Center for Cancer Genetics Research & Prevention, School of Medicine, University of California Irvine, 224 Irvine Hall, Irvine, CA 92697-7550, USA
| | - Argyrios Ziogas
- Department of Epidemiology, University of California Irvine, 224 Irvine Hall, Irvine, CA 92697-7550, USA
| | - Usha Menon
- Women's Cancer, Institute for Women's Health, University College London, Maple House 1st Floor, 149 Tottenham Court Road, London W1T 7DN, UK
| | - Simon A Gayther
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Susan J Ramus
- School of Women's and Children's Health, University of New South Wales, Level 1, Women's Health Institute, Royal Hospital for Women, Barker Street, Randwick, New South Wales 2031, Australia
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia
| | - Aleksandra Gentry-Maharaj
- Women's Cancer, Institute for Women's Health, University College London, Maple House 1st Floor, 149 Tottenham Court Road, London W1T 7DN, UK
| | - Celeste Leigh Pearce
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
- Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, SPH Tower, Ann Arbor, MI 48109-2029, USA
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Malcolm C Pike
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 307 East 63rd Street, New York, NY 10065, USA
| | - Penelope M Webb
- Gynaecological Cancers Group, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland 4006, Australia
- The University of Queensland, School of Public Health, Level 2 Public Health Building (887), Corner of Herston Road & Wyndham Street, Brisbane, Queensland 4006, Australia
| |
Collapse
|
22
|
Fedoseienko A, Wieringa HW, Wisman GBA, Duiker E, Reyners AKL, Hofker MH, van der Zee AGJ, van de Sluis B, van Vugt MATM. Nuclear COMMD1 Is Associated with Cisplatin Sensitivity in Ovarian Cancer. PLoS One 2016; 11:e0165385. [PMID: 27788210 PMCID: PMC5082896 DOI: 10.1371/journal.pone.0165385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 10/11/2016] [Indexed: 01/18/2023] Open
Abstract
Copper metabolism MURR1 domain 1 (COMMD1) protein is a multifunctional protein, and its expression has been correlated with patients’ survival in different types of cancer. In vitro studies revealed that COMMD1 plays a role in sensitizing cancer cell lines to cisplatin, however, the mechanism and its role in platinum sensitivity in cancer has yet to be established. We evaluated the role of COMMD1 in cisplatin sensitivity in A2780 ovarian cancer cells and the relation between COMMD1 expression and response to platinum-based therapy in advanced stage high-grade serous ovarian cancer (HGSOC) patients. We found that elevation of nuclear COMMD1 expression sensitized A2780 ovarian cancer cells to cisplatin-mediated cytotoxicity. This was accompanied by a more effective G2/M checkpoint, and decreased protein expression of the DNA repair gene BRCA1, and the apoptosis inhibitor BCL2. Furthermore, COMMD1 expression was immunohistochemically analyzed in two tissue micro-arrays (TMAs), representing a historical cohort and a randomized clinical trial-based cohort of advanced stage HGSOC tumor specimens. Expression of COMMD1 was observed in all ovarian cancer samples, however, specifically nuclear expression of COMMD1 was only observed in a subset of ovarian cancers. In our historical cohort, nuclear COMMD1 expression was associated with an improved response to chemotherapy (OR = 0.167; P = 0.038), although this association could not be confirmed in the second cohort, likely due to sample size. Taken together, these results suggest that nuclear expression of COMMD1 sensitize ovarian cancer to cisplatin, possibly by modulating the G2/M checkpoint and through controlling expression of genes involved in DNA repair and apoptosis.
Collapse
Affiliation(s)
- Alina Fedoseienko
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hylke W. Wieringa
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Gynecological Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - G. Bea A. Wisman
- Department of Gynecological Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Evelien Duiker
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anna K. L. Reyners
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marten H. Hofker
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ate G. J. van der Zee
- Department of Gynecological Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bart van de Sluis
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail: (BvdS); (MATMvV)
| | - Marcel A. T. M. van Vugt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail: (BvdS); (MATMvV)
| |
Collapse
|
23
|
CXCL9 and CXCL10 predict survival and are regulated by cyclooxygenase inhibition in advanced serous ovarian cancer. Br J Cancer 2016; 115:553-63. [PMID: 27490802 PMCID: PMC4997538 DOI: 10.1038/bjc.2016.172] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/18/2016] [Accepted: 05/11/2016] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Tumour-infiltrating lymphocytes (TILs) are associated with improved survival in several epithelial cancers. The two chemokines CXCL9 and CXCL10 facilitate chemotactic recruitment of TILs, and their intratumoral accumulation is a conceivable way to improve TIL-dependent immune intervention in cancer. However, the prognostic impact of CXCL9 and CXCL10 in high-grade serous ovarian cancer (HGSC) is largely unknown. METHODS One hundred and eighty four cases of HGSC were immunohistochemically analyzed for CXCL9, CXCL10. TILs were assessed using CD3, CD56 and FOXP3 staining. Chemokine regulation was investigated using the ovarian cancer cell lines OV-MZ-6 and SKOV-3. RESULTS High expression of CXCL9 and CXCL10 was associated with an approximately doubled overall survival (n=70, CXCL9: HR 0.41; P=0.006; CXCL10: HR 0.46; P=0.010) which was confirmed in an independent validation set (n=114; CXCL9: HR 0.60; P=0.019; CXCL10: HR 0.52; P=0.005). Expression of CXCR3 ligands significantly correlated with TILs. In human ovarian cancer cell lines the cyclooxygenase (COX) metabolite Prostaglandin E2 was identified as negative regulator of chemokine secretion, whereas COX inhibition by indomethacin significantly upregulated CXCL9 and CXCL10. In contrast, celecoxib, the only COX inhibitor prospectively evaluated for therapy of ovarian cancer, suppressed NF-κB activation and inhibited chemokine release. CONCLUSION Our results support the notion that CXCL9 and CXCL10 exert tumour-suppressive function by TIL recruitment in human ovarian cancer. COX inhibition by indomethacin, not by celecoxib, may be a promising approach to concomitantly improve immunotherapies.
Collapse
|
24
|
Xu B, Wang Y, Yang J, Zhang Z, Zhang Y, Du H. Celecoxib induces apoptosis but up-regulates VEGF via endoplasmic reticulum stress in human colorectal cancer in vitro and in vivo. Cancer Chemother Pharmacol 2016; 77:797-806. [PMID: 26931344 DOI: 10.1007/s00280-016-2996-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/17/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE In our previous study, we found that celecoxib, a kind of COX-2 inhibitor, led to cell apoptosis while up-regulating the expression of vascular endothelial growth factor (VEGF) in colorectal cancer HCT116 cells (COX-2 deficient), and endoplasmic reticulum (ER) stress was involved in the mechanism. Thus, we would like to explore whether these results are universal for other colorectal cancer cells, especially for COX-2-expressing ones, and whether the results in vitro and in vivo are matched. METHODS HT29 cells (COX-2 expressing) were treated with celecoxib under different conditions to evaluate cell apoptosis, VEGF expression and the activation of ER stress. HT29 and HCT116 xenograft tumor models were established to evaluate anti-tumor effects and verify the experiment results we obtained in vitro. RESULTS Celecoxib (≥60 µM) up-regulated the expression of ER stress markers (GRP78 and CHOP) and induced cell apoptosis accompanying with a correlated increased expression of VEGF in HT29 cells. Celecoxib-induced gene expression and cell apoptosis were inhibited by an ER stress inhibitor, PBA. In xenograft models, celecoxib treatment inhibited tumor growth with increased GRP78 and VEGF, which was consistent with the results in vitro. CONCLUSIONS Celecoxib, both in vitro and in vivo, induced apoptosis of colorectal cancer cells but increased the VEGF levels at the same time in a COX-2-independent manner, namely by activating ER stress. The increased VEGF would impair the effect of celecoxib and bring drug resistant; hence, the optimal schedule of the combination of celecoxib with anti-VEGF drugs needs to be explored.
Collapse
Affiliation(s)
- Bingfei Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jing Yang
- Department of Infectious Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Zhengfeng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hansong Du
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
25
|
Jesionowska A, Cecerska-Heryc E, Matoszka N, Dolegowska B. Lysophosphatidic acid signaling in ovarian cancer. J Recept Signal Transduct Res 2015; 35:578-84. [PMID: 26393967 DOI: 10.3109/10799893.2015.1026444] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lysophosphatidic acid (LPA) is a bioactive phospholipid that is involved in signal transduction between cells. Plasma and ascites levels of LPA are increased in ovarian cancer patients even in the early stages and thus LPA is considered as a potential diagnostic marker for this disease. This review presents the current knowledge regarding LPA signaling in epithelial ovarian cancer. LPA stimulates proliferation, migration and invasion of ovarian cancer cells through regulation of vascular endothelial growth factor, matrix metalloproteinases, urokinase plasminogen activator, interleukin-6, interleukin-8, CXC motif chemokine ligand 12/CXC receptor 4, COX2, cyclin D1, Hippo-Yap and growth-regulated oncogene α concentrations. In this article, all of these targets and signal pathways involved in LPA influence are described.
Collapse
Affiliation(s)
| | - Elzbieta Cecerska-Heryc
- b Department of Laboratory Diagnostics and Molecular Medicine , Pomeranian Medical University , Szczecin , Poland
| | - Natalia Matoszka
- b Department of Laboratory Diagnostics and Molecular Medicine , Pomeranian Medical University , Szczecin , Poland
| | - Barbara Dolegowska
- b Department of Laboratory Diagnostics and Molecular Medicine , Pomeranian Medical University , Szczecin , Poland
| |
Collapse
|
26
|
Guo Y, Kenney SR, Muller CY, Adams S, Rutledge T, Romero E, Murray-Krezan C, Prekeris R, Sklar LA, Hudson LG, Wandinger-Ness A. R-Ketorolac Targets Cdc42 and Rac1 and Alters Ovarian Cancer Cell Behaviors Critical for Invasion and Metastasis. Mol Cancer Ther 2015. [PMID: 26206334 DOI: 10.1158/1535-7163.mct-15-0419] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cdc42 (cell division control protein 42) and Rac1 (Ras-related C3 botulinum toxin substrate 1) are attractive therapeutic targets in ovarian cancer based on established importance in tumor cell migration, adhesion, and invasion. Despite a predicted benefit, targeting GTPases has not yet been translated to clinical practice. We previously established that Cdc42 and constitutively active Rac1b are overexpressed in primary ovarian tumor tissues. Through high-throughput screening and computational shape homology approaches, we identified R-ketorolac as a Cdc42 and Rac1 inhibitor, distinct from the anti-inflammatory, cyclooxygenase inhibitory activity of S-ketorolac. In the present study, we establish R-ketorolac as an allosteric inhibitor of Cdc42 and Rac1. Cell-based assays validate R-ketorolac activity against Cdc42 and Rac1. Studies on immortalized human ovarian adenocarcinoma cells (SKOV3ip) and primary patient-derived ovarian cancer cells show that R-ketorolac is a robust inhibitor of growth factor or serum-dependent Cdc42 and Rac1 activation with a potency and cellular efficacy similar to small-molecule inhibitors of Cdc42 (CID2950007/ML141) and Rac1 (NSC23766). Furthermore, GTPase inhibition by R-ketorolac reduces downstream p21-activated kinases (PAK1/PAK2) effector activation by >80%. Multiple assays of cell behavior using SKOV3ip and primary patient-derived ovarian cancer cells show that R-ketorolac significantly inhibits cell adhesion, migration, and invasion. In summary, we provide evidence for R-ketorolac as a direct inhibitor of Cdc42 and Rac1 that is capable of modulating downstream GTPase-dependent, physiologic responses, which are critical to tumor metastasis. Our findings demonstrate the selective inhibition of Cdc42 and Rac1 GTPases by an FDA-approved drug, racemic ketorolac, that can be used in humans.
Collapse
Affiliation(s)
- Yuna Guo
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico. Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - S Ray Kenney
- Cancer Center, University of New Mexico, Albuquerque, New Mexico. Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico
| | - Carolyn Y Muller
- Cancer Center, University of New Mexico, Albuquerque, New Mexico. Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Sarah Adams
- Cancer Center, University of New Mexico, Albuquerque, New Mexico. Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Teresa Rutledge
- Cancer Center, University of New Mexico, Albuquerque, New Mexico. Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Elsa Romero
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Cristina Murray-Krezan
- Division of Epidemiology, Biostatistics and Preventive Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Larry A Sklar
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico. Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - Laurie G Hudson
- Cancer Center, University of New Mexico, Albuquerque, New Mexico. Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico
| | - Angela Wandinger-Ness
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico. Cancer Center, University of New Mexico, Albuquerque, New Mexico.
| |
Collapse
|
27
|
Kast RE, Karpel-Massler G, Halatsch ME. CUSP9* treatment protocol for recurrent glioblastoma: aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, ritonavir, sertraline augmenting continuous low dose temozolomide. Oncotarget 2015; 5:8052-82. [PMID: 25211298 PMCID: PMC4226667 DOI: 10.18632/oncotarget.2408] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
CUSP9 treatment protocol for recurrent glioblastoma was published one year ago. We now present a slight modification, designated CUSP9*. CUSP9* drugs--aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, sertraline, ritonavir, are all widely approved by regulatory authorities, marketed for non-cancer indications. Each drug inhibits one or more important growth-enhancing pathways used by glioblastoma. By blocking survival paths, the aim is to render temozolomide, the current standard cytotoxic drug used in primary glioblastoma treatment, more effective. Although esthetically unpleasing to use so many drugs at once, the closely similar drugs of the original CUSP9 used together have been well-tolerated when given on a compassionate-use basis in the cases that have come to our attention so far. We expect similarly good tolerability for CUSP9*. The combined action of this suite of drugs blocks signaling at, or the activity of, AKT phosphorylation, aldehyde dehydrogenase, angiotensin converting enzyme, carbonic anhydrase -2,- 9, -12, cyclooxygenase-1 and -2, cathepsin B, Hedgehog, interleukin-6, 5-lipoxygenase, matrix metalloproteinase -2 and -9, mammalian target of rapamycin, neurokinin-1, p-gp efflux pump, thioredoxin reductase, tissue factor, 20 kDa translationally controlled tumor protein, and vascular endothelial growth factor. We believe that given the current prognosis after a glioblastoma has recurred, a trial of CUSP9* is warranted.
Collapse
Affiliation(s)
| | - Georg Karpel-Massler
- University of Ulm, Department of Neurosurgery, Albert-Einstein-Allee 23, Ulm, Germany
| | - Marc-Eric Halatsch
- University of Ulm, Department of Neurosurgery, Albert-Einstein-Allee 23, Ulm, Germany
| |
Collapse
|
28
|
van Kruchten M, van der Marel P, de Munck L, Hollema H, Arts H, Timmer-Bosscha H, de Vries E, Hospers G, Reyners A. Hormone receptors as a marker of poor survival in epithelial ovarian cancer. Gynecol Oncol 2015; 138:634-9. [PMID: 26115976 DOI: 10.1016/j.ygyno.2015.06.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Androgen receptor (AR), estrogen receptor α and β (ERα, ERβ), and progesterone receptor (PR) are potential therapeutic targets in epithelial ovarian cancer. In this study we evaluate the prognostic value of these hormone receptors in ovarian cancer patients. METHODS In a prospective multicenter randomized controlled phase II trial 196 ovarian cancer patients were randomized to carboplatin/docetaxel±celecoxib. Of 121 patients sufficient tumor tissue was available for hormone receptor analysis. Tissue micro-arrays were stained for AR, ERα, ERβ, and PR. Cluster analysis was performed to identify subgroups based on hormone receptor expression profile. Receptor expression was correlated to progression-free survival (PFS) and overall survival (OS) in uni- and multivariate analysis. RESULTS AR, ERα, ERβ, and PR were expressed in respectively 10%, 31%, 73%, and 19%. In patients with synchronous metastasis tissue available (n=69 patients), discordant receptor expression was observed in 9-32%. ERβ-expression was associated with poor PFS and OS (hazard ratios 1.88 and 1.92). Clustering analysis revealed a subgroup with hormone receptor negative disease that had a favorable PFS and OS. CONCLUSION Hormone receptors are expressed in the majority of ovarian cancer tumors and may serve as therapeutic targets. Clustering analysis can reveal subgroups with different outcome, which may prove valuable in selecting patients for endocrine therapy.
Collapse
Affiliation(s)
- Michel van Kruchten
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Pauline van der Marel
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Linda de Munck
- Department of Registration and Research, Comprehensive Cancer Center the Netherlands, Utrecht, The Netherlands
| | - Harry Hollema
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Henriette Arts
- Department of Gynecology, Division of Gynecologic Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hetty Timmer-Bosscha
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elisabeth de Vries
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Geke Hospers
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anna Reyners
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
29
|
Hitting the Bull's-Eye in Metastatic Cancers-NSAIDs Elevate ROS in Mitochondria, Inducing Malignant Cell Death. Pharmaceuticals (Basel) 2015; 8:62-106. [PMID: 25688484 PMCID: PMC4381202 DOI: 10.3390/ph8010062] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/08/2015] [Accepted: 02/05/2015] [Indexed: 12/20/2022] Open
Abstract
Tumor metastases that impede the function of vital organs are a major cause of cancer related mortality. Mitochondrial oxidative stress induced by hypoxia, low nutrient levels, or other stresses, such as genotoxic events, act as key drivers of the malignant changes in primary tumors to enhance their progression to metastasis. Emerging evidence now indicates that mitochondrial modifications and mutations resulting from oxidative stress, and leading to OxPhos stimulation and/or enhanced reactive oxygen species (ROS) production, are essential for promoting and sustaining the highly metastatic phenotype. Moreover, the modified mitochondria in emerging or existing metastatic cancer cells, by their irreversible differences, provide opportunities for selectively targeting their mitochondrial functions with a one-two punch. The first blow would block their anti-oxidative defense, followed by the knockout blow—promoting production of excess ROS, capitulating the terminal stage—activation of the mitochondrial permeability transition pore (mPTP), specifically killing metastatic cancer cells or their precursors. This review links a wide area of research relevant to cellular mechanisms that affect mitochondria activity as a major source of ROS production driving the pro-oxidative state in metastatic cancer cells. Each of the important aspects affecting mitochondrial function are discussed including: hypoxia, HIFs and PGC1 induced metabolic changes, increased ROS production to induce a more pro-oxidative state with reduced antioxidant defenses. It then focuses on how the mitochondria, as a major source of ROS in metastatic cancer cells driving the pro-oxidative state of malignancy enables targeting drugs affecting many of these altered processes and why the NSAIDs are an excellent example of mitochondria-targeted agents that provide a one-two knockout activating the mPTP and their efficacy as selective anticancer metastasis drugs.
Collapse
|
30
|
Roles of lipid-modulating enzymes diacylglycerol kinase and cyclooxygenase under pathophysiological conditions. Anat Sci Int 2014; 90:22-32. [PMID: 25471593 DOI: 10.1007/s12565-014-0265-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
Lipid not only represents a constituent of the plasma membrane, but also plays a pivotal role in intracellular signaling. Lipid-mediated signaling system is strictly regulated by several enzymes, which act at various steps of the lipid metabolism. Under pathological conditions, prolonged or insufficient activation of this system results in dysregulated signaling, leading to diseases such as cancer or metabolic syndrome. Of the lipid-modulating enzymes, diacylglycerol kinase (DGK) and cyclooxygenase (COX) are intimately involved in the signaling system. DGK consists of a family of enzymes that phosphorylate a second messenger diacylglycerol (DG) to produce phosphatidic acid (PA). Both DG and PA are known to activate signaling molecules such as protein kinase C. COX catalyzes the committed step in prostanoid biosynthesis, which involves the metabolism of arachidonic acid to produce prostaglandins. Previous studies have shown that the DGK and COX are engaged in a number of pathological conditions. This review summarizes the functional implications of these two enzymes in ischemia, liver regeneration, vascular events, diabetes, cancer and inflammation.
Collapse
|
31
|
Celecoxib induces epithelial-mesenchymal transition in epithelial ovarian cancer cells via regulating ZEB1 expression. Arch Gynecol Obstet 2014; 291:1361-9. [PMID: 25424898 DOI: 10.1007/s00404-014-3555-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 11/13/2014] [Indexed: 01/10/2023]
Abstract
PURPOSE The purpose of our study was to investigate the therapeutic potential of Celecoxib for epithelial ovarian cancer, especially on cellular morphological changes, proliferation invasion and epithelial-mesenchymal transition (EMT). METHOD The MTT and transwell assays were performed to evaluate the effect of Celecoxib on proliferation and invasion ability of ovarian cancer cell lines, respectively. Western blot was carried out to detect the expression of epithelial phenotypes, E-cadherin and Keratin, and mesenchymal phenotypes, N-cadherin and Vimentin, as well as p-AKT, p-ERK and ZEB1. ZEB1 small-interfering RNA (siRNA) was used to downregulate the expression of ZEB1 to further inquiring into the downstream of Celecoxib-induced EMT. RESULTS Cellular morphological assessment revealed that both A2780 and SKOV3 cells gradually appeared in the morphology of mesenchymal cells after Celecoxib treatment. The MTT assay demonstrated that celecoxib had no effect on cell proliferation. Transwell assay showed that Celecoxib significantly increased the cell invasion ability. Western blot data proved that the expression of E-cadherin and keratin was elevated, whereas the expression of N-cadherin and Vimentin was decreased in a dose-dependent manner compared with the untreated cells, the expression of p-AKT, p-ERK and ZEB1 was also obviously elevated. However, ZEB1 siRNA reversed Celecoxib-induced E-cadherin expression and N-cadherin expression, as well as cellular invasiveness. CONCLUSION Our results indicated that Celecoxib might induce EMT and increase cellular invasiveness in ovarian cancer cells in vitro, which also implied that it needed a comprehensive evaluation in preclinical researches before introducing Celecoxib into the clinical regimen.
Collapse
|
32
|
Tsutsumimoto T, Williams P, Yoneda T. The SK-N-AS human neuroblastoma cell line develops osteolytic bone metastases with increased angiogenesis and COX-2 expression. J Bone Oncol 2014; 3:67-76. [PMID: 26909300 PMCID: PMC4723652 DOI: 10.1016/j.jbo.2014.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 12/17/2022] Open
Abstract
Neuroblastoma (NB), which arises from embryonic neural crest cells, is the most common extra-cranial solid tumor of childhood. Approximately half of NB patients manifest bone metastasis accompanied with bone pain, fractures and bone marrow failure, leading to disturbed quality of life and poor survival. To study the mechanism of bone metastasis of NB, we established an animal model in which intracardiac inoculation of the SK-N-AS human NB cells in nude mice developed osteolytic bone metastases with increased osteoclastogenesis. SK-N-AS cells induced the expression of receptor activator of NF-κB ligand and osteoclastogenesis in mouse bone marrow cells in the co-culture. SK-N-AS cells expressed COX-2 mRNA and produced substantial amounts of prostaglandin E2 (PGE2). In contrast, the SK-N-DZ and SK-N-FI human NB cells failed to develop bone metastases, induce osteoclastogenesis, express COX-2 mRNA and produce PGE2. Immunohistochemical examination of SK-N-AS bone metastasis and subcutaneous tumor showed strong expression of COX-2. The selective COX-2 inhibitor NS-398 inhibited PGE2 production and suppressed bone metastases with reduced osteoclastogenesis. NS-398 also inhibited subcutaneous SK-N-AS tumor development with decreased angiogenesis and vascular endothelial growth factor-A expression. Of interest, metastasis to the adrenal gland, a preferential site for NB development, was also diminished by NS-398. Our results suggest that COX2/PGE2 axis plays a critical role in the pathophysiology of osteolytic bone metastases and tumor development of the SK-NS-AS human NB. Inhibition of angiogenesis by suppressing COX-2/PGE2 may be an effective therapeutic approach for children with NB.
Collapse
Affiliation(s)
- Takahiro Tsutsumimoto
- Division of Endocrinology and Metabolism, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA; Department of Cellular and Molecular Biochemistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Paul Williams
- Division of Endocrinology and Metabolism, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | - Toshiyuki Yoneda
- Division of Endocrinology and Metabolism, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA; Department of Cellular and Molecular Biochemistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| |
Collapse
|
33
|
Chen J, Shen P, Zhang XC, Zhao MD, Zhang XG, Yang L. Efficacy and safety profile of celecoxib for treating advanced cancers: a meta-analysis of 11 randomized clinical trials. Clin Ther 2014; 36:1253-63. [PMID: 25016505 DOI: 10.1016/j.clinthera.2014.06.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/31/2014] [Accepted: 06/12/2014] [Indexed: 01/27/2023]
Abstract
PURPOSE Evidence on the benefits of combining celecoxib, a cyclooxygenase-2 inhibitor, in treating advanced cancer is still controversial. This study aimed to establish the efficacy and safety profile of celecoxib in treating advanced cancers. METHODS The PubMed, Embase, and Cochrane databases and abstracts from the American Society of Clinical Oncology and European Society for Medical Oncology were searched for reports dated up to January 31, 2014, to find relevant randomized clinical trials. The outcomes included overall response rate (ORR), 1-year mortality, progression-free survival, overall survival, and toxicities. Fixed-effects meta-analytical models were used when indicated, and between-study heterogeneity was assessed. Subgroup analysis was conducted according to cancer type, treatment pattern, and treatment line. FINDINGS A total of 11 randomized clinical trials consisting of 2570 patients with advanced cancer were included in the final meta-analysis. Addition of celecoxib to the treatment regimen significantly increased the ORR (pooled risk ratio [RR] = 1.20; 95% CI, 1.06-1.36; P = 0.005) but had no effect on 1-year mortality (RR = 1.02; 95% CI, 0.92-1.13; P = 0.68). Subgroup analysis found that the ORR results were significant with non-small cell lung cancer (RR = 1.29; 95% CI, 1.08-1.54; P = 0.005), colorectal cancer (RR = 1.32; 95% CI, 1.02-1.72; P = 0.037), chemotherapy treatment (RR = 1.22; 95% CI, 1.07-1.39; P = 0.003), and first-line treatment (RR = 1.22; 95% CI, 1.07-1.38; P = 0.003). However, celecoxib increased the risk of cardiovascular events (RR = 1.78; 95% CI, 1.30-2.43; P < 0.001) and anemia (RR = 1.88; 95% CI, 0.95-3.74; P = 0.071). IMPLICATIONS Celecoxib is beneficial in the treatment of advanced cancers but with increased risk of cardiovascular events. Benefit versus harm needs to be carefully considered when celecoxib is recommended in patients with advanced cancers.
Collapse
Affiliation(s)
- Jian Chen
- Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Peng Shen
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Xiao-chen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Meng-dan Zhao
- Department of Pharmacy, Women's Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Xing-guo Zhang
- Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R. China.
| | - Liu Yang
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R. China.
| |
Collapse
|
34
|
A role for cAMP-driven transactivation of EGFR in cancer aggressiveness - therapeutic implications. Med Hypotheses 2014; 83:142-7. [PMID: 24932579 DOI: 10.1016/j.mehy.2014.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/18/2014] [Accepted: 05/01/2014] [Indexed: 12/29/2022]
Abstract
In many common cancers, production of cAMP boosts cancer proliferation, survival, and aggressiveness, reflecting the fact that, through mechanisms that require further clarification, cAMP can promote tyrosine phosphorylation, notably transactivation of the epidermal growth factor receptor (EGFR). Hormones which activate adenylate cyclase in many cancers include PGE2 - often produced by cox-2 activity within tumors - and adrenergic hormones, acting on beta2 receptors. NSAID cyclooxygenase inhibitors, including low-dose aspirin, clearly reduce risk for many adenocarcinomas, but the impact of cox-2 inhibitors in clinical cancer therapy remains somewhat equivocal. There is increasing evidence that increased sympathetic drive, often reflecting psychic stress or tobacco usage, increases risk for, and promotes the aggressiveness of, many cancers. The non-specific beta antagonist propranolol shows cancer-retardant activity in pre-clinical rodent studies, especially in stressed animals, and a limited amount of epidemiology concludes that concurrent propranolol usage is associated with superior prognosis in breast cancer, ovarian cancer, and melanoma. Epidemiology correlating increased resting heart rate with increased total cancer mortality can be interpreted as compelling evidence that increased sympathetic drive encourages the onset and progression of common cancers. Conversely, hormones which inhibit adenylate cyclase activity in cancers may have potential for cancer control; GABA, which can be administered as a well-tolerated nutraceutical, has potential in this regard. Combination regimens intended to down-regulate cancer cAMP levels, perhaps used in conjunction with EGFR inhibitors, may have considerable potential for suppressing the contribution of cAMP/EGFR to cancer aggressiveness. This model also predicts that certain other hormones which activate adenylate cylase in various tissue may play a yet-unsuspected role in cancer induction and spread.
Collapse
|
35
|
Zhidkov N, De Souza R, Ghassemi AH, Allen C, Piquette-Miller M. Continuous intraperitoneal carboplatin delivery for the treatment of late-stage ovarian cancer. Mol Pharm 2013; 10:3315-22. [PMID: 23924289 DOI: 10.1021/mp400345h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The rate of failure of chemotherapy treatment in ovarian cancer remains high, resulting in a low 5-year survival rate of 20-40% in patients that present with advanced-stage disease. Treatment-free periods between cycles of chemotherapy may contribute to accelerated tumor cell proliferation and decreased treatment response. The elimination of treatment-free breaks has been deemed beneficial in the context of cell-cycle-specific agents. The potential benefit of this approach for non-cell-cycle-specific agents has not yet been elucidated. The present study is the first to address this issue by investigating the impact of continuous versus intermittent intraperitoneal administration of carboplatin over a 14 day period to SCID mice bearing SKOV-3 ovarian cancer xenografts. Immunostaining of tumor sections was employed to quantify tumor proliferation, angiogenesis, and apoptosis using Ki-67, CD-31, caspase-3 (CASP3), and terminal deoxytransferase-mediated dUTP nick-end labeling (TUNEL). Continuous ip administration of carboplatin resulted in greater tumor growth inhibition than intermittent therapy (p < 0.05). Significantly greater tumor cell apoptosis and less cell proliferation and angiogenesis were measured in tumors of mice treated with continuous carboplatin as compared to both intermittent and control groups. These results indicate that continuous local administration may be a promising approach to improve the effectiveness of platinum-based chemotherapy regimens.
Collapse
Affiliation(s)
- Nickholas Zhidkov
- Department of Pharmaceutical Sciences, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
36
|
Prognostic role of cyclooxygenase-2 in epithelial ovarian cancer: A meta-analysis of observational studies. Gynecol Oncol 2013; 129:613-9. [DOI: 10.1016/j.ygyno.2013.02.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/08/2013] [Accepted: 02/10/2013] [Indexed: 11/18/2022]
|