1
|
Abo Qoura L, Morozova E, Ramaa СS, Pokrovsky VS. Smart nanocarriers for enzyme-activated prodrug therapy. J Drug Target 2024; 32:1029-1051. [PMID: 39045650 DOI: 10.1080/1061186x.2024.2383688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Exogenous enzyme-activated prodrug therapy (EPT) is a potential cancer treatment strategy that delivers non-human enzymes into or on the surface of the cell and subsequently converts a non-toxic prodrug into an active cytotoxic substance at a specific location and time. The development of several pharmacological pairs based on EPT has been the focus of anticancer research for more than three decades. Numerous of these pharmacological pairs have progressed to clinical trials, and a few have achieved application in specific cancer therapies. The current review highlights the potential of enzyme-activated prodrug therapy as a promising anticancer treatment. Different microbial, plant, or viral enzymes and their corresponding prodrugs that advanced to clinical trials have been listed. Additionally, we discuss new trends in the field of enzyme-activated prodrug nanocarriers, including nanobubbles combined with ultrasound (NB/US), mesoscopic-sized polyion complex vesicles (PICsomes), nanoparticles, and extracellular vesicles (EVs), with special emphasis on smart stimuli-triggered drug release, hybrid nanocarriers, and the main application of nanotechnology in improving prodrugs.
Collapse
Affiliation(s)
- Louay Abo Qoura
- Research Institute of Molecular and Cellular Medicine, People's Friendship University of Russia (RUDN University), Moscow, Russia
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Elena Morozova
- Engelhardt Institute of Molecular Biology of the, Russian Academy of Sciences, Moscow, Russia
| | - С S Ramaa
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Mumbai, India
| | - Vadim S Pokrovsky
- Research Institute of Molecular and Cellular Medicine, People's Friendship University of Russia (RUDN University), Moscow, Russia
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
2
|
Pérez E, Acosta J, Pisabarro V, Cordani M, dos Santos JCS, Sanz-Landaluze J, Gallo J, Bañobre-López M, Fernández-Lucas J. Novel Directed Enzyme Prodrug Therapy for Cancer Treatment Based on 2'-Deoxyribosyltransferase-Conjugated Magnetic Nanoparticles. Biomolecules 2024; 14:894. [PMID: 39199282 PMCID: PMC11352528 DOI: 10.3390/biom14080894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Directed enzyme prodrug therapy (DEPT) strategies show promise in mitigating chemotherapy side effects during cancer treatment. Among these, the use of immobilized enzymes on solid matrices as prodrug activating agents (IDEPT) presents a compelling delivery strategy, offering enhanced tumor targeting and reduced toxicity. Herein, we report a novel IDEPT strategy by employing a His-tagged Leishmania mexicana type I 2'-deoxyribosyltransferase (His-LmPDT) covalently attached to glutaraldehyde-activated magnetic iron oxide nanoparticles (MIONPs). Among the resulting derivatives, PDT-MIONP3 displayed the most favorable catalyst load/retained activity ratio, prompting its selection for further investigation. Substrate specificity studies demonstrated that PDT-MIONP3 effectively hydrolyzed a diverse array of 6-oxo and/or 6-amino purine 2'-deoxynucleosides, including 2-fluoro-2'-deoxyadenosine (dFAdo) and 6-methylpurine-2'-deoxyribose (d6MetPRib), both well-known prodrugs commonly used in DEPT. The biophysical characterization of both MIONPs and PDT-MIONPs was conducted by TEM, DLS, and single particle ICPMS techniques, showing an ideal nanosized range and a zeta potential value of -47.9 mV and -78.2 mV for MIONPs and PDT-MIONPs, respectively. The intracellular uptake of MIONPs and PDT-MIONPs was also determined by TEM and single particle ICPMS on HeLa cancer cell lines and NIH3T3 normal cell lines, showing a higher intracellular uptake in tumor cells. Finally, the selectivity of the PDT-MIONP/dFAdo IDEPT system was tested on HeLa cells (24 h, 10 µM dFAdo), resulting in a significant reduction in tumoral cell survival (11% of viability). Based on the experimental results, PDT-MIONP/dFAdo presents a novel and alternative IDEPT strategy, providing a promising avenue for cancer treatment.
Collapse
Affiliation(s)
- Elena Pérez
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670 Villaviciosa de Odón, Spain; (E.P.); (J.A.); (V.P.)
| | - Javier Acosta
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670 Villaviciosa de Odón, Spain; (E.P.); (J.A.); (V.P.)
| | - Victor Pisabarro
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670 Villaviciosa de Odón, Spain; (E.P.); (J.A.); (V.P.)
| | - Marco Cordani
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, C. de José Antonio Novais, 12, 28040 Madrid, Spain;
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção 62790970, CE, Brazil;
| | - Jon Sanz-Landaluze
- Department of Analytical Chemistry, Faculty of Chemical Science, Universidad Complutense de Madrid, Avenida Complutense S/N, 28040 Madrid, Spain;
| | - Juan Gallo
- INL—International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (J.G.); (M.B.-L.)
| | - Manuel Bañobre-López
- INL—International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (J.G.); (M.B.-L.)
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670 Villaviciosa de Odón, Spain; (E.P.); (J.A.); (V.P.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, C. de José Antonio Novais, 12, 28040 Madrid, Spain;
- Grupo de Investigación en Ciencias Naturales y Exactas—GICNEX, Universidad de la Costa, CUC, Calle 58 # 55–66, Barranquilla 080002, Colombia
| |
Collapse
|
3
|
Huayamares SG, Loughrey D, Kim H, Dahlman JE, Sorscher EJ. Nucleic acid-based drugs for patients with solid tumours. Nat Rev Clin Oncol 2024; 21:407-427. [PMID: 38589512 DOI: 10.1038/s41571-024-00883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
The treatment of patients with advanced-stage solid tumours typically involves a multimodality approach (including surgery, chemotherapy, radiotherapy, targeted therapy and/or immunotherapy), which is often ultimately ineffective. Nucleic acid-based drugs, either as monotherapies or in combination with standard-of-care therapies, are rapidly emerging as novel treatments capable of generating responses in otherwise refractory tumours. These therapies include those using viral vectors (also referred to as gene therapies), several of which have now been approved by regulatory agencies, and nanoparticles containing mRNAs and a range of other nucleotides. In this Review, we describe the development and clinical activity of viral and non-viral nucleic acid-based treatments, including their mechanisms of action, tolerability and available efficacy data from patients with solid tumours. We also describe the effects of the tumour microenvironment on drug delivery for both systemically administered and locally administered agents. Finally, we discuss important trends resulting from ongoing clinical trials and preclinical testing, and manufacturing and/or stability considerations that are expected to underpin the next generation of nucleic acid agents for patients with solid tumours.
Collapse
Affiliation(s)
- Sebastian G Huayamares
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - Hyejin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Emory University School of Medicine, Atlanta, GA, USA.
| | - Eric J Sorscher
- Emory University School of Medicine, Atlanta, GA, USA.
- Department of Pediatrics, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
4
|
Zeng M, Zhang W, Li Y, Yu L. Harnessing adenovirus in cancer immunotherapy: evoking cellular immunity and targeting delivery in cell-specific manner. Biomark Res 2024; 12:36. [PMID: 38528632 DOI: 10.1186/s40364-024-00581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/09/2024] [Indexed: 03/27/2024] Open
Abstract
Recombinant adenovirus (rAd) regimens, including replication-competent oncolytic adenovirus (OAV) and replication-deficient adenovirus, have been identified as potential cancer therapeutics. OAV presents advantages such as selective replication, oncolytic efficacy, and tumor microenvironment (TME) remodeling. In this perspective, the principles and advancements in developing OAV toolkits are reviewed. The burgeoning rAd may dictate efficacy of conventional cancer therapies as well as cancer immunotherapies, including cancer vaccines, synergy with adoptive cell therapy (ACT), and TME reshaping. Concurrently, we explored the potential of rAd hitchhiking to adoptive immune cells or stem cells, highlighting how this approach facilitates synergistic interactions between rAd and cellular therapeutics at tumor sites. Results from preclinical and clinical trials in which immune and stem cells were infected with rAd have been used to address significant oncological challenges, such as postsurgical residual tumor tissue and metastatic tissue. Briefly, rAd can eradicate tumors through various mechanisms, resulting from tumor immunogenicity, reprogramming of the TME, enhancement of cellular immunity, and effective tumor targeting. In this context, we argue that rAd holds immense potential for enhancing cellular immunity and synergistically improving antitumor effects in combination with novel cancer immunotherapies.
Collapse
Affiliation(s)
- Miao Zeng
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Wei Zhang
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Yisheng Li
- Shenzhen Haoshi Biotechnology Co., Ltd. No, 155 Hongtian Road, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, 518125, China.
| | - Li Yu
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China.
| |
Collapse
|
5
|
Naes SM, Ab-Rahim S, Mazlan M, Amir Hashim NA, Abdul Rahman A. Increased ENT2 expression and its association with altered purine metabolism in cell lines derived from different stages of colorectal cancer. Exp Ther Med 2023; 25:212. [PMID: 37123217 PMCID: PMC10133795 DOI: 10.3892/etm.2023.11911] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/21/2023] [Indexed: 05/02/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignant cancer types worldwide. Although the purine metabolism pathway is vital for cancer cell survival, little is known about the role of equilibrative nucleoside transporter 2 (ENT2) in CRC development and its association with purine metabolites. The aim of the present study was to evaluate the levels of hypoxanthine phosphoribosyl transferase (HPRT), hypoxanthine and uric acid (UA), as well as xanthine oxidase (XO) activity, and investigate their association with ENT2 expression levels in a normal human colon cell line and CRC cell lines derived from different stages of CRC. These analyses were performed using the normal colon CCD-841CoN cell line and a panel of human CRC cell lines comprising SW480, HCT15 and HCT116, which represent Dukes' B, C and D stages, respectively. Reverse transcription-quantitative PCR was performed to determine the level of ENT2 mRNA expression. In cells of all CRC stages, the levels of HPRT and hypoxanthine were significantly higher (P<0.05), while XO activity and UA levels were significantly decreased (P<0.05), compared with those in the CCD-841CoN cell line. ENT2 expression was found to be elevated in cells derived from all stages of CRC. The Dukes' D stage cell line had higher levels of HPRT and hypoxanthine, although its ENT2 level was not significantly lower than that of the Dukes' B and C stage cell lines. Increased levels of HPRT and hypoxanthine in various stages of CRC may indicate an increase in the activity of the salvage pathway. The increased expression of ENT2 implies the importance of the ENT2 protein in facilitating hypoxanthine transport, which is required for enhanced DNA synthesis via hypoxanthine recycling. In conclusion, ENT2 may have potential as a target in the development of CRC therapeutics.
Collapse
Affiliation(s)
- Safaa M. Naes
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital Sungai Buloh, Selangor 47000, Malaysia
- Institute of Medical and Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital Sungai Buloh, Selangor 47000, Malaysia
| | - Sharaniza Ab-Rahim
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital Sungai Buloh, Selangor 47000, Malaysia
| | - Musalmah Mazlan
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital Sungai Buloh, Selangor 47000, Malaysia
| | - Nurul Azmir Amir Hashim
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital Sungai Buloh, Selangor 47000, Malaysia
| | - Amirah Abdul Rahman
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital Sungai Buloh, Selangor 47000, Malaysia
- Correspondence to: Dr Amirah Abdul Rahman, Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, Sungai Buloh, Selangor 47000, Malaysia
| |
Collapse
|
6
|
Rab R, Ehrhardt A, Achyut BR, Joshi D, Gilbert‐Ross M, Huang C, Floyd K, Borovjagin AV, Parker WB, Sorscher EJ, Hong JS. Evaluating antitumor activity of Escherichia coli purine nucleoside phosphorylase against head and neck patient-derived xenografts. Cancer Rep (Hoboken) 2023; 6:e1708. [PMID: 36253876 PMCID: PMC9939994 DOI: 10.1002/cnr2.1708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Purine nucleoside phosphorylase (PNP) gene transfer represents a promising approach to treatment of head and neck malignancies. We tested recombinant adenovirus already in phase I/II clinical testing and leading-edge patient-derived xenografts (PDX) as a means to optimize this therapeutic strategy. METHODS Our experiments investigated purine base cytotoxicity, PNP enzyme activity following treatment of malignant tissue, tumor mass regression, viral receptor studies, and transduction by tropism-modified adenovirus. RESULTS Replication deficient vector efficiently transduced PDX cells and mediated significant anticancer effect following treatment with fludarabine phosphate in vivo. Either 6-methylpurine or 2-fluoroadenine (toxic molecules generated by the PNP approach) ablated head and neck cancer cell proliferation. High levels of adenovirus-3 specific receptors were detected in human tumor models, and vector was evaluated that utilizes this pathway. CONCLUSIONS Our studies provide the scientific foundation necessary to improve PNP prodrug cleavage and advance a new treatment for head and neck cancer.
Collapse
Affiliation(s)
- Regina Rab
- Department of Pediatrics and Children's Hospital of AtlantaEmory University School of MedicineAtlantaGeorgiaUSA
| | - Annette Ehrhardt
- Department of Pediatrics and Children's Hospital of AtlantaEmory University School of MedicineAtlantaGeorgiaUSA
| | - Bhagelu R. Achyut
- Winship Cancer InstituteEmory University School of MedicineAtlantaGeorgiaUSA
| | - Disha Joshi
- Department of Pediatrics and Children's Hospital of AtlantaEmory University School of MedicineAtlantaGeorgiaUSA
| | | | - Chunzi Huang
- Winship Cancer InstituteEmory University School of MedicineAtlantaGeorgiaUSA
| | - Katharine Floyd
- Winship Cancer InstituteEmory University School of MedicineAtlantaGeorgiaUSA
| | - Anton V. Borovjagin
- Department of Biomedical EngineeringUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - William B. Parker
- Department of PharmacologyUniversity of Alabama at Birmingham; PNP Therapeutics, Inc.BirminghamAlabamaUSA
| | - Eric J. Sorscher
- Department of Pediatrics and Children's Hospital of AtlantaEmory University School of MedicineAtlantaGeorgiaUSA
- Winship Cancer InstituteEmory University School of MedicineAtlantaGeorgiaUSA
| | - Jeong S. Hong
- Department of Pediatrics and Children's Hospital of AtlantaEmory University School of MedicineAtlantaGeorgiaUSA
| |
Collapse
|
7
|
Chen S, Wu D, Liu Q, Jin F, Yao F, Fang Y. POR overexpression induces tamoxifen-resistance in breast cancer through the STAT1/c-Myc pathway. Mol Carcinog 2023; 62:249-260. [PMID: 36321415 DOI: 10.1002/mc.23481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 01/20/2023]
Abstract
Breast cancer is the most common cancer in women worldwide. Although tamoxifen (TAM), a selective estrogen receptor (ER) modulator, is widely used to treat ER-positive breast cancers, resistance to TAM remains a major clinical problem. NADPH-dependent cytochrome P450 reductase (POR) is known to participate in drug metabolism and steroid metabolism. Recent studies showed that high POR expression was correlated with poor outcomes in triple-negative breast cancer (TNBC), and POR might be a prognostic biomarker in TNBC. However, the role of POR in TAM resistance is still elusive. In this study, we found that high POR expression was associated with poor prognosis of ER-positive and TAM-treated breast cancer patients. In addition, COX analysis showed that POR expression was an independent prognostic biomarker for ER-positive as well as TAM-treated breast cancer patients. Furthermore, our results suggested that POR overexpression promoted TAM resistance by activating the STAT1/c-Myc pathway in ER-positive breast cancer cells. Immunohistochemical analysis showed that high POR/STAT1 expression was correlated with poor prognosis in TAM-treated breast cancer patients. Notably, combined treatment with TAM and a specific STAT1 inhibitor Fludarabine was more effective for inhibiting TAM-resistant breast cancer cells. Altogether, our findings suggested that POR overexpression induced TAM resistance through STAT1/c-Myc pathway and might serve as an independent prognostic biomarker in TAM-treated breast cancer patients. Combining TAM and STAT1 inhibitors might be an effective strategy for treating POR-induced TAM-resistant breast cancer.
Collapse
Affiliation(s)
- Si Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Dingjie Wu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Qiannan Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Feng Jin
- Department of Breast Surgery and Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Fan Yao
- Department of Breast Surgery and Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yue Fang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
8
|
Sheikh S, Ernst D, Keating A. Prodrugs and prodrug-activated systems in gene therapy. Mol Ther 2021; 29:1716-1728. [PMID: 33831557 PMCID: PMC8116605 DOI: 10.1016/j.ymthe.2021.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/06/2021] [Accepted: 04/02/2021] [Indexed: 12/11/2022] Open
Abstract
The inclusion of genes that control cell fate (so-called suicide, or kill-switch, genes) into gene therapy vectors is based on a compelling rationale for the safe and selective elimination of aberrant transfected cells. Prodrug-activated systems were developed in the 1980s and 1990s and rely on the enzymatic conversion of non-active prodrugs to active metabolites that lead to cell death. Although considerable effort and ingenuity has gone into vector design for gene therapy, less attention has been directed at the efficacy or associated adverse effects of the prodrug systems employed. In this review, we discuss prodrug systems employed in clinical trials and consider their role in the field of gene therapy. We highlight potential drawbacks associated with the use of specific prodrugs, such as systemic toxicity of the activated compound, the paucity of data on biodistribution of prodrugs, bystander effects, and destruction of genetically modified cells, and how these can inform future advances in cell therapies.
Collapse
Affiliation(s)
- Semira Sheikh
- Princess Margaret Cancer Centre, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada.
| | - Daniel Ernst
- Krembil Research Institute, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | - Armand Keating
- Princess Margaret Cancer Centre, Toronto, ON, Canada; Krembil Research Institute, Toronto, ON, Canada; Schroeder Arthritis Institute, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Abbaspour A, Esmaeilzadeh A, Sharafi A. Suicide gene therapy-mediated purine nucleoside phosphorylase/fludarabine system for in vitro breast cancer model with emphasis on evaluation of vascular endothelial growth factor promoter efficacy. 3 Biotech 2021; 11:140. [PMID: 33708463 DOI: 10.1007/s13205-021-02692-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
In this study, a suicide gene therapy approach was optimized by a non-viral polyplex system based on pEGFP-N1 vector harboring purine nucleoside phosphorylase gene conducted by vascular endothelial growth factor promoter for an in vitro breast cancer model (4T1 cell line). The VEGF promoter and purine nucleoside phosphorylase gene were cloned into the vector from the source of 4T1 and E. coli genomic DNA, respectively. A gene construct was developed by replacing VEGF promoter instead of CMV promoter in pEGFP-N1vector. PNP gene was integrated in to the multiple cloning site of the obtained vector. On the other hand, a construct from pEGFP-N1 harboring PNP gene under the control of the original CMV promoter was developed. The transfection method using cationic polymer was optimized based on N/P ratio, cell cytotoxicity, polyplex size, zeta potential and the green fluorescent protein (GFP) expression by fluorescent microscopy and flowcytometry. Also, the effect of hypoxia condition induced by 0.5 mM H2O2 on the promoter efficiency was investigated. The results showed that the performed gene delivery system is capable of the gene transfection to more than 30% of the cancer cells with both VEGF-PNP-pEGFP-N1 and PNP-pEGFP-N1 plasmids. The hypoxia condition did not show a significant effect on the VEGF promoter. But, it revealed that bystander effect can improve the efficacy of this system and reduce drug IC50 to 2 and fourfold for plasmids VEGF-PNP-pEGFP-N1 and PNP-pEGFP-N1, respectively. These results showed that the bystander effect could almost compensate the low efficiency of non-viral gene delivery systems. We suggest that the tumor-specific gene expression system mediated by the VEGF promoter can be especially useful in the present model of breast cancer gene therapy.
Collapse
Affiliation(s)
- Akbar Abbaspour
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Sharafi
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
10
|
Man S, Lu Y, Yin L, Cheng X, Ma L. Potential and promising anticancer drugs from adenosine and its analogs. Drug Discov Today 2021; 26:1490-1500. [PMID: 33639248 DOI: 10.1016/j.drudis.2021.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/03/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
In recent years, many studies have shown that adenosine has efficacy for treating cancer. More importantly, some adenosine analogs have been successfully marketed to fulfill anticancer purposes. In this review, we summarize the anticancer effects of adenosine and its analogs in clinical trials and preclinical studies, with focus on their anticancer mechanisms. In addition, we link the anticancer activities of adenosine analogs with their structures through structure-activity relationship (SAR) analysis, and highlight additional promising anticancer drug candidates. We hope that this review will be of help in understanding the importance of adenosine and its analogs with anticancer activities and directing future research and development of such compounds.
Collapse
Affiliation(s)
- Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yingying Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lijuan Yin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinkuan Cheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
11
|
Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther 2021; 6:53. [PMID: 33558455 PMCID: PMC7868676 DOI: 10.1038/s41392-021-00487-6] [Citation(s) in RCA: 566] [Impact Index Per Article: 188.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/05/2020] [Accepted: 10/23/2020] [Indexed: 01/30/2023] Open
Abstract
Throughout its 40-year history, the field of gene therapy has been marked by many transitions. It has seen great strides in combating human disease, has given hope to patients and families with limited treatment options, but has also been subject to many setbacks. Treatment of patients with this class of investigational drugs has resulted in severe adverse effects and, even in rare cases, death. At the heart of this dichotomous field are the viral-based vectors, the delivery vehicles that have allowed researchers and clinicians to develop powerful drug platforms, and have radically changed the face of medicine. Within the past 5 years, the gene therapy field has seen a wave of drugs based on viral vectors that have gained regulatory approval that come in a variety of designs and purposes. These modalities range from vector-based cancer therapies, to treating monogenic diseases with life-altering outcomes. At present, the three key vector strategies are based on adenoviruses, adeno-associated viruses, and lentiviruses. They have led the way in preclinical and clinical successes in the past two decades. However, despite these successes, many challenges still limit these approaches from attaining their full potential. To review the viral vector-based gene therapy landscape, we focus on these three highly regarded vector platforms and describe mechanisms of action and their roles in treating human disease.
Collapse
Affiliation(s)
- Jote T Bulcha
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic medical sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Hong Ma
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
12
|
Acosta J, Pérez E, Sánchez-Murcia PA, Fillat C, Fernández-Lucas J. Molecular Basis of NDT-Mediated Activation of Nucleoside-Based Prodrugs and Application in Suicide Gene Therapy. Biomolecules 2021; 11:biom11010120. [PMID: 33477716 PMCID: PMC7831932 DOI: 10.3390/biom11010120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 11/16/2022] Open
Abstract
Herein we report the first proof for the application of type II 2′-deoxyribosyltransferase from Lactobacillus delbrueckii (LdNDT) in suicide gene therapy for cancer treatment. To this end, we first confirm the hydrolytic ability of LdNDT over the nucleoside-based prodrugs 2′-deoxy-5-fluorouridine (dFUrd), 2′-deoxy-2-fluoroadenosine (dFAdo), and 2′-deoxy-6-methylpurine riboside (d6MetPRib). Such activity was significantly increased (up to 30-fold) in the presence of an acceptor nucleobase. To shed light on the strong nucleobase dependence for enzymatic activity, different molecular dynamics simulations were carried out. Finally, as a proof of concept, we tested the LdNDT/dFAdo system in human cervical cancer (HeLa) cells. Interestingly, LdNDT/dFAdo showed a pronounced reduction in cellular viability with inhibitory concentrations in the low micromolar range. These results open up future opportunities for the clinical implementation of nucleoside 2′-deoxyribosyltransferases (NDTs) in cancer treatment.
Collapse
Affiliation(s)
- Javier Acosta
- Applied Biotechnology Group, European University of Madrid, c/ Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain; (J.A.); (E.P.)
| | - Elena Pérez
- Applied Biotechnology Group, European University of Madrid, c/ Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain; (J.A.); (E.P.)
| | - Pedro A. Sánchez-Murcia
- Division of Physiological Chemistry, Otto-Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/III, A-8010 Graz, Austria;
| | - Cristina Fillat
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08036 Barcelona, Spain
| | - Jesús Fernández-Lucas
- Division of Physiological Chemistry, Otto-Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/III, A-8010 Graz, Austria;
- Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66 Barranquilla, Colombia
- Correspondence:
| |
Collapse
|
13
|
Huang A, Pressnall MM, Lu R, Huayamares SG, Griffin JD, Groer C, DeKosky BJ, Forrest ML, Berkland CJ. Human intratumoral therapy: Linking drug properties and tumor transport of drugs in clinical trials. J Control Release 2020; 326:203-221. [PMID: 32673633 DOI: 10.1016/j.jconrel.2020.06.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 01/08/2023]
Abstract
Cancer therapies aim to kill tumor cells directly or engage the immune system to fight malignancy. Checkpoint inhibitors, oncolytic viruses, cell-based immunotherapies, cytokines, and adjuvants have been applied to prompt the immune system to recognize and attack cancer cells. However, systemic exposure of cancer therapies can induce unwanted adverse events. Intratumoral administration of potent therapies utilizes small amounts of drugs, in an effort to minimize systemic exposure and off-target toxicities. Here, we discuss the properties of the tumor microenvironment and transport considerations for intratumoral drug delivery. Specifically, we consider various tumor tissue factors and physicochemical factors that can affect tumor retention after intratumoral injection. We also review approved and clinical-stage intratumoral therapies and consider how the molecular and biophysical properties (e.g. size and charge) of these therapies influences intratumoral transport (e.g. tumor retention and cellular uptake). Finally, we offer a critical review and highlight several emerging approaches to promote tumor retention and limit systemic exposure of potent intratumoral therapies.
Collapse
Affiliation(s)
- Aric Huang
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Melissa M Pressnall
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Ruolin Lu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | | | - J Daniel Griffin
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA; Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA
| | | | - Brandon J DeKosky
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA
| | - M Laird Forrest
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Cory J Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA; Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
14
|
The use of Trichomonas vaginalis purine nucleoside phosphorylase to activate fludarabine in the treatment of solid tumors. Cancer Chemother Pharmacol 2020; 85:573-583. [PMID: 31915968 DOI: 10.1007/s00280-019-04018-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 12/17/2019] [Indexed: 10/25/2022]
Abstract
Treatment with fludarabine phosphate (9-β-D-arabinofuranosyl-2-F-adenine 5'-phosphate, F-araAMP) leads to regressions and cures of human tumor xenografts that express Escherichia coli purine nucleoside phosphorylase (EcPNP). This occurs despite the fact that fludarabine (F-araA) is a relatively poor substrate for EcPNP, and is cleaved to liberate 2-fluoroadenine at a rate only 0.3% that of the natural E. coli PNP substrate, adenosine. In this study, we investigated a panel of naturally occurring PNPs to identify more efficient enzymes that may be suitable for metabolizing F-araA as part of experimental cancer therapy. We show that Trichomonas vaginalis PNP (TvPNP) cleaves F-araA with a catalytic efficiency 25-fold greater than the prototypic E. coli enzyme. Cellular extracts from human glioma cells (D54) transduced with lentivirus stably expressing TvPNP (D54/TvPNP) were found to cleave F-araA at a rate similar to extracts from D54 cells expressing EcPNP, although much less enzyme was expressed per cell in the TvPNP transduced condition. As a test of safety and efficacy using TvPNP, human head and neck squamous cell carcinoma (FaDu) xenografts expressing TvPNP were studied in nude mice and shown to exhibit robust tumor regressions, albeit with partial weight loss that resolved post-therapy. F-araAMP was also a very effective treatment for mice bearing D54/TvPNP xenografts in which approximately 10% of tumor cells expressed the enzyme, indicating pronounced ability to kill non-transduced tumor cells (high bystander activity). Moreover, F-araAMP demonstrated activity against D54 tumors injected with an E1, E3 deleted adenoviral vector encoding TvPNP. In that setting, despite higher F-araA cleavage activity using TvPNP, tumor responses were similar to those obtained with EcPNP, indicating factors other than F-Ade production may limit regressions of the D54 murine xenograft model. Our results establish that TvPNP is a favorable enzyme for activating F-araA, and support further studies in combination with F-araAMP for difficult-to-treat human cancers.
Collapse
|
15
|
Behbahani TE, Rosenthal EL, Parker WB, Sorscher EJ. Intratumoral generation of 2-fluoroadenine to treat solid malignancies of the head and neck. Head Neck 2019; 41:1979-1983. [PMID: 30633420 DOI: 10.1002/hed.25627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/14/2018] [Indexed: 01/28/2023] Open
Abstract
This report describes treatment of locoregional head and neck squamous cell carcinoma (HNSCC) by an innovative, experimental strategy involving generation of a robust anti-cancer agent (2-fluoroadenine [F-Ade]) following transduction by Escherichia coli purine nucleoside phosphorylase (PNP) in a small number of tumor cells. F-Ade works by a unique mechanism of action (ablation of RNA and protein synthesis) and confers tumor regressions of otherwise refractory HNSCC in human subjects. Clinical studies have now advanced to a pivotal (registration-directed) trial involving locoregional HNSCC, with plans to begin subject enrollment late in 2018. The present review is the first to summarize use of PNP in the context of HNSCC, and provides background regarding this emerging anti-cancer approach.
Collapse
Affiliation(s)
- Turang E Behbahani
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Eben L Rosenthal
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Palo Alto, California
| | | | - Eric J Sorscher
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
16
|
Abstract
"Tumor chemosensitivity" can be achieved by the expression of the herpes simplex virus thymidine kinase gene in cells, followed by the conversion of the "prodrug" ganciclovir into the therapeutic drug inside the cells. This system presaged other combinations of suicide genes and prodrugs, including cytosine deaminase/5-fluorocytosine, purine nucleoside phosphorylase/6-methylpurine deoxyriboside, and horseradish peroxidase/indole-3-acetic acid.
Collapse
Affiliation(s)
- Nejat Düzgüneş
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA.
| |
Collapse
|
17
|
Yin J, Ren W, Huang X, Deng J, Li T, Yin Y. Potential Mechanisms Connecting Purine Metabolism and Cancer Therapy. Front Immunol 2018; 9:1697. [PMID: 30105018 PMCID: PMC6077182 DOI: 10.3389/fimmu.2018.01697] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/10/2018] [Indexed: 12/22/2022] Open
Abstract
Unrestricted cell proliferation is a hallmark of cancer. Purines are basic components of nucleotides in cell proliferation, thus impaired purine metabolism is associated with the progression of cancer. The de novo biosynthesis of purine depends on six enzymes to catalyze the conversion of phosphoribosylpyrophosphate to inosine 5'-monophosphate. These enzymes cluster around mitochondria and microtubules to form purinosome, which is a multi-enzyme complex involved in de novo purine biosynthesis and purine nucleotides requirement. In this review, we highlighted the purine metabolism and purinosome biology with emphasis on the therapeutic potential of manipulating of purine metabolism or purinosome in cancers. We also reviewed current advances in our understanding of mammalian target of rapamycin for regulating purinosome formation or purine metabolism in cancers and discussed the future prospects for targeting purinosome to treat cancers.
Collapse
Affiliation(s)
- Jie Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, Institute of Subtropical Animal Nutrition and Feed, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, Institute of Subtropical Animal Nutrition and Feed, South China Agricultural University, Guangzhou, China
| | - Xingguo Huang
- University of Chinese Academy of Sciences, Beijing, China
- Department of Animal Science, Hunan Agriculture University, Changsha, Hunan, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, Institute of Subtropical Animal Nutrition and Feed, South China Agricultural University, Guangzhou, China
| | - Tiejun Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, Institute of Subtropical Animal Nutrition and Feed, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
18
|
Loozen LD, Kruyt MC, Vandersteen A, Kragten AHM, Croes M, Öner FC, Alblas J. Osteoinduction by Ex Vivo Nonviral Bone Morphogenetic Protein Gene Delivery Is Independent of Cell Type. Tissue Eng Part A 2018; 24:1423-1431. [PMID: 29766760 DOI: 10.1089/ten.tea.2018.0032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ex vivo nonviral gene delivery of bone inductive factors has the potential to heal bone defects. Due to their inherent role in new bone formation, multipotent stromal cells (MSCs) have been studied as the primary target cell for gene delivery in a preclinical setting. The relative contribution of autocrine and paracrine mechanisms, and the need of osteogenic cells, remains unclear. This study investigates the contribution of MSCs as producer of transgenic bone morphogenetic proteins (BMPs) and to what extent the seeded MSCs participate in actual osteogenesis. Rat-derived MSCs or fibroblasts (FBs) were cotransfected with pBMP-2 and pBMP-6 or pBMP-7 via nucleofection. The bioactivity of BMP products was shown through in vitro osteogenic differentiation assays. To investigate their role in new bone formation, transfected cells were seeded on ceramic scaffolds and implanted subcutaneously in rats. Bone formation was assessed by histomorphometry after 8 weeks. As a proof of principle, we also investigated the suitability of bone marrow-derived mononuclear cells and the stromal vascular fraction isolated from adipose tissue for a one-stage gene delivery strategy. Bone formation was induced in all conditions containing cells overexpressing BMP heterodimers. Constructs seeded with FBs transfected with BMP-2/6 and MSCs transfected with BMP-2/6 showed comparable bone volumes, both significantly higher than controls. Single-stage gene delivery proved possible and resulted in some bone formation. We conclude that bone formation as a result of ex vivo BMP gene delivery can be achieved even without direct osteogenic potential of the transfected cell type, suggesting that transfected cells mainly function as a production facility for osteoinductive proteins. In addition, single-stage transfection and reimplantation of cells appeared feasible, thus facilitating future clinical translation of the method.
Collapse
Affiliation(s)
- Loek D Loozen
- Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Moyo C Kruyt
- Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Angela Vandersteen
- Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Angela H M Kragten
- Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Michiel Croes
- Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands
| | - F Cumhur Öner
- Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Jacqueline Alblas
- Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands
| |
Collapse
|
19
|
A synergistic effect of phosphate, pH and Phe159 substitution on the formycin A association to the E. coli purine nucleoside phosphorylase. Biochimie 2018; 148:80-86. [DOI: 10.1016/j.biochi.2018.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/22/2018] [Indexed: 11/22/2022]
|
20
|
Parker WB, Sorscher EJ. Use of E. coli Purine Nucleoside Phosphorylase in the Treatment of Solid Tumors. Curr Pharm Des 2017; 23:CPD-EPUB-86774. [PMID: 29119917 PMCID: PMC6224313 DOI: 10.2174/1381612823666171109101851] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The selective expression of non-human genes in tumor tissue to activate non-toxic compounds (Gene Directed Prodrug Enzyme Therapy, GDEPT) is a novel strategy designed for killing tumor cells in patients with little or no systemic toxicity. Numerous non-human genes have been evaluated, but none have yet been successful in the clinic. METHODS Unlike human purine nucleoside phosphorylase (PNP), E. coli PNP accepts adenine containing nucleosides as substrates, and is therefore able to selectively activate non-toxic purine analogs in tumor tissue. Various in vitro and in vivo assays have been utilized to evaluate E. coli PNP as a potential activating enzyme. RESULTS We and others have demonstrated excellent in vitro and in vivo anti-tumor activity with various GDEPT strategies utilizing E. coli PNP to activate purine nucleoside analogs. A phase I clinical trial utilizing recombinant adenoviral vector for delivery of E. coli PNP to solid tumors followed by systemic administration of fludarabine phosphate (NCT01310179; IND# 14271) has recently been completed. In this trial, significant anti-tumor activity was demonstrated with negligible toxicity related to the therapy. The mechanism of cell kill (inhibition of RNA and protein synthesis) is distinct from all currently used anticancer drugs and all experimental compounds under development. The approach has demonstrated excellent ability to kill neighboring tumor cells that do not express E. coli PNP, is active against non-proliferating and proliferating tumors cells (as well as tumor stem cells, stroma), and is therefore very effective against solid tumors with a low growth fraction. CONCLUSION The unique attributes distinguish this approach from other GDEPT strategies and are precisely those required to mediate significant improvements in antitumor therapy.
Collapse
|
21
|
Prokopowicz M, Greń B, Cieśla J, Kierdaszuk B. Towards understanding the E. coli PNP binding mechanism and FRET absence between E. coli PNP and formycin A. Biophys Chem 2017; 230:99-108. [PMID: 28947300 DOI: 10.1016/j.bpc.2017.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/25/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
Abstract
The aim of this study is threefold: (1) augmentation of the knowledge of the E. coli PNP binding mechanism; (2) explanation of the previously observed 'lack of FRET' phenomenon and (3) an introduction of the correction (modified method) for FRET efficiency calculation in the PNP-FA complexes. We present fluorescence studies of the two E. coli PNP mutants (F159Y and F159A) with formycin A (FA), that indicate that the aromatic amino acid is indispensable in the nucleotide binding, additional hydroxyl group at position 159 probably enhances the strength of binding and that the amino acids pair 159-160 has a great impact on the spectroscopic properties of the enzyme. The experiments were carried out in hepes and phosphate buffers, at pH7 and 8.3. Two methods, a conventional and a modified one, that utilizes the dissociation constant, for calculations of the energy transfer efficiency (E) and the acceptor-to-donor distance (r) between FA and the Tyr (energy donor) were employed. Total difference spectra were calculated for emission spectra (λex 280nm, 295nm, 305nm and 313nm) for all studied systems. Time-resolved techniques allowed to conclude the existence of a specific structure formed by amino acids at positions 159 and 160. The results showed an unexpected pattern change of FRET in the mutants, when compared to the wild type enzyme and a probable presence of a structure created between 159 and 160 residue, that might influence the binding efficiency. Additionally, we confirmed the indispensable role of the modification of the FRET efficiency (E) calculation on the fraction of enzyme saturation in PNP-FA systems.
Collapse
Affiliation(s)
- Małgorzata Prokopowicz
- Inter-Faculty Interdisciplinary Doctoral Studies in Natural Sciences and Mathematics, University of Warsaw, Stefana Banacha 2C, Warsaw 02-097, Poland; Department of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Żwirki i Wigury 93, Warsaw 02-089, Poland.
| | - Bartosz Greń
- Department of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Żwirki i Wigury 93, Warsaw 02-089, Poland
| | - Joanna Cieśla
- Department of Drug Technology and Biotechnology, Institute of Biotechnology Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, Warsaw 00-664, Poland
| | - Borys Kierdaszuk
- Department of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Żwirki i Wigury 93, Warsaw 02-089, Poland
| |
Collapse
|
22
|
Lehouritis P, Hogan G, Tangney M. Designer bacteria as intratumoural enzyme biofactories. Adv Drug Deliv Rev 2017; 118:8-23. [PMID: 28916496 DOI: 10.1016/j.addr.2017.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/18/2017] [Accepted: 09/07/2017] [Indexed: 02/07/2023]
Abstract
Bacterial-directed enzyme prodrug therapy (BDEPT) is an emerging form of treatment for cancer. It is a biphasic variant of gene therapy in which a bacterium, armed with an enzyme that can convert an inert prodrug into a cytotoxic compound, induces tumour cell death following tumour-specific prodrug activation. BDEPT combines the innate ability of bacteria to selectively proliferate in tumours, with the capacity of prodrugs to undergo contained, compartmentalised conversion into active metabolites in vivo. Although BDEPT has undergone clinical testing, it has received limited clinical exposure, and has yet to achieve regulatory approval. In this article, we review BDEPT from the system designer's perspective, and provide detailed commentary on how the designer should strategize its development de novo. We report on contemporary advancements in this field which aim to enhance BDEPT in terms of safety and efficacy. Finally, we discuss clinical and regulatory barriers facing BDEPT, and propose promising approaches through which these hurdles may best be tackled.
Collapse
|
23
|
Malekshah OM, Chen X, Nomani A, Sarkar S, Hatefi A. Enzyme/Prodrug Systems for Cancer Gene Therapy. ACTA ACUST UNITED AC 2016; 2:299-308. [PMID: 28042530 DOI: 10.1007/s40495-016-0073-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of enzyme/prodrug system has gained attention because it could help improve the efficacy and safety of conventional cancer chemotherapies. In this approach, cancer cells are first transfected with a gene that can express an enzyme with ability to convert a non-toxic prodrug into its active cytotoxic form. As a result, the activated prodrug could kill the transfected cancer cells. Despite the significant progress of different suicide gene therapy protocols in preclinical studies and early clinical trials, none has reached the clinic due to several shortcomings. These include slow prodrug-drug conversion rate, low transfection/transduction efficiency of the vectors and nonspecific toxicity/immunogenicity related to the delivery systems, plasmid DNA, enzymes and/or prodrugs. This mini review aims at providing an overview of the most widely used enzyme/prodrug systems with emphasis on reporting the results of the recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Obeid M Malekshah
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Xuguang Chen
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Alireza Nomani
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Siddik Sarkar
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Arash Hatefi
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, United States
| |
Collapse
|
24
|
Patent highlights: February-March 2016. Pharm Pat Anal 2016; 5:203-9. [PMID: 27336587 DOI: 10.4155/ppa-2016-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
25
|
SORSCHER ERICJ, HONG JEONGS, PARKER WILLIAMB. PRE-CLINICAL AND CLINICAL VALIDATION OF AN ANTI-CANCER MODALITY THAT ABLATES REFRACTORY, LOW GROWTH FRACTION TUMORS. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2016; 127:59-70. [PMID: 28066038 PMCID: PMC5216485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Intratumoral expression of the E. coli purine nucleoside phosphorylase (PNP) gene was originally described by our laboratories as a means to inhibit growth of solid tumors in vivo. The approach generates purine bases that disrupt DNA, RNA, and protein synthesis, a unique mechanism when compared with all approved or experimental cancer therapeutics. Use of PNP has been validated by numerous laboratories worldwide against human tumor xenografts (lung, liver, pancreas, bladder, glioma, and prostate, among others). Data from a recently completed phase 1 clinical trial has indicated substantial anti-cancer activity in human subjects with no serious toxicities.
Collapse
Affiliation(s)
- ERIC J. SORSCHER
- Correspondence and reprint requests: Eric J. Sorscher, MD,
Emory University School of Medicine, 1760 Haygood Drive, Suite 280, Atlanta, Georgia 30322404-727-3293404-712-0920
| | | | | |
Collapse
|