1
|
Beasley MB. Immunohistochemistry of Lung Cancer Biomarkers. Adv Anat Pathol 2024; 31:333-343. [PMID: 38666761 DOI: 10.1097/pap.0000000000000450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Immunohistochemical (IHC) staining represents a comparatively inexpensive testing method that is attractive as a potential alternative to molecular sequencing methods or fluorescence in situ hybridization for pulmonary biomarker testing. While a variety of IHC tests directed at actionable genetic alterations have been developed and evaluated since the advent of targeted therapy, specific antibody clones for anaplastic lymphoma kinase, ROS-1, and potentially neurotrophic tropmyosin receptor kinase have been the primary antibodies that provide sufficiently robust results to be utilized as either a primary testing or screening method to direct targeted therapy. Antibodies for a variety of other targets such as epidermal growth factor receptors, for example, have lacked sufficient sensitivity and specificity to cover the range of mutations that may occur and are generally not recommended in lieu of molecular testing with the exception of limited resource settings. IHC is also used as a predictive marker for response to immunotherapy through evaluation of programmed death ligand 1 expression. In addition, multiple antibody-drug conjugates (ADCs) are under investigation, designed to deliver drugs directly to tumor cells through binding to specific target antigens. Some ADCs have already received accelerated FDA approval, and IHC was incorporated in many clinical trials evaluating ADC efficacy. As such, it is anticipated that ADCs may have a companion diagnostic IHC to guide patient selection.
Collapse
Affiliation(s)
- Mary Beth Beasley
- Department of Pathology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY
| |
Collapse
|
2
|
Akhoundova D, Haberecker M, Fritsch R, Höller S, Kiessling MK, Rechsteiner M, Rüschoff JH, Curioni-Fontecedro A. Targeting ALK in Neuroendocrine Tumors of the Lung. Front Oncol 2022; 12:911294. [PMID: 35756632 PMCID: PMC9214311 DOI: 10.3389/fonc.2022.911294] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/02/2022] [Indexed: 11/17/2022] Open
Abstract
Background Anaplastic lymphoma kinase (ALK) rearrangements are known oncogenic drivers in non-small cell lung cancer (NSCLC). Few case reports described the occurrence of such rearrangements in large cell neuroendocrine carcinomas (LCNECs) of the lung without information on clinical responses to ALK tyrosine kinase inhibitors (TKIs) in these cases. Currently, neuroendocrine tumors of the lungs are not screened for ALK rearrangements. Methods To illustrate the clinical impact of molecular characterization in LCNECs, we report the disease course in three patients with ALK-rearranged metastatic LCNEC from our clinical routine, as well as their treatment response to ALK TKIs (index cases). To gain insight into the prevalence of ALK rearrangements in neuroendocrine tumors of the lung, we analyzed a retrospective cohort of 436 tumor biopsies including LCNEC (n = 61), small cell lung cancer (SCLC) (n = 206), typical (n = 91) and atypical (n = 69) carcinoids, and mixed histology (n = 9) for the presence of ALK rearrangements using a sequential diagnostic algorithm. ALK immunohistochemistry (IHC) was evaluable in 362 cases; fluorescence in situ hybridization (FISH) was evaluable in 28 out of the 35 IHC-positive cases, followed by next-generation sequencing (NGS) that was available in 12 cases. Results Within the retrospective cohort, ALK IHC was positive in 35 out of 362 (9.7%) evaluable samples. FISH was positive in 3 out of the 28 (10.7%) evaluable cases: 2 with atypical carcinoids and 1 with LCNEC. Additionally, the 3 index cases showed positive ALK IHC, which was confirmed by NGS. Within the retrospective cohort, NGS confirmed the presence of an ALK genomic rearrangement in one FISH-positive atypical carcinoid where material was sufficient for sequencing. Two out of three patients with metastatic ALK-rearranged LCNEC received up-front treatment with the ALK TKI alectinib and showed rapid tumor response at all metastatic sites, including multiple brain metastases. Conclusions ALK rearrangements represent rare but targetable oncogenic driver alterations in LCNEC. Contrarily to NSCLC, the detection of ALK rearrangements in neuroendocrine tumors of the lung is challenging, since ALK IHC can lead to false-positive results and therefore needs confirmation by FISH or NGS. Up-front comprehensive molecular profiling with NGS should be performed in metastatic LCNEC in order not to miss actionable genomic alterations.
Collapse
Affiliation(s)
- Dilara Akhoundova
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland.,Department of Medical Oncology, Inselspital, University Hospital of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Martina Haberecker
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Ralph Fritsch
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Sylvia Höller
- Institute of Pathology, Stadtspital Zurich Triemli, Zurich, Switzerland
| | - Michael K Kiessling
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland.,Department of Internal Medicine-Oncology, See Spital Horgen, Horgen, Switzerland
| | - Markus Rechsteiner
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Jan H Rüschoff
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
3
|
Grocholski S, Banerji S, Qing G, Dawe DE. Benefit of crizotinib in a lung cancer patient with discordant ALK testing results. Cancer Treat Res Commun 2018; 15:13-16. [PMID: 30207282 DOI: 10.1016/j.ctarc.2018.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 02/12/2018] [Accepted: 02/19/2018] [Indexed: 11/16/2022]
Abstract
Crizotinib is a first line treatment for patients with non-small cell lung cancer (NSCLC) harboring translocations in anaplastic lymphoma kinase (ALK). The current gold standard for determining ALK status is fluorescence in-situ hybridisation (FISH), but immunohistochemistry (IHC) is becoming increasingly popular due to lower cost. There are currently few reports on clinical outcomes with crizotinib therapy in patients who have tested negative by FISH and positive by IHC. A 53 year old lifelong non-smoking, physically active male with newly diagnosed Stage IV NSCLC presented with shortness of breath on exertion one month prior to referral. Staging CT scan failed to show a discreet lung lesion, but the left lower lobe was collapsed due to pleural effusion. Pleural fluid showed adenocarcinoma and IHC was positive for an ALK mutation, while FISH was negative. Pre-treatment PET-CT showed hypermetabolic, enlarged lymph nodes in the mediastinum and retroperitoneum. Partially due to patient concerns about cytotoxic chemotherapy toxicity, crizotinib therapy was instituted. Repeat CT conducted two months after crizotinib initiation showed a decrease in lymphadenopathy at all sites compared to the PET-CT. Furthermore, the patient showed clinical improvement, with less drainage through his PleurX catheter and stability of his excellent performance status. After 12 months on crizotinib CT showed ongoing improvement in lymphadenopathy. His bloodwork has been stable, and he denies significant drug toxicity. This case illustrates a sustained response to crizotinib therapy in a patient with an ALK translocation identified by IHC, but with negative FISH testing. The literature suggests that the population with these discordant results could be up to 19% of ALK positive NSCLC. Patients in this subgroup who are receiving crizotinib should be identified and outcome data pooled. However, in the interim, oncologists may wish to consider targeted therapy for these discordant patients.
Collapse
Affiliation(s)
- Steven Grocholski
- Rady Faculty of Health Sciences, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Shantanu Banerji
- Rady Faculty of Health Sciences, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada; Cancer Care Manitoba, Department of Hematology and Medical Oncology, Winnipeg, MB, Canada
| | - Gefei Qing
- Rady Faculty of Health Sciences, Department of Pathology, University of Manitoba, Winnipeg, MB, Canada
| | - David E Dawe
- Rady Faculty of Health Sciences, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada; Cancer Care Manitoba, Department of Hematology and Medical Oncology, Winnipeg, MB, Canada.
| |
Collapse
|
4
|
Lee SH, Kim JS, Zheng S, Huse JT, Bae JS, Lee JW, Yoo KH, Koo HH, Kyung S, Park WY, Sung KW. ARID1B alterations identify aggressive tumors in neuroblastoma. Oncotarget 2018; 8:45943-45950. [PMID: 28521285 PMCID: PMC5542239 DOI: 10.18632/oncotarget.17500] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 04/11/2017] [Indexed: 12/01/2022] Open
Abstract
Targeted panel sequencing was performed to determine molecular targets and biomarkers in 72 children with neuroblastoma. Frequent genetic alterations were detected in ALK (16.7%), BRCA1 (13.9%), ATM (12.5%), and PTCH1 (11.1%) in an 83-gene panel. Molecular targets for targeted therapy were identified in 16 of 72 patients (22.2%). Two-thirds of ALK mutations were known to increase sensitivity to ALK inhibitors. Sequence alterations in ARID1B were identified in 5 of 72 patients (6.9%). Four of five ARID1B alterations were detected in tumors of high-risk patients. Two of five patients with ARID1B alterations died of disease progression. Relapse-free survival was lower in patients with ARID1B alterations than in those without (p = 0.01). In analysis confined to high-risk patients, 3-year overall survival was lower in patients with an ARID1B alteration (33.3 ± 27.2%) or MYCN amplification (30.0 ± 23.9%) than in those with neither ARID1B alteration nor MYCN amplification (90.5 ± 6.4%, p = 0.05). These results provide possibilities for targeted therapy and a new biomarker identifying a subgroup of neuroblastoma patients with poor prognosis.
Collapse
Affiliation(s)
- Soo Hyun Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea.,Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jung-Sun Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Siyuan Zheng
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jason T Huse
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joon Seol Bae
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Ji Won Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sungkyu Kyung
- Department of Bioinformatics, Sungsil University, Seoul, Republic of Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ki W Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
ALK fusion variants detection by targeted RNA-next generation sequencing and clinical responses to crizotinib in ALK-positive non-small cell lung cancer. Lung Cancer 2017; 116:15-24. [PMID: 29413046 DOI: 10.1016/j.lungcan.2017.12.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 11/22/2022]
Abstract
OBJECTIVES The aim of the present study was firstly to assess in a clinical setting the yields of an amplicon-based parallel RNA sequencing (RNA-seq) assay for ALK fusion transcript variants detection in comparison with immunohistochemistry (IHC) and fluorescent in-situ hybridization (FISH) in a selected population of ALK-positive and ALK-negative non-small cell lung cancer (NSCLC) cases, and secondly to evaluate the impact of the ALK variant on crizotinib efficacy. MATERIALS AND METHODS The cohort used for the assessment of the RNA-seq assay comprised 53 samples initially diagnosed as being ALK-positive based on the results obtained by IHC and/or FISH, and 23 ALK-negative samples. A distinction was made between 'truly' IHC/FISH positive or 'truly' IHC/FISH negative samples, and those for which the IHC and/or FISH were equivocal (IHC) or borderline-positive (FISH). RESULTS On the overall population, RNA-seq sensitivity (Se) and specificity (Spe) were of 80% and 100%, respectively when IHC and FISH were combined. For the 31 'truly positive' samples, Se and Spe of 100% were reached. An ALK status could be assigned by RNA-seq in 10/10 of the equivocal and/or borderline-positive IHC/FISH cases, 2/7 IHC/FISH discordant cases. When crizotinib efficacy was evaluated according to the type of ALK variant, better clinical outcomes were observed in crizotinib-treated patients with EML4-ALK v1/v2/others variants compared to v3a/b variants. CONCLUSION RNA-seq detects ALK rearrangements with a high sensitivity and specificity using only 10 ng of RNA. It appears to be a promising rescue technique for non-clear-cut IHC/FISH cases and also offers a unique opportunity to identify ALK fusion variants and evaluate their predictive value for ALK inhibitors efficacy.
Collapse
|
6
|
van der Wekken A, Pelgrim R, 't Hart N, Werner N, Mastik M, Hendriks L, van der Heijden E, Looijen-Salamon M, de Langen A, Staal-van den Brekel J, Riemersma S, van den Borne B, Speel E, Dingemans AM, Hiltermann T, van den Berg A, Timens W, Schuuring E, Groen H. Dichotomous ALK-IHC Is a Better Predictor for ALK Inhibition Outcome than Traditional ALK-FISH in Advanced Non–Small Cell Lung Cancer. Clin Cancer Res 2017; 23:4251-4258. [DOI: 10.1158/1078-0432.ccr-16-1631] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/05/2016] [Accepted: 02/01/2017] [Indexed: 11/16/2022]
|
7
|
Prabhash K, Zanwar S, Noronha V, Joshi A, Patil V, Kaushal R, Chougule A, Janu A, Mahajan A, Kapoor A. Efficacy of crizotinib in ALK mutant non-small cell lung cancers that are positive by IHC but negative by FISH compared to FISH positive cases. Indian J Cancer 2017; 54:678-680. [PMID: 30082557 DOI: 10.4103/ijc.ijc_532_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Banno E, Togashi Y, Nakamura Y, Chiba M, Kobayashi Y, Hayashi H, Terashima M, de Velasco MA, Sakai K, Fujita Y, Mitsudomi T, Nishio K. Sensitivities to various epidermal growth factor receptor-tyrosine kinase inhibitors of uncommon epidermal growth factor receptor mutations L861Q and S768I: What is the optimal epidermal growth factor receptor-tyrosine kinase inhibitor? Cancer Sci 2016; 107:1134-40. [PMID: 27240419 PMCID: PMC4982590 DOI: 10.1111/cas.12980] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/17/2016] [Accepted: 05/27/2016] [Indexed: 12/31/2022] Open
Abstract
Most patients with non‐small cell lung cancer (NSCLC) harboring common epidermal growth factor receptor (EGFR) mutations, such as deletions in exon 19 or the L858R mutation in exon 21, respond dramatically to EGFR tyrosine kinase inhibitors (EGFR‐TKI), and their sensitivities to various EGFR‐TKI have been well characterized. Our previous article showed the in vitro sensitivities of EGFR exon 18 mutations to EGFR‐TKI, but little information regarding the sensitivities of other uncommon EGFR mutations is available. First, stable transfectant Ba/F3 cell lines harboring EGFR L858R (Ba/F3‐L858R), L861Q (Ba/F3‐L861Q) or S768I (Ba/F3‐S768I) mutations were created and their drug sensitivities to various EGFR‐TKI were examined. Both the Ba/F3‐L861Q and Ba/F3‐S768I cell lines were less sensitive to erlotinib, compared with the Ba/F3‐L858R cell line, but their sensitivities to afatinib were similar to that of the Ba/F3‐L858R cell line. The Ba/F3‐L861Q cell line was similarly sensitive and the Ba/F3‐S768I cell line was less sensitive to osimertinib, compared with the Ba/F3‐L858R cell line. The results of western blot analyses were consistent with these sensitivities. Next, similar experiments were also performed using the KYSE270 (L861Q) and KYSE 450 (S768I) cell lines, and their results were compatible with those of the transfectant Ba/F3 cell lines. Our findings suggest that NSCLC harboring the EGFR L861Q mutation might be sensitive to afatinib or osimertinib and that NSCLC harboring the EGFR S768I mutation might be sensitive to afatinib. Overall, afatinib might be the optimal EGFR‐TKI against these uncommon EGFR mutations.
Collapse
Affiliation(s)
- Eri Banno
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yosuke Togashi
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yu Nakamura
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Masato Chiba
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan.,Department of Thoracic Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yoshihisa Kobayashi
- Department of Thoracic Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Hidetoshi Hayashi
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan.,Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Masato Terashima
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Marco A de Velasco
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yoshihiko Fujita
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Tetsuya Mitsudomi
- Department of Thoracic Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
9
|
Facchinetti F, Tiseo M, Di Maio M, Graziano P, Bria E, Rossi G, Novello S. Tackling ALK in non-small cell lung cancer: the role of novel inhibitors. Transl Lung Cancer Res 2016; 5:301-21. [PMID: 27413712 DOI: 10.21037/tlcr.2016.06.10] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Crizotinib is an oral inhibitor of anaplastic lymphoma kinase (ALK) with remarkable clinical activity in patients suffering from ALK-rearranged non-small cell lung cancer (NSCLC), accounting to its superiority compared to chemotherapy. Unfortunately, virtually all ALK-rearranged tumors acquire resistance to crizotinib, frequently within one year since the treatment initiation. To date, therapeutic strategies to overcome crizotinib resistance have focused on the use of more potent and structurally different compounds. Second-generation ALK inhibitors such as ceritinib (LDK378), alectinib (CH5424802/RO5424802) and brigatinib (AP26113) have shown relevant clinical activity, consequently fostering their rapid clinical development and their approval by health agencies. The third-generation inhibitor lorlatinib (PF-06463922), selectively active against ALK and ROS1, harbors impressive biological potency; its efficacy in reversing resistance to crizotinib and to other ALK inhibitors is being proven by early clinical trials. The NTRK1-3 and ROS1 inhibitor entrectinib (RXDX-101) has been reported to act against NSCLC harboring ALK fusion proteins too. Despite the quick development of these novel agents, several issues remain to be discussed in the treatment of patients suffering from ALK-rearranged NSCLC. This position paper will discuss the development, the current evidence and approvals, as long as the future perspectives of new ALK inhibitors beyond crizotinib. Clinical behaviors of ALK-rearranged NSCLC vary significantly among patients and differential molecular events responsible of crizotinib resistance account for the most important quote of this heterogeneity. The precious availability of a wide range of active anti-ALK compounds should be approached in a critical and careful perspective, in order to develop treatment strategies tailored on the disease evolution of every single patient.
Collapse
Affiliation(s)
- Francesco Facchinetti
- 1 INSERM U981, Gustave Roussy Cancer Campus, Université Paris-Sud, Villejuif, France ; 2 Medical Oncology Unit, University Hospital of Parma, Parma, Italy ; 3 Department of Oncology, AOU San Luigi (Orbassano), University of Turin, Italy ; 4 Medical Oncology, AO Ordine Mauriziano, Turin, Italy ; 5 Division of Pathology, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy ; 6 Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, Verona, Italy ; 7 Operative Unit of Pathology, Azienda USL Valle d'Aosta, Aosta, Italy
| | - Marcello Tiseo
- 1 INSERM U981, Gustave Roussy Cancer Campus, Université Paris-Sud, Villejuif, France ; 2 Medical Oncology Unit, University Hospital of Parma, Parma, Italy ; 3 Department of Oncology, AOU San Luigi (Orbassano), University of Turin, Italy ; 4 Medical Oncology, AO Ordine Mauriziano, Turin, Italy ; 5 Division of Pathology, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy ; 6 Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, Verona, Italy ; 7 Operative Unit of Pathology, Azienda USL Valle d'Aosta, Aosta, Italy
| | - Massimo Di Maio
- 1 INSERM U981, Gustave Roussy Cancer Campus, Université Paris-Sud, Villejuif, France ; 2 Medical Oncology Unit, University Hospital of Parma, Parma, Italy ; 3 Department of Oncology, AOU San Luigi (Orbassano), University of Turin, Italy ; 4 Medical Oncology, AO Ordine Mauriziano, Turin, Italy ; 5 Division of Pathology, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy ; 6 Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, Verona, Italy ; 7 Operative Unit of Pathology, Azienda USL Valle d'Aosta, Aosta, Italy
| | - Paolo Graziano
- 1 INSERM U981, Gustave Roussy Cancer Campus, Université Paris-Sud, Villejuif, France ; 2 Medical Oncology Unit, University Hospital of Parma, Parma, Italy ; 3 Department of Oncology, AOU San Luigi (Orbassano), University of Turin, Italy ; 4 Medical Oncology, AO Ordine Mauriziano, Turin, Italy ; 5 Division of Pathology, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy ; 6 Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, Verona, Italy ; 7 Operative Unit of Pathology, Azienda USL Valle d'Aosta, Aosta, Italy
| | - Emilio Bria
- 1 INSERM U981, Gustave Roussy Cancer Campus, Université Paris-Sud, Villejuif, France ; 2 Medical Oncology Unit, University Hospital of Parma, Parma, Italy ; 3 Department of Oncology, AOU San Luigi (Orbassano), University of Turin, Italy ; 4 Medical Oncology, AO Ordine Mauriziano, Turin, Italy ; 5 Division of Pathology, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy ; 6 Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, Verona, Italy ; 7 Operative Unit of Pathology, Azienda USL Valle d'Aosta, Aosta, Italy
| | - Giulio Rossi
- 1 INSERM U981, Gustave Roussy Cancer Campus, Université Paris-Sud, Villejuif, France ; 2 Medical Oncology Unit, University Hospital of Parma, Parma, Italy ; 3 Department of Oncology, AOU San Luigi (Orbassano), University of Turin, Italy ; 4 Medical Oncology, AO Ordine Mauriziano, Turin, Italy ; 5 Division of Pathology, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy ; 6 Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, Verona, Italy ; 7 Operative Unit of Pathology, Azienda USL Valle d'Aosta, Aosta, Italy
| | - Silvia Novello
- 1 INSERM U981, Gustave Roussy Cancer Campus, Université Paris-Sud, Villejuif, France ; 2 Medical Oncology Unit, University Hospital of Parma, Parma, Italy ; 3 Department of Oncology, AOU San Luigi (Orbassano), University of Turin, Italy ; 4 Medical Oncology, AO Ordine Mauriziano, Turin, Italy ; 5 Division of Pathology, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy ; 6 Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, Verona, Italy ; 7 Operative Unit of Pathology, Azienda USL Valle d'Aosta, Aosta, Italy
| |
Collapse
|
10
|
Rosoux A, Pauwels P, Duplaquet F, D'Haene N, Weynand B, Delos M, Menon R, Heukamp LC, Thunnissen E, Ocak S. Effectiveness of crizotinib in a patient with ALK IHC-positive/FISH-negative metastatic lung adenocarcinoma. Lung Cancer 2016; 98:118-121. [PMID: 27393517 DOI: 10.1016/j.lungcan.2016.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 11/30/2022]
Abstract
We report a case of crizotinib effectiveness in a heavily pretreated patient with a metastatic NSCLC initially considered IHC-positive and FISH-negative for ALK rearrangement. After repeated analyses of tumor samples, borderline ALK FISH-positivity (18.5% positive cells) was demonstrated.
Collapse
Affiliation(s)
- A Rosoux
- Division of Pulmonology, Université catholique de Louvain (UCL), CHU UCL Namur, Yvoir, Belgium
| | - P Pauwels
- Center for Oncologic Research (CORE), Antwerp University, Antwerp, Belgium
| | - F Duplaquet
- Division of Pulmonology, Université catholique de Louvain (UCL), CHU UCL Namur, Yvoir, Belgium
| | - N D'Haene
- Department of Pathology, Université Libre de Bruxelles (ULB), Hôpital Erasme, Brussels, Belgium
| | - B Weynand
- Department of pathology, UZ Leuven, Leuven, Belgium
| | - M Delos
- Department of Pathology, UCL, CHU UCL Namur, Yvoir, Belgium
| | - R Menon
- Neo New Oncology GmbH, Cologne, Germany
| | | | - E Thunnissen
- Department of Pathology, VU University, Amsterdam, Netherlands
| | - S Ocak
- Division of Pulmonology, Université catholique de Louvain (UCL), CHU UCL Namur, Yvoir, Belgium.
| |
Collapse
|
11
|
Terashima M, Togashi Y, Sato K, Mizuuchi H, Sakai K, Suda K, Nakamura Y, Banno E, Hayashi H, De Velasco MA, Fujita Y, Tomida S, Mitsudomi T, Nishio K. Functional Analyses of Mutations in Receptor Tyrosine Kinase Genes in Non-Small Cell Lung Cancer: Double-Edged Sword of DDR2. Clin Cancer Res 2016; 22:3663-71. [PMID: 26826182 DOI: 10.1158/1078-0432.ccr-15-2093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/23/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE This study investigated whether mutations of receptor tyrosine kinase (RTK) genes detected using next-generation sequencing (NGS) are suitable therapeutic targets. EXPERIMENTAL DESIGN Fifty surgically resected non-small cell lung cancer (NSCLC) samples were target resequenced using NGS. We then investigated the functions of the identified RTK gene mutations, including their oncogenic potential, in vitro RESULTS Mutations in RTK genes were found in 20 samples (EGFR, 15; ERBB4, 1; ALK, 1; DDR2, 2; FGFR1, 1), mutations in MAPK pathway genes were found in nine samples (KRAS, 7; NRAS, 1; BRAF, 2), and mutations in PI3K pathway genes were found in three samples (PIK3CA, 1; PTEN, 3). Among the mutations in RTKs, the functions of four mutations were unclear (ERBB4 D245G; DDR2 H246R and E655K; FGFR1 A263V). These mutations did not exhibit any transformational activities. Neither the phosphorylation nor the protein expressions of RTKs were changed by the DDR2 H246R, ERBB4 D245G, and FGFR1 A263V mutations, although the expression level of the DDR2 protein harboring the E655K mutation was particularly low. Collagen stimulation decreased cellular proliferation through p38 activation in the DDR2 wild-type-overexpressed cell lines, whereas the growth-suppressive effect was weakened in DDR2 E655K-overexpressed cell lines. Furthermore, the DDR2 E655K protein strongly bound to ubiquitin ligase E3 (Cbl-b), and the mutant protein expression was increased after treatment with a proteasome inhibitor. CONCLUSIONS Our experimental findings suggest that RTK mutations are not always suitable as therapeutic targets. The DDR2 E655K mutation can play a role in cancer progression by reducing the growth-inhibitory effect of collagen. Clin Cancer Res; 22(14); 3663-71. ©2016 AACR.
Collapse
Affiliation(s)
- Masato Terashima
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Yosuke Togashi
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Katsuaki Sato
- Thoracic Surgery, Kinki University Faculty of Medicine, Osaka, Japan
| | - Hiroshi Mizuuchi
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka, Japan. Thoracic Surgery, Kinki University Faculty of Medicine, Osaka, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Kenichi Suda
- Thoracic Surgery, Kinki University Faculty of Medicine, Osaka, Japan
| | - Yu Nakamura
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Eri Banno
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Hidetoshi Hayashi
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Marco A De Velasco
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Yoshihiko Fujita
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Shuta Tomida
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Tetsuya Mitsudomi
- Thoracic Surgery, Kinki University Faculty of Medicine, Osaka, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka, Japan.
| |
Collapse
|