1
|
Wang X, Hou K, Ricciuti B, Alessi JV, Li X, Pecci F, Dey R, Luo J, Awad MM, Gusev A, Lin X, Johnson BE, Christiani DC. Additional impact of genetic ancestry over race/ethnicity to prevalence of KRAS mutations and allele-specific subtypes in non-small cell lung cancer. HGG ADVANCES 2024; 5:100320. [PMID: 38902927 PMCID: PMC11452329 DOI: 10.1016/j.xhgg.2024.100320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
The KRAS mutation is the most common oncogenic driver in patients with non-small cell lung cancer (NSCLC). However, a detailed understanding of how self-reported race and/or ethnicity (SIRE), genetically inferred ancestry (GIA), and their interaction affect KRAS mutation is largely unknown. Here, we investigated the associations between SIRE, quantitative GIA, and KRAS mutation and its allele-specific subtypes in a multi-ethnic cohort of 3,918 patients from the Boston Lung Cancer Survival cohort and the Chinese OrigiMed cohort with an independent validation cohort of 1,450 patients with NSCLC. This comprehensive analysis included detailed covariates such as age at diagnosis, sex, clinical stage, cancer histology, and smoking status. We report that SIRE is significantly associated with KRAS mutations, modified by sex, with SIRE-Asian patients showing lower rates of KRAS mutation, transversion substitution, and the allele-specific subtype KRASG12C compared to SIRE-White patients after adjusting for potential confounders. Moreover, GIA was found to correlate with KRAS mutations, where patients with a higher proportion of European ancestry had an increased risk of KRAS mutations, especially more transition substitutions and KRASG12D. Notably, among SIRE-White patients, an increase in European ancestry was linked to a higher likelihood of KRAS mutations, whereas an increase in admixed American ancestry was associated with a reduced likelihood, suggesting that quantitative GIA offers additional information beyond SIRE. The association of SIRE, GIA, and their interplay with KRAS driver mutations in NSCLC highlights the importance of incorporating both into population-based cancer research, aiming to refine clinical decision-making processes and mitigate health disparities.
Collapse
Affiliation(s)
- Xinan Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
| | - Kangcheng Hou
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, 611 Charles E. Young Drive, Los Angeles, CA, USA
| | - Biagio Ricciuti
- Lowe Center for Thoracic Oncology and Center for Cancer Genomics, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, USA
| | - Joao V Alessi
- Lowe Center for Thoracic Oncology and Center for Cancer Genomics, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, USA
| | - Xihao Li
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA; Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC, USA
| | - Federica Pecci
- Lowe Center for Thoracic Oncology and Center for Cancer Genomics, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, USA
| | - Rounak Dey
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
| | - Jia Luo
- Lowe Center for Thoracic Oncology and Center for Cancer Genomics, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, USA
| | - Mark M Awad
- Lowe Center for Thoracic Oncology and Center for Cancer Genomics, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, USA
| | - Alexander Gusev
- McGraw/Patterson Center for Population Sciences, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
| | - Bruce E Johnson
- Lowe Center for Thoracic Oncology and Center for Cancer Genomics, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, USA.
| |
Collapse
|
2
|
Thomas QD, Quantin X, Lemercier P, Chouaid C, Schneider S, Filleron T, Remon-Masip J, Perol M, Debieuvre D, Audigier-Valette C, Justeau G, Loeb A, Hiret S, Clement-Duchene C, Dansin E, Stancu A, Pichon E, Bosquet L, Girard N, Du Rusquec P. Clinical characteristic and survival outcomes of patients with advanced NSCLC according to KRAS mutational status in the French real-life ESME cohort. ESMO Open 2024; 9:103473. [PMID: 38833966 PMCID: PMC11179088 DOI: 10.1016/j.esmoop.2024.103473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/22/2024] [Accepted: 04/21/2024] [Indexed: 06/06/2024] Open
Abstract
PURPOSE The RAS/MEK signaling pathway is essential in carcinogenesis and frequently altered in non-small-cell lung cancer (NSCLC), notably by KRAS mutations (KRASm) that affect 25%-30% of non-squamous NSCLC. This study aims to explore the impact of KRASm subtypes on disease phenotype and survival outcomes. PATIENTS AND METHODS We conducted a retrospective analysis of the French Epidemiological Strategy and Medical Economics database for advanced or metastatic lung cancer from 2011 to 2021. Patient demographics, histology, KRASm status, treatment strategies, and outcomes were assessed. RESULTS Of 10 177 assessable patients for KRAS status, 17.6% had KRAS p.G12C mutation, 22.6% had KRAS non-p.G12C mutation, and 59.8% were KRASwt. KRASm patients were more often smokers (96.3%) compared with KRASwt (85.8%). A higher proportion of programmed death-ligand 1 ≥50% was found for KRASm patients: 43.5% versus 38.0% (P < 0.01). KRASm correlated with poorer outcomes. First-line median progression-free survival was shorter in the KRASm than the KRASwt cohort: 4.0 months [95% confidence interval (CI) 3.7-4.3 months] versus 5.1 months (95% CI 4.8-5.3 months), P < 0.001. First-line overall survival was shorter for KRASm than KRASwt patients: 12.6 months (95% CI 11.6-13.6 months) versus 15.4 months (95% CI 14.6-16.2 months), P = 0.012. First-line chemoimmunotherapy offered better overall survival in KRAS p.G12C (48.8 months) compared with KRAS non-p.G12C (24.0 months) and KRASwt (22.5 months) patients. Second-line overall survival with immunotherapy was superior in the KRAS p.G12C subgroup: 12.6 months (95% CI 8.1-18.6 months) compared with 9.4 months (95% CI 8.0-11.4 months) for KRAS non-p.G12C and 9.6 months (8.4-11.0 months) for KRASwt patients. CONCLUSION We highlighted distinct clinical profiles and survival outcomes according to KRASm subtypes. Notably KRAS p.G12C mutations may provide increased sensitivity to immunotherapy, suggesting potential therapeutic implications for sequencing or combination of therapies. Further research on the impact of emerging KRAS specific inhibitors are warranted in real-world cohorts.
Collapse
Affiliation(s)
- Q D Thomas
- Department of Medical Oncology, Montpellier Cancer Institute, Montpellier; Oncogenic Pathways in Lung Cancer, Montpellier Cancer Research Institute, University of Montpellier, Montpellier
| | - X Quantin
- Department of Medical Oncology, Montpellier Cancer Institute, Montpellier; Oncogenic Pathways in Lung Cancer, Montpellier Cancer Research Institute, University of Montpellier, Montpellier
| | - P Lemercier
- Biometrics Unit, Montpellier Cancer Institute, University of Montpellier, Montpellier
| | - C Chouaid
- Department of Pneumology, Intercommunal Hospital Créteil, Créteil
| | - S Schneider
- Department of Pneumology, Hospital Center Côte Basque, Bayonne
| | - T Filleron
- Biostatistics Unit, Claudius Regaud Institute IUCT-O, Toulouse
| | | | - M Perol
- Department of Medical Oncology, Centre Leon Berard, Lyon
| | - D Debieuvre
- Department of Pneumology, GHR Mulhouse Sud-Alsace, Mulhouse
| | | | - G Justeau
- Department of Pneumology, University Hospital, Angers
| | - A Loeb
- Department of Medical Information, Centre Henri Becquerel, Rouen
| | - S Hiret
- Department of Medical Oncology, West Cancer Institute, Angers & Nantes
| | - C Clement-Duchene
- Department of Pneumology, Lorraine Cancer Institute, Vandoeuvre-les-Nancy
| | - E Dansin
- Department of Medical Oncology, Centre Oscar Lambret, Lille
| | - A Stancu
- Department of Medical Oncology, Sainte Catherine Institute, Avignon
| | - E Pichon
- Department of Pneumology, University Hospital, Tours
| | - L Bosquet
- Department of Health Data and Partnerships, Unicancer, Paris
| | - N Girard
- Institut Curie, Institut du Thorax Curie-Montsouris, Paris & St Cloud, France
| | - P Du Rusquec
- Institut Curie, Institut du Thorax Curie-Montsouris, Paris & St Cloud, France.
| |
Collapse
|
3
|
Mohanty A, Nam A, Srivastava S, Jones J, Lomenick B, Singhal SS, Guo L, Cho H, Li A, Behal A, Mirzapoiazova T, Massarelli E, Koczywas M, Arvanitis LD, Walser T, Villaflor V, Hamilton S, Mambetsariev I, Sattler M, Nasser MW, Jain M, Batra SK, Soldi R, Sharma S, Fakih M, Mohanty SK, Mainan A, Wu X, Chen Y, He Y, Chou TF, Roy S, Orban J, Kulkarni P, Salgia R. Acquired resistance to KRAS G12C small-molecule inhibitors via genetic/nongenetic mechanisms in lung cancer. SCIENCE ADVANCES 2023; 9:eade3816. [PMID: 37831779 PMCID: PMC10575592 DOI: 10.1126/sciadv.ade3816] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/08/2023] [Indexed: 10/15/2023]
Abstract
Inherent or acquired resistance to sotorasib poses a substantialt challenge for NSCLC treatment. Here, we demonstrate that acquired resistance to sotorasib in isogenic cells correlated with increased expression of integrin β4 (ITGB4), a component of the focal adhesion complex. Silencing ITGB4 in tolerant cells improved sotorasib sensitivity, while overexpressing ITGB4 enhanced tolerance to sotorasib by supporting AKT-mTOR bypass signaling. Chronic treatment with sotorasib induced WNT expression and activated the WNT/β-catenin signaling pathway. Thus, silencing both ITGB4 and β-catenin significantly improved sotorasib sensitivity in tolerant, acquired, and inherently resistant cells. In addition, the proteasome inhibitor carfilzomib (CFZ) exhibited synergism with sotorasib by down-regulating ITGB4 and β-catenin expression. Furthermore, adagrasib phenocopies the combination effect of sotorasib and CFZ by suppressing KRAS activity and inhibiting cell cycle progression in inherently resistant cells. Overall, our findings unveil previously unrecognized nongenetic mechanisms underlying resistance to sotorasib and propose a promising treatment strategy to overcome resistance.
Collapse
Affiliation(s)
- Atish Mohanty
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Arin Nam
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Saumya Srivastava
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jeff Jones
- Proteome Exploration Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
| | - Brett Lomenick
- Proteome Exploration Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sharad S. Singhal
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Linlin Guo
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Hyejin Cho
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Monrovia, CA 91016, USA
| | - Aimin Li
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010,USA
| | - Amita Behal
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Tamara Mirzapoiazova
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Erminia Massarelli
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Marianna Koczywas
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | - Tonya Walser
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Victoria Villaflor
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Stanley Hamilton
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010,USA
| | - Isa Mambetsariev
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Mohd W. Nasser
- Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Maneesh Jain
- Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Surinder K. Batra
- Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Raffaella Soldi
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, AZ 850043, USA
| | - Sunil Sharma
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, AZ 850043, USA
| | - Marwan Fakih
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Saswat Kumar Mohanty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Avijit Mainan
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Monrovia, CA 91016, USA
| | - Yihong Chen
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Yanan He
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Tsui-Fen Chou
- Proteome Exploration Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - John Orban
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
4
|
Liu F, Wang F, He J, Zhou S, Luo M. Correlation between KRAS mutation subtypes and prognosis in Chinese advanced non-squamous non-small cell lung cancer patients. Cancer Med 2023. [PMID: 37140194 DOI: 10.1002/cam4.5995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023] Open
Abstract
PURPOSE The relationship between mutant KRAS and the risk of disease progression and death in advanced non-squamous non-small cell lung cancer (NSCLC) is still controversial among current studies, and the effects of distinct KRAS mutations on prognosis may be different. This study aimed to further investigate the association between them. PATIENTS AND METHODS Of the 184 patients eventually included in the study, 108 had KRAS wild type (WT) and 76 had KRAS mutant type (MT). Kaplan-Meier curves were plotted to describe the survival for patients among groups, while log-rank tests were conducted to evaluate the survival differences. The univariate and multivariate Cox regression were performed to identify predictors, and subgroup analysis was used to verify the interaction effect. RESULTS Similar efficacy of first-line therapy was observed for KRAS MT and WT patients (p = 0.830). The association between KRAS mutation and progression-free survival (PFS) was not significant in univariate analysis (hazard ratio [HR] = 0.94; 95% CI, 0.66-1.35), and no KRAS mutation subtype significantly affected PFS. However, KRAS mutation and KRAS non-G12C were associated with increased risk of death compared to KRAS WT in univariate and multivariate analysis. Univariate and multivariate analysis also confirmed that chemotherapy combined with antiangiogenesis or immunotherapy in the KRAS mutation group was associated with decreased risk of disease progression. However, the overall survival (OS) among KRAS mutant patients received different first-line treatments did not significantly differ. CONCLUSION KRAS mutations and their subtypes are not independent negative predictors of PFS, while KRAS mutation and KRAS non-G12C were independent prognostic factors for OS. Chemotherapy combined with antiangiogenesis or immunotherapy conferred decreased risk of disease progression to KRAS mutation patients compared to single chemotherapy.
Collapse
Affiliation(s)
- Feiwen Liu
- The Third Affiliated Hospital of Guangxi Medical University, Nanning City, Guangxi Zhuang Autonomous Region, China
| | - Fang Wang
- Guangxi Qianhai Life Hospital, Nanning City, Guangxi Zhuang Autonomous Region, China
| | - Jianbo He
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, Nanning City, China
| | - Shaozhang Zhou
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, Nanning City, China
| | - Min Luo
- The Third Affiliated Hospital of Guangxi Medical University, Nanning City, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
5
|
Frost MG, Jensen KJ, Gotfredsen DR, Sørensen AMS, Ankarfeldt MZ, Louie KS, Sroczynski N, Jakobsen E, Andersen JL, Jimenez-Solem E, Petersen TS. KRAS G12C mutated advanced non-small cell lung cancer (NSCLC): Characteristics, treatment patterns and overall survival from a Danish nationwide observational register study. Lung Cancer 2023; 178:172-182. [PMID: 36868178 DOI: 10.1016/j.lungcan.2023.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/16/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023]
Abstract
OBJECTIVES We aimed to characterize the advanced NSCLC population in terms of KRAS G12C prevalence, patient characteristics, and survival outcomes after the introduction of immunotherapies. MATERIALS AND METHODS We identified adult patients diagnosed with advanced NSCLC between January 1, 2018 and June 30, 2021 using the Danish health registries. Patients were grouped by mutational status (any KRAS mutation, KRAS G12C, and KRAS/EGFR/ALK wildtype [Triple WT]). We analyzed KRAS G12C prevalence, patient and tumor characteristics, treatment history, time-to-next-treatment (TTNT), and overall survival (OS). RESULTS We identified 7,440 patients of whom 40% (n = 2,969) were KRAS tested prior to the first line of therapy (LOT1). Among the KRAS tested, 11% (n = 328) harbored KRAS G12C. More KRAS G12C patients were women (67%), smokers (86%), had a high (≥50%) level of PD-L1 expression (54%), and more frequently received anti-PD-L1 treatment than any other group. From the date of the mutational test result, OS (7.1-7.3 months) was similar between the groups. OS from LOT1 (14.0 months) and LOT2 (10.8 months), and TTNT from LOT1 (6.9 months) and LOT2 (6.3 months) was numerically longer for the KRAS G12C mutated group compared to any other group. However, from LOT1 and LOT2, the OS and TTNT were comparable when stratifying the groups by PD-L1 expression level. Regardless of the mutational group, OS was markedly longer for patients with high PD-L1 expression. CONCLUSION In patients diagnosed with advanced NSCLC after the implementation of anti-PD-1/L1 therapies, the survival in KRAS G12C mutated patients is comparable to patients with any KRAS mutation, Triple WT, and all NSCLC patients.
Collapse
Affiliation(s)
- Matilde Grupe Frost
- University of Copenhagen, Faculty of Health and Medicinal Sciences, Copenhagen, Denmark; Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.
| | - Kristoffer Jarlov Jensen
- Copenhagen Phase IV Unit (Phase4CPH), Department of Clinical Pharmacology and Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Ditte Resendal Gotfredsen
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Anne Mette Skov Sørensen
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Mikkel Zöllner Ankarfeldt
- Copenhagen Phase IV Unit (Phase4CPH), Department of Clinical Pharmacology and Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | | | | | - Erik Jakobsen
- Department of Heart, Lung and Vascular Surgery, Odense University Hospital, Denmark
| | | | - Espen Jimenez-Solem
- University of Copenhagen, Faculty of Health and Medicinal Sciences, Copenhagen, Denmark; Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Copenhagen Phase IV Unit (Phase4CPH), Department of Clinical Pharmacology and Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Tonny Studsgaard Petersen
- University of Copenhagen, Faculty of Health and Medicinal Sciences, Copenhagen, Denmark; Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| |
Collapse
|
6
|
Karimi N, Moghaddam SJ. KRAS-Mutant Lung Cancer: Targeting Molecular and Immunologic Pathways, Therapeutic Advantages and Restrictions. Cells 2023; 12:749. [PMID: 36899885 PMCID: PMC10001046 DOI: 10.3390/cells12050749] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
RAS mutations are among the most common oncogenic mutations in human cancers. Among RAS mutations, KRAS has the highest frequency and is present in almost 30% of non-small-cell lung cancer (NSCLC) patients. Lung cancer is the number one cause of mortality among cancers as a consequence of outrageous aggressiveness and late diagnosis. High mortality rates have been the reason behind numerous investigations and clinical trials to discover proper therapeutic agents targeting KRAS. These approaches include the following: direct KRAS targeting; synthetic lethality partner inhibitors; targeting of KRAS membrane association and associated metabolic rewiring; autophagy inhibitors; downstream inhibitors; and immunotherapies and other immune-modalities such as modulating inflammatory signaling transcription factors (e.g., STAT3). The majority of these have unfortunately encountered limited therapeutic outcomes due to multiple restrictive mechanisms including the presence of co-mutations. In this review we plan to summarize the past and most recent therapies under investigation, along with their therapeutic success rate and potential restrictions. This will provide useful information to improve the design of novel agents for treatment of this deadly disease.
Collapse
Affiliation(s)
- Nastaran Karimi
- Faculty of Medicine, Marmara University, Istanbul 34899, Turkey
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
7
|
Cascetta P, Marinello A, Lazzari C, Gregorc V, Planchard D, Bianco R, Normanno N, Morabito A. KRAS in NSCLC: State of the Art and Future Perspectives. Cancers (Basel) 2022; 14:5430. [PMID: 36358848 PMCID: PMC9656434 DOI: 10.3390/cancers14215430] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
In NSCLC, KRAS mutations occur in up to 30% of all cases, most frequently at codon 12 and 13. KRAS mutations have been linked to adenocarcinoma histology, positive smoking history, and Caucasian ethnicity, although differences have been described across KRAS mutational variants subtypes. KRAS mutations often concur with other molecular alterations, notably TP53, STK11, and KEAP1, which could play an important role in treatment efficacy and patient outcomes. For many years, KRAS mutations have been considered undruggable mainly due to a high toxicity profile and low specificity of compounds. Sotorasib and adagrasib are novel KRAS inhibitors that recently gained FDA approval for pre-treated KRAS mutant NSCLC patients, and other molecules such as GDC-6036 are currently being investigated with promising results. Despite their approval, the efficacy of these drugs is lower than expected and progression among responders has been reported. Mechanisms of acquired resistance to anti-KRAS molecules typically involves either on target secondary mutations (e.g., G12, G13, Q61H, R68S, H95, Y96C, V8L) or off-target alterations. Ongoing trials are currently evaluating strategies for implementing efficacy and overcoming acquired resistance to these compounds. Finally, the efficacy of immune-checkpoint inhibitors still needs to be completely assessed and responses to anti-PD-1/PD-L1 agents may strongly depend on concomitant mutations.
Collapse
Affiliation(s)
- Priscilla Cascetta
- Department of Medical Oncology, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, 94850 Villejuif, France
| | - Arianna Marinello
- Department of Medical Oncology, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, 94850 Villejuif, France
- Department of Medical Oncology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Chiara Lazzari
- Department of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy
| | - Vanesa Gregorc
- Department of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy
| | - David Planchard
- Department of Medical Oncology, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, 94850 Villejuif, France
| | - Roberto Bianco
- Department of Clinical Medicine and Surgery, Oncology Division, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Nicola Normanno
- Cellular Biology and Biotherapy, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Via Mariano Semmola 53, 80131 Naples, Italy
| | - Alessandro Morabito
- Thoracic Medical Oncology, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Via Mariano Semmola 53, 80131 Naples, Italy
| |
Collapse
|
8
|
Pathak N, Chitikela S, Malik PS. Recent advances in lung cancer genomics: Application in targeted therapy. ADVANCES IN GENETICS 2021; 108:201-275. [PMID: 34844713 DOI: 10.1016/bs.adgen.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genomic characterization of lung cancer has not only improved our understanding of disease biology and carcinogenesis but also revealed several therapeutic opportunities. Targeting tumor dependencies on specific genomic alterations (oncogene addiction) has accelerated the therapeutic developments and significantly improved the outcomes even in advanced stage of disease. Identification of genomic alterations predicting response to specific targeted treatment is the key to success for this "personalized treatment" approach. Availability of multiple choices of therapeutic options for specific genomic alterations highlight the importance of optimum sequencing of drugs. Multiplex gene testing has become mandatory in view of constantly increasing number of therapeutic targets and effective treatment options. Influence of genomic characteristics on response to immunotherapy further makes comprehensive genomic profiling necessary before therapeutic decision making. A comprehensive elucidation of resistance mechanisms and directed treatments have made the continuum of care possible and transformed this deadly disease into a chronic condition. Liquid biopsy-based approach has made the dynamic monitoring of disease possible and enabled treatment optimizations accordingly. Current lung cancer management is the perfect example of "precision-medicine" in clinical oncology.
Collapse
Affiliation(s)
- Neha Pathak
- Department of Medical Oncology, Dr. B.R.A.I.R.C.H., All India Institute of Medical Sciences, New Delhi, India
| | - Sindhura Chitikela
- Department of Medical Oncology, Dr. B.R.A.I.R.C.H., All India Institute of Medical Sciences, New Delhi, India
| | - Prabhat Singh Malik
- Department of Medical Oncology, Dr. B.R.A.I.R.C.H., All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
9
|
Wang Y, Lin X, Sun D. A narrative review of prognosis prediction models for non-small cell lung cancer: what kind of predictors should be selected and how to improve models? ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1597. [PMID: 34790803 PMCID: PMC8576716 DOI: 10.21037/atm-21-4733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/02/2021] [Indexed: 12/18/2022]
Abstract
Objective To discover potential predictors and explore how to build better models by summarizing the existing prognostic prediction models of non-small cell lung cancer (NSCLC). Background Research on clinical prediction models of NSCLC has experienced explosive growth in recent years. As more predictors of prognosis are discovered, the choice of predictors to build models is particularly important, and in the background of more applications of next-generation sequencing technology, gene-related predictors are widely used. As it is more convenient to obtain samples and follow-up data, the prognostic model is preferred by researchers. Methods PubMed and the Cochrane Library were searched using the items “NSCLC”, “prognostic model”, “prognosis prediction”, and “survival prediction” from 1 January 1980 to 5 May 2021. Reference lists from articles were reviewed and relevant articles were identified. Conclusions The performance of gene-related models has not obviously improved. Relative to the innovation and diversity of predictors, it is more important to establish a highly stable model that is convenient for clinical application. Most of the prevalent models are highly biased and referring to PROBAST at the beginning of the study may be able to significantly control the bias. Existing models should be validated in a large external dataset to make a meaningful comparison.
Collapse
Affiliation(s)
- Yuhang Wang
- Graduate School, Tianjin Medical University, Tianjin, China
| | | | - Daqiang Sun
- Graduate School, Tianjin Medical University, Tianjin, China.,Department of Thoracic Surgery, Tianjin Chest Hospital of Nankai University, Tianjin, China
| |
Collapse
|
10
|
Wahl SGF, Dai HY, Emdal EF, Berg T, Halvorsen TO, Ottestad AL, Lund-Iversen M, Brustugun OT, Førde D, Paulsen EE, Donnem T, Andersen S, Grønberg BH, Richardsen E. The Prognostic Effect of KRAS Mutations in Non-Small Cell Lung Carcinoma Revisited: A Norwegian Multicentre Study. Cancers (Basel) 2021; 13:4294. [PMID: 34503114 PMCID: PMC8428342 DOI: 10.3390/cancers13174294] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND due to emerging therapeutics targeting KRAS G12C and previous reports with conflicting results regarding the prognostic impact of KRAS and KRAS G12C in non-small cell lung cancer (NSCLC), we aimed to investigate the frequency of KRAS mutations and their associations with clinical characteristics and outcome. Since mutation subtypes have different preferences for downstream pathways, we also aimed to investigate whether there were differences in outcome according to mutation preference for the Raf, PI3K/Akt, or RalGDS/Ral pathways. METHODS retrospectively, clinicopathological data from 1233 stage I-IV non-squamous NSCLC patients with known KRAS status were reviewed. KRAS' associations with clinical characteristics were analysed. Progression free survival (PFS) and overall survival (OS) were assessed for the following groups: KRAS wild type (wt) versus mutated, KRAS wt versus KRAS G12C versus KRAS non-G12C, among KRAS mutation subtypes and among mutation subtypes grouped according to preference for downstream pathways. RESULTS a total of 1117 patients were included; 38% had KRAS mutated tumours, 17% had G12C. Among KRAS mutated, G12C was the most frequent mutation in former/current smokers (45%) and G12D in never smokers (46%). There were no significant differences in survival according to KRAS status, G12C status, among KRAS mutation subtypes or mutation preference for downstream pathways. CONCLUSION KRAS status or KRAS mutation subtype did not have any significant influence on PFS or OS.
Collapse
Affiliation(s)
- Sissel Gyrid Freim Wahl
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Technology and Science, N-7491 Trondheim, Norway; (H.Y.D.); (T.O.H.); (A.L.O.); (B.H.G.)
- Department of Pathology, St. Olav’s Hospital, Trondheim University Hospital, N-7006 Trondheim, Norway;
| | - Hong Yan Dai
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Technology and Science, N-7491 Trondheim, Norway; (H.Y.D.); (T.O.H.); (A.L.O.); (B.H.G.)
- Department of Pathology, St. Olav’s Hospital, Trondheim University Hospital, N-7006 Trondheim, Norway;
| | - Elisabeth Fritzke Emdal
- Department of Pathology, St. Olav’s Hospital, Trondheim University Hospital, N-7006 Trondheim, Norway;
| | - Thomas Berg
- Department of Clinical Pathology, University Hospital of North Norway, N-9038 Tromsø, Norway; (T.B.); (E.R.)
- Department of Medical Biology, UiT, The Arctic University of Norway, N-9011 Tromsø, Norway
| | - Tarje Onsøien Halvorsen
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Technology and Science, N-7491 Trondheim, Norway; (H.Y.D.); (T.O.H.); (A.L.O.); (B.H.G.)
- Department of Oncology, St. Olav’s Hospital, Trondheim University Hospital, N-7030 Trondheim, Norway
| | - Anine Larsen Ottestad
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Technology and Science, N-7491 Trondheim, Norway; (H.Y.D.); (T.O.H.); (A.L.O.); (B.H.G.)
- Department of Oncology, St. Olav’s Hospital, Trondheim University Hospital, N-7030 Trondheim, Norway
| | - Marius Lund-Iversen
- Department of Pathology, Oslo University Hospital, The Norwegian Radium Hospital, N-0310 Oslo, Norway;
| | - Odd Terje Brustugun
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, N-0450 Oslo, Norway;
- Section of Oncology, Drammen Hospital, Vestre Viken Hospital Trust, N-3004 Drammen, Norway
| | - Dagny Førde
- Department of Clinical Medicine, UiT, The Arctic University of Norway, N-9037 Tromsø, Norway; (D.F.); (T.D.); (S.A.)
| | - Erna-Elise Paulsen
- Department of Pulmonary Medicine, University Hospital of North Norway, N-9028 Tromsø, Norway;
| | - Tom Donnem
- Department of Clinical Medicine, UiT, The Arctic University of Norway, N-9037 Tromsø, Norway; (D.F.); (T.D.); (S.A.)
- Department of Oncology, University Hospital of North Norway, N-9038 Tromsø, Norway
| | - Sigve Andersen
- Department of Clinical Medicine, UiT, The Arctic University of Norway, N-9037 Tromsø, Norway; (D.F.); (T.D.); (S.A.)
- Department of Oncology, University Hospital of North Norway, N-9038 Tromsø, Norway
| | - Bjørn Henning Grønberg
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Technology and Science, N-7491 Trondheim, Norway; (H.Y.D.); (T.O.H.); (A.L.O.); (B.H.G.)
- Department of Oncology, St. Olav’s Hospital, Trondheim University Hospital, N-7030 Trondheim, Norway
| | - Elin Richardsen
- Department of Clinical Pathology, University Hospital of North Norway, N-9038 Tromsø, Norway; (T.B.); (E.R.)
- Department of Medical Biology, UiT, The Arctic University of Norway, N-9011 Tromsø, Norway
| |
Collapse
|
11
|
Chen K, Zhang Y, Qian L, Wang P. Emerging strategies to target RAS signaling in human cancer therapy. J Hematol Oncol 2021; 14:116. [PMID: 34301278 PMCID: PMC8299671 DOI: 10.1186/s13045-021-01127-w] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
RAS mutations (HRAS, NRAS, and KRAS) are among the most common oncogenes, and around 19% of patients with cancer harbor RAS mutations. Cells harboring RAS mutations tend to undergo malignant transformation and exhibit malignant phenotypes. The mutational status of RAS correlates with the clinicopathological features of patients, such as mucinous type and poor differentiation, as well as response to anti-EGFR therapies in certain types of human cancers. Although RAS protein had been considered as a potential target for tumors with RAS mutations, it was once referred to as a undruggable target due to the consecutive failure in the discovery of RAS protein inhibitors. However, recent studies on the structure, signaling, and function of RAS have shed light on the development of RAS-targeting drugs, especially with the approval of Lumakras (sotorasib, AMG510) in treatment of KRASG12C-mutant NSCLC patients. Therefore, here we fully review RAS mutations in human cancer and especially focus on emerging strategies that have been recently developed for RAS-targeting therapy.
Collapse
Affiliation(s)
- Kun Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yalei Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ling Qian
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
12
|
Salgia R, Pharaon R, Mambetsariev I, Nam A, Sattler M. The improbable targeted therapy: KRAS as an emerging target in non-small cell lung cancer (NSCLC). Cell Rep Med 2021; 2:100186. [PMID: 33521700 PMCID: PMC7817862 DOI: 10.1016/j.xcrm.2020.100186] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
KRAS is a frequent oncogenic driver in solid tumors, including non-small cell lung cancer (NSCLC). It was previously thought to be an "undruggable" target due to the lack of deep binding pockets for specific small-molecule inhibitors. A better understanding of the mechanisms that drive KRAS transformation, improved KRAS-targeted drugs, and immunological approaches that aim at yielding immune responses against KRAS neoantigens have sparked a race for approved therapies. Few treatments are available for KRAS mutant NSCLC patients, and several approaches are being tested in clinicals trials to fill this void. Here, we review promising therapeutics tested for KRAS mutant NSCLC.
Collapse
Affiliation(s)
- Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Rebecca Pharaon
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Isa Mambetsariev
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Arin Nam
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Ding S, Zhang H, Zhao X, Dang J, Li G. UNC5A, an epigenetically silenced gene, functions as a tumor suppressor in non-small cell lung cancer. Saudi J Biol Sci 2020; 27:3009-3017. [PMID: 33100860 PMCID: PMC7569136 DOI: 10.1016/j.sjbs.2020.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 11/01/2022] Open
Abstract
UNC5A has been reported to be related with human cancers. However, the function and mechanism in non-small cell lung carcinoma (NSCLC) remains unknown. We analyzed two NSCLC cell lines (A549 and H157), one normal human bronchial epithelial cell line (BEAS-2B) and the tissues of NSCLC. We used quantitative real-time PCR (qRT-PCR), western blot and immunohistochemical (IHC) staining to examine the expression of UNC5A. Methylation status of the UNC5A promoter was analyzed using methylation-specific PCR (MSP) and bisulfite sequencing PCR (BSP). We used western blot to analyzed protein levels of PI3K/Akt pathway. We found that the mRNA expression of UNCA5 was significantly downregulated in NSCLC cells and tissues. The promoter of UNC5A was hypermethylated in NSCLC cells compared to normal control cells. The expression of UNC5A could be reversed by demethylation agent in NSCLC cells. The expression of UNC5A was decreased in NSCLC samples and significantly associated with the advanced types of NSCLC. Functionally, knockdown of UNC5A promoted cell proliferation, migration, invasion and induced apoptosis in NSCLC, overexpression of UNC5A yielded the opposite result. Moreover, we found that UNC5A negatively regulated PI3K/Akt signaling pathway in NSCLC. UNC5A is a novel epigenetically silenced gene in NSCLC and consequent under-expression of UNC5A may contribute to NSCLC tumorigenesis through regulating PI3K/Akt pathway.
Collapse
Affiliation(s)
- Silu Ding
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110000, China
| | - Hongwei Zhang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110000, China
| | - Xinyu Zhao
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110000, China
| | - Jun Dang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110000, China
| | - Guang Li
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110000, China
| |
Collapse
|
14
|
Goldman JW, Mazieres J, Barlesi F, Dragnev KH, Koczywas M, Göskel T, Cortot AB, Girard N, Wesseler C, Bischoff H, Nadal E, Park K, Lu S, Taus A, Cobo M, Estrem ST, Wijayawardana SR, Turner K, Oakley GJ, Hurt KC, Chiang AY, Hossain AM, John WJ, Paz-Ares L. A Randomized Phase III Study of Abemaciclib Versus Erlotinib in Patients with Stage IV Non-small Cell Lung Cancer With a Detectable KRAS Mutation Who Failed Prior Platinum-Based Therapy: JUNIPER. Front Oncol 2020; 10:578756. [PMID: 33194700 PMCID: PMC7649422 DOI: 10.3389/fonc.2020.578756] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction JUNIPER compared the efficacy and safety of abemaciclib, a selective cyclin-dependent kinase 4 and 6 inhibitor, with erlotinib in patients with non-small cell lung cancer (NSCLC) harboring a Kirsten rat sarcoma (KRAS) mutation. Methods JUNIPER was a Phase III, multicenter, randomized, open-label trial of abemaciclib versus erlotinib in patients with stage IV NSCLC and a detectable mutation in codons 12 or 13 of the KRAS oncogene, who progressed after platinum-based chemotherapy and 1 additional therapy (could include immune checkpoint inhibitor therapy). Randomized patients (3:2) received either 200 mg abemaciclib twice daily or 150 mg erlotinib once daily with best supportive care until disease progression or unacceptable toxicity. The primary endpoint was overall survival (OS); secondary endpoints included overall response rate (ORR), progression-free survival (PFS), and safety. Results Between December 2014 and April 2017, 453 patients were randomly assigned to receive abemaciclib (N = 270) or erlotinib (N = 183). Median OS was 7.4 months (95% confidence interval [CI]: 6.5, 8.8) with abemaciclib and 7.8 months (95% CI: 6.4, 9.5) with erlotinib (hazard ratio [HR] = 0.968 [95% CI: 0.768, 1.219]; p = .77). Median PFS was 3.6 months (95% CI: 2.8, 3.8) with abemaciclib and 1.9 months (95% CI: 1.9, 2.0) with erlotinib (HR = 0.583 [95% CI: 0.470, 0.723]; p <.000001). ORR was 8.9% and 2.7% (p = .010), and the disease control rate was 54.4% and 31.7% (p <.001) with abemaciclib and erlotinib, respectively. Safety results reflected the known safety profiles of abemaciclib and erlotinib. Conclusions In this study, the primary endpoint of OS was not met; PFS and ORR were improved with manageable toxicity in the abemaciclib arm. The increases in response rates and PFS support further investigation of abemaciclib in other NSCLC subpopulations or in combination with other agents. Clinical Trial Registration www.ClinicalTrials.gov, identifier: NCT02152631
Collapse
Affiliation(s)
- Jonathan W Goldman
- Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Julien Mazieres
- Thoracic Oncology Department, Toulouse University Hospital, Paul Sabatier University, Toulouse, France
| | - Fabrice Barlesi
- Multidisciplinary Oncology and Innovative Therapies Department, Aix-Marseille University, INSERM, CNRS, CRCM, Assistance Publque Hôspitaux de Marseille (AP-HM), Marseille, France
| | - Konstantin H Dragnev
- Department of Medicine, Norris Cotton Cancer Center, Dartmouth-Hitchcock, Lebanon, NH, United States
| | - Marianna Koczywas
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA, United States
| | - Tuncay Göskel
- Department of Internal Medical Sciences, Ege University, (Bornova), Izmir, Turkey
| | - Alexis B Cortot
- Thoracic Oncology Department, University of Lille, CHU Lille, Lille, France
| | - Nicolas Girard
- Respiratory Medicine Department, Hospices Civils de Lyon, University of Lyon, Lyon, France
| | - Claas Wesseler
- Department of Thoracic Oncology, Asklepios Klinikum Harburg, Hamburg, Germany
| | - Helge Bischoff
- Department of Thoracic Oncology, Thoraxklinik-Heidelberg, Heidelberg, Germany
| | - Ernest Nadal
- Department of Medical Oncology, Catalan Institute of Oncology, (L'Hospitalet), Barcelona, Spain
| | - Keunchil Park
- Department of Hematology-Oncology, Samsung Medical Center, Seoul, South Korea
| | - Shun Lu
- Lung Tumor Medical (Cancer) Center, Shanghai Chest Hospital, Shanghai (Jiao Tong University), Shanghai, China
| | - Alvaro Taus
- Department of Medical Oncology, Hospital del Mar, Barcelona, Spain
| | - Manuel Cobo
- Medical Oncology Department, Hospital Regional Universitario Málaga, IBIMA, Málaga, Spain
| | | | | | - Kellie Turner
- Eli Lilly and Company, Indianapolis, IN, United States
| | | | - Karla C Hurt
- Eli Lilly and Company, Indianapolis, IN, United States
| | - Alan Y Chiang
- Eli Lilly and Company, Indianapolis, IN, United States
| | | | | | - Luis Paz-Ares
- Department of Medicine, Hospital Universitario 12 de Octubre, CNIO and Universidad Complutense, Madrid, Spain
| |
Collapse
|
15
|
Lamberti G, Andrini E, Sisi M, Rizzo A, Parisi C, Di Federico A, Gelsomino F, Ardizzoni A. Beyond EGFR, ALK and ROS1: Current evidence and future perspectives on newly targetable oncogenic drivers in lung adenocarcinoma. Crit Rev Oncol Hematol 2020; 156:103119. [PMID: 33053439 DOI: 10.1016/j.critrevonc.2020.103119] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/31/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide. In the past decade EGFR, ALK and ROS1 TKIs lead to an unprecedented survival improvement of oncogene-addicted NSCLC patients, with better toxicity profile compared to chemotherapy. In recent years the implementation of high-throughput sequencing platforms led to the identification of uncommon molecular alterations in oncogenic drivers, such as BRAF, MET, RET, HER2 and NTRK. Moreover, newly developed drugs have been found to be active against hard to target drivers, such as KRAS. Specific TKIs targeting these genomic alterations are currently in clinical development and showed impressive activity and survival improvement, leading to FDA-accelerated approval for some of them. However, virtually all patients develop resistance to TKIs by on-target or off-target mechanisms. Here we review the clinicopathological features, the emerging targeted therapies and mechanisms of resistance and strategies to overcome them of KRAS, BRAF, MET, RET, HER2 and NTRK-addicted advanced NSCLCs.
Collapse
Affiliation(s)
- Giuseppe Lamberti
- Department of Specialized, Experimental and Diagnostic Medicine, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Elisa Andrini
- Department of Specialized, Experimental and Diagnostic Medicine, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Monia Sisi
- Department of Specialized, Experimental and Diagnostic Medicine, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Alessandro Rizzo
- Department of Specialized, Experimental and Diagnostic Medicine, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Claudia Parisi
- Department of Specialized, Experimental and Diagnostic Medicine, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Alessandro Di Federico
- Department of Specialized, Experimental and Diagnostic Medicine, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Francesco Gelsomino
- Oncologia Medica, Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni - 15, Bologna, Italy.
| | - Andrea Ardizzoni
- Department of Specialized, Experimental and Diagnostic Medicine, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy; Oncologia Medica, Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni - 15, Bologna, Italy
| |
Collapse
|
16
|
Chen J, Chu X, Zhang J, Nie Q, Tang W, Su J, Yan H, Zheng H, Chen Z, Chen X, Song M, Yi X, Li P, Guan Y, Li G, Deng C, Rosell R, Wu Y, Zhong W. Genomic characteristics and drug screening among organoids derived from non-small cell lung cancer patients. Thorac Cancer 2020; 11:2279-2290. [PMID: 32633046 PMCID: PMC7396373 DOI: 10.1111/1759-7714.13542] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 05/30/2020] [Accepted: 05/30/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Patient-derived organoid (PDO) models are highly valuable and have potentially widespread clinical applications. However, limited information is available regarding organoid models of non-small cell lung cancer (NSCLC). This study aimed to characterize the consistency between primary tumors in NSCLC and PDOs and to explore the applications of PDOs as preclinical models to understand and predict treatment response during lung cancer. METHODS Fresh tumor samples were harvested for organoid culture. Primary tumor samples and PDOs were analyzed via whole-exome sequencing. Paired samples were subjected to immunohistochemical analysis. There were 26 antineoplastic drugs tested in the PDOs. Cell viability was assessed using the Cell Titer Glo assay 7-10 days after drug treatment. A heatmap of log-transformed values of the half-maximal inhibitory concentrations was generated on the basis of drug responses of PDOs through nonlinear regression (curve fit). A total of 12 patients (stages I-III) were enrolled, and 7 paired surgical tumors and PDOs were analyzed. RESULTS PDOs retained the histological and genetic characteristics of the primary tumors. The concordance between tumors and PDOs in mutations in the top 20 NSCLC-related genes was >80% in five patients. Sample purity was significantly and positively associated with variant allele frequency (Pearson r = 0.82, P = 0.0005) and chromosome stability. The in vitro response to drug screening with PDOs revealed high correlation with the mutation profiles in the primary tumors. CONCLUSIONS PDOs are highly credible models for detecting NSCLC and for prospective prediction of the treatment response for personalized precision medicine. KEY POINTS Lung cancer organoid models could save precious time of drug testing on patients, and accurately select anticancer drugs according to the drug sensitivity results, so as to provide a powerful supplement and verification for the gene sequencing.
Collapse
Affiliation(s)
- Jing‐Hua Chen
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Key Laboratory of Lung Cancer Translational MedicineSouth China University of Technology & Guangdong Academy of Medical SciencesGuangzhouChina
- Guangzhou Twelfth People's HospitalGuangzhouChina
| | - Xiang‐Peng Chu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Key Laboratory of Lung Cancer Translational MedicineSouth China University of Technology & Guangdong Academy of Medical SciencesGuangzhouChina
| | - Jia‐Tao Zhang
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Key Laboratory of Lung Cancer Translational MedicineSouth China University of Technology & Guangdong Academy of Medical SciencesGuangzhouChina
| | - Qiang Nie
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Key Laboratory of Lung Cancer Translational MedicineSouth China University of Technology & Guangdong Academy of Medical SciencesGuangzhouChina
| | - Wen‐Fang Tang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Key Laboratory of Lung Cancer Translational MedicineSouth China University of Technology & Guangdong Academy of Medical SciencesGuangzhouChina
- Shantou University Medical CollegeShantouChina
| | - Jian Su
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Key Laboratory of Lung Cancer Translational MedicineSouth China University of Technology & Guangdong Academy of Medical SciencesGuangzhouChina
| | - Hong‐Hong Yan
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Key Laboratory of Lung Cancer Translational MedicineSouth China University of Technology & Guangdong Academy of Medical SciencesGuangzhouChina
| | | | - Ze‐Xin Chen
- Accurate International Biotechnology Co.GuangzhouChina
| | - Xin Chen
- Accurate International Biotechnology Co.GuangzhouChina
| | | | - Xin Yi
- Geneplus‐Beijing InstituteBeijingChina
| | | | | | - Gang Li
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Chu‐Xia Deng
- University of Macau. Cancer Centre, Faculty of Health SciencesUniversity of MacauMacauChina
| | - Rafael Rosell
- Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol Campus Can Ruti (Edifici Muntanya)Ctra. de Can RutiBarcelonaSpain
| | - Yi‐Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Key Laboratory of Lung Cancer Translational MedicineSouth China University of Technology & Guangdong Academy of Medical SciencesGuangzhouChina
| | - Wen‐Zhao Zhong
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Key Laboratory of Lung Cancer Translational MedicineSouth China University of Technology & Guangdong Academy of Medical SciencesGuangzhouChina
| |
Collapse
|
17
|
KRAS mutation as a prognostic factor and predictive factor in advanced/metastatic non-small cell lung cancer: A systematic literature review and meta-analysis. Cancer Treat Res Commun 2020; 24:100200. [PMID: 32750661 DOI: 10.1016/j.ctarc.2020.100200] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 01/08/2023]
Abstract
KRAS (Kirsten Rat Sarcoma) is the most common oncogenic mutation detected in patients with non-small cell lung cancer (NSCLC). However, the role of KRAS as either a prognostic factor or predictive factor (modifier of treatment effects) in NSCLC is not well established at this time. This systematic literature review (SLR) and meta-analysis synthesized the available evidence regarding the role of KRAS mutation as a predictive factor and/or prognostic factor of survival and response outcomes in patients with advanced/metastatic (stage IIIB-IV) NSCLC. Relevant clinical trials and observational studies were identified by searching MEDLINE, Embase and Cochrane Register of Controlled Trials. Meta-analyses were performed using data extracted from multivariable and univariable analyses from clinical studies to assess the empirical evidence of KRAS mutation status as a prognostic or/and predicitive factor. 43 selected studies were identified by the SLR and included in this meta-analysis. Pairwise meta-analyses of hazard ratios (HRs) reported in randomized controlled trials (RCTs) did not demonstrate a significant prognostic effect of mutant KRAS on overall survival (OS) (HR=1.10; 95% CI [0.88, 1.38]) or progression free survival (PFS) (HR=1.03; 95% CI [0.80, 1.33]). However, when conducting meta-analyses on HRs reported in observational studies, a statistically significant negative prognostic effect of mutant KRAS was observed (OS HR=1.71; 95% CI [1.07, 2.84]; PFS HR=1.18; 95% CI [1.02, 1.36]). Meta-analyses of objective response rate (ORR) in RCTs demonstrated a negative prognostic effect of mutant KRAS (RR=0.38; 95% CI [0.16, 0.63]). Limited data were available to evaluate the role of KRAS mutation as a predictive factor. In conclusion, this research offers evidence that KRAS mutation may be a negative prognostic factor for survival and response outcomes in patients with advanced/metastatic NSCLC, but further research is needed to address conflicting results on the importance of KRAS mutations as a predictive factor.
Collapse
|
18
|
Uras IZ, Moll HP, Casanova E. Targeting KRAS Mutant Non-Small-Cell Lung Cancer: Past, Present and Future. Int J Mol Sci 2020; 21:E4325. [PMID: 32560574 PMCID: PMC7352653 DOI: 10.3390/ijms21124325] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is the most frequent cancer with an aggressive clinical course and high mortality rates. Most cases are diagnosed at advanced stages when treatment options are limited and the efficacy of chemotherapy is poor. The disease has a complex and heterogeneous background with non-small-cell lung cancer (NSCLC) accounting for 85% of patients and lung adenocarcinoma being the most common histological subtype. Almost 30% of adenocarcinomas of the lung are driven by an activating Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation. The ability to inhibit the oncogenic KRAS has been the holy grail of cancer research and the search for inhibitors is immensely ongoing as KRAS-mutated tumors are among the most aggressive and refractory to treatment. Therapeutic strategies tailored for KRAS+ NSCLC rely on the blockage of KRAS functional output, cellular dependencies, metabolic features, KRAS membrane associations, direct targeting of KRAS and immunotherapy. In this review, we provide an update on the most recent advances in anti-KRAS therapy for lung tumors with mechanistic insights into biological diversity and potential clinical implications.
Collapse
Affiliation(s)
- Iris Z. Uras
- Department of Pharmacology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria
| | - Herwig P. Moll
- Department of Physiology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria; (H.P.M.); (E.C.)
| | - Emilio Casanova
- Department of Physiology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria; (H.P.M.); (E.C.)
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), 1090 Vienna, Austria
| |
Collapse
|
19
|
Li Y, Zhao L, Zhao P, Liu Z. Long non-coding RNA LINC00641 suppresses non-small-cell lung cancer by sponging miR-424-5p to upregulate PLSCR4. Cancer Biomark 2020; 26:79-91. [PMID: 31322545 DOI: 10.3233/cbm-190142] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Non-small cell lung cancer (NSCLC) , as the most prevalent type of lung carcinoma with high severity, is of urgent necessity to be investigated for novel therapeutic strategies. Long non-coding RNAs (lncRNAs) are notable for their participation in cancer regulation, and lncRNA long intergenic non-protein coding RNA 641 (LINC00641) has been found to have an inhibitory influence on bladder cancer, but its role in NSCLC has not yet been studied. In this research, we launched an investigation into the biological functions and the underlying molecular mechanisms of LINC00641 in NSCLC. At first, downregulation of LINC00641 was identified in NSCLC cells. Functionally, LINC00641 suppressed cell proliferation and induced cell apoptosis in NSCLC, indicating that LINC00641 exerted tumor-suppressive role in NSCLC. Through mechanism investigation, we determined that LINC00641 acted as a competing endogenous RNA (ceRNA) in NSCLC by sponging miR-424-5p to upregulate phospholipid scramblase (PLSCR4) expression. Further rescue assays indicated that miR-424-5p and PLSCR4 could reverse LINC00641-mediated cellular processes. Taken together, it is demonstrated in our study that LINC00641 can function as a tumor suppressor in NSCLC via a ceRNA network.
Collapse
|
20
|
Linardou H, Kotoula V, Kouvatseas G, Mountzios G, Karavasilis V, Samantas E, Kalogera-Fountzila A, Televantou D, Papadopoulou K, Mavropoulou X, Daskalaki E, Zaramboukas T, Efstratiou I, Lampaki S, Rallis G, Res E, Syrigos KN, Kosmidis PA, Pectasides D, Fountzilas G. Genotyping KRAS and EGFR Mutations in Greek Patients With Non-small-cell Lung Cancer: Incidence, Significance and Implications for Treatment. Cancer Genomics Proteomics 2020; 16:531-541. [PMID: 31659106 DOI: 10.21873/cgp.20155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/15/2019] [Accepted: 09/18/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND/AIM KRAS mutations are reported in 20-25% of non-small cell lung cancer (NSCLC) and their prognostic role is unclear. We studied KRAS and EGFR genotyping in Greek NSCLC patients. PATIENTS AND METHODS KRAS and EGFR genotypes were centrally evaluated in 421 NSCLC patients (diagnosed September 1998 -June 2013) and associated with clinicopathological parameters. Outcome comparisons were performed in 288 patients receiving first line treatment. RESULTS Most patients were male (78.6%), >60 years old (63.9%), current smokers (51.1%), with adenocarcinoma histology (63.9%). EGFR and KRAS mutations were found in 10.7% and 16.6% of all histologies, respectively, and in 14.9% and 21.9% of adenocarcinomas. At 4.5 years median follow-up, KRAS status was an independent negative prognostic factor for overall survival (OS, p=0.016). KRAS mutations conferred 80% increased risk of death in patients receiving first-line treatment (p=0.002). CONCLUSION The presence of KRAS mutations is an independent negative prognosticator among Greek NSCLC patients and an independent response predictor to first line treatment.
Collapse
Affiliation(s)
| | - Vassiliki Kotoula
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece.,Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Giannis Mountzios
- Second Oncology Department, Henry Dunant Hospital Center, Athens, Greece
| | - Vasilios Karavasilis
- Department of Medical Oncology, Papageorgiou Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, School of Health Sciences, Thessaloniki, Greece
| | - Epaminondas Samantas
- Third Department of Medical Oncology, Agii Anargiri Cancer Hospital, Athens, Greece
| | - Anna Kalogera-Fountzila
- Department of Radiology, AHEPA Hospital, School of Health Sciences, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despina Televantou
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kyriaki Papadopoulou
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Xanthipi Mavropoulou
- Department of Radiology, AHEPA Hospital, School of Health Sciences, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Emily Daskalaki
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Thomas Zaramboukas
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | | | - Sofia Lampaki
- Department of Medical Oncology, Papageorgiou Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, School of Health Sciences, Thessaloniki, Greece
| | - Grigorios Rallis
- Department of Medical Oncology, Papageorgiou Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, School of Health Sciences, Thessaloniki, Greece
| | - Eleni Res
- Third Department of Medical Oncology, Agii Anargiri Cancer Hospital, Athens, Greece
| | - Konstantinos N Syrigos
- Oncology Unit GPP, Sotiria General Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Paris A Kosmidis
- Second Department of Medical Oncology, Hygeia Hospital, Athens, Greece
| | - Dimitrios Pectasides
- Oncology Section, Second Department of Internal Medicine, Hippokration Hospital, Athens, Greece
| | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece.,Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
21
|
Tsukumo Y, Naito M, Suzuki T. Influence of EGFR-activating mutations on sensitivity to tyrosine kinase inhibitors in a KRAS mutant non-small cell lung cancer cell line. PLoS One 2020; 15:e0229712. [PMID: 32130260 PMCID: PMC7055889 DOI: 10.1371/journal.pone.0229712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 02/13/2020] [Indexed: 12/15/2022] Open
Abstract
In non-small cell lung cancer (NSCLC), oncogenic driver mutations including those in KRAS and EGFR are typically mutually exclusive. However, recent reports indicate that multiple driver mutations are found in a certain percentage of cancers, and that the therapeutic responses of such cases with co-mutations of driver genes are largely unclear. Here, using CRISPR-Cas9-mediated genome editing, we generated isogenic cell lines harboring one or two copies of an EGFR-activating mutation from the human NSCLC cell line A549, which is known to harbor a homozygous KRAS gene mutation. In comparison with parent cells with KRAS mutation alone, cells with concomitant EGFR mutation exhibited higher sensitivity to EGFR-tyrosine kinase inhibitors (TKIs) but not to conventional anti-cancer drugs. In particular, cells with two copies of EGFR mutation were markedly more sensitive to EGFR-TKIs compared with parent cells. Thus, the presence of concomitant EGFR mutation can affect the TKI response of KRAS-mutated cells, implying that EGFR-TKI may represent an effective treatment option against NSCLC with EGFR/KRAS co-mutation.
Collapse
Affiliation(s)
- Yoshinori Tsukumo
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Japan
- * E-mail:
| | - Mikihiko Naito
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Japan
| | - Takayoshi Suzuki
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Japan
| |
Collapse
|
22
|
Giopanou I, Pintzas A. RAS and BRAF in the foreground for non-small cell lung cancer and colorectal cancer: Similarities and main differences for prognosis and therapies. Crit Rev Oncol Hematol 2019; 146:102859. [PMID: 31927392 DOI: 10.1016/j.critrevonc.2019.102859] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
Lung and colorectal cancer are included in the most tremendously threatening diseases in terms of incidence and death. Although they are located in completely different organs and differ in various characteristics they do share some common features, especially regarding their molecular mutational profile. Among several commonly mutated genes KRAS and BRAF are spotted to be highly associated with patient's poor disease outcome and resistance to targeted therapies mostly in liaison with other mutant activated genes. Many studies have shed light in these mechanisms for disease progression and numerous preclinical models, clinical trials and meta-analysis reports investigate the impact of specific treatments or combination of therapies. The present review is an effort to compare the mutational imprint of these genes between the two diseases and their impact in prognosis, current therapy, mechanisms of therapy resistance and future therapeutic plans and provide a spherical perspective regarding the systemic molecular profile of cancer.
Collapse
Affiliation(s)
- Ioanna Giopanou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece.
| | - Alexandros Pintzas
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece.
| |
Collapse
|
23
|
Zhou Y, Yuan Y, Liu M, Hu X, Quan Y, Chen X. Tumor-specific delivery of KRAS siRNA with iRGD-exosomes efficiently inhibits tumor growth. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s41544-019-0034-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractLung cancer is the major cause of cancer-related deaths globally. Mutant KRAS is a feature of 15–50% of lung cancer cases and represents one of the most prevalent oncogenic drivers in this disease. Unfortunately, although much effort has been spent on searching for small molecule inhibitors of KRAS, KRAS gene has proven extraordinarily difficult to target by current pharmacological agents. In the present study, we developed an alternative strategy to silence the so-called untargetable and undruggable KRAS gene by employing exosome-mediated siRNA delivery. Particularly, we reprogrammed HEK293T cells to simultaneously express KRAS siRNA and Lamp2b, an exosomal membrane protein, in fusion with a tumor-penetrating internalizing RGD (iRGD) peptide (CRGDKGPDC), and then purified the tumor-targeting exosomes as KRAS siRNA delivery system. In agreement with the study design, intravenously injected iRGD-exosomes specifically targeted to tumor tissues in vivo. The therapeutic potential was revealed by the strong inhibition of tumor growth in a mouse model after intravenous injection of KRAS siRNA encapsulated in iRGD-exosomes. In conclusion, our results indicate that iRGD-tagged exosomes is an ideal delivery agent to transport KRAS siRNAs for lung cancer treatment. As an extension of this finding, the vast majority of mutated genes that are difficult to target by current pharmacological agents will be targetable and druggable in the future.
Collapse
|
24
|
Moll HP, Pranz K, Musteanu M, Grabner B, Hruschka N, Mohrherr J, Aigner P, Stiedl P, Brcic L, Laszlo V, Schramek D, Moriggl R, Eferl R, Moldvay J, Dezso K, Lopez-Casas PP, Stoiber D, Hidalgo M, Penninger J, Sibilia M, Győrffy B, Barbacid M, Dome B, Popper H, Casanova E. Afatinib restrains K-RAS-driven lung tumorigenesis. Sci Transl Med 2019; 10:10/446/eaao2301. [PMID: 29925635 DOI: 10.1126/scitranslmed.aao2301] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 03/19/2018] [Accepted: 05/11/2018] [Indexed: 12/14/2022]
Abstract
On the basis of clinical trials using first-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), it became a doctrine that V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (K-RAS) mutations drive resistance to EGFR inhibition in non-small cell lung cancer (NSCLC). Conversely, we provide evidence that EGFR signaling is engaged in K-RAS-driven lung tumorigenesis in humans and in mice. Specifically, genetic mouse models revealed that deletion of Egfr quenches mutant K-RAS activity and transiently reduces tumor growth. However, EGFR inhibition initiates a rapid resistance mechanism involving non-EGFR ERBB family members. This tumor escape mechanism clarifies the disappointing outcome of first-generation TKIs and suggests high therapeutic potential of pan-ERBB inhibitors. On the basis of various experimental models including genetically engineered mouse models, patient-derived and cell line-derived xenografts, and in vitro experiments, we demonstrate that the U.S. Food and Drug Administration-approved pan-ERBB inhibitor afatinib effectively impairs K-RAS-driven lung tumorigenesis. Our data support reconsidering the use of pan-ERBB inhibition in clinical trials to treat K-RAS-mutated NSCLC.
Collapse
Affiliation(s)
- Herwig P Moll
- Department of Physiology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, AT-1090 Vienna, Austria
| | - Klemens Pranz
- Ludwig Boltzmann Institute for Cancer Research, AT-1090 Vienna, Austria
| | - Monica Musteanu
- Spanish National Cancer Research Centre, E-28029 Madrid, Spain
| | - Beatrice Grabner
- Ludwig Boltzmann Institute for Cancer Research, AT-1090 Vienna, Austria
| | - Natascha Hruschka
- Ludwig Boltzmann Institute for Cancer Research, AT-1090 Vienna, Austria
| | - Julian Mohrherr
- Ludwig Boltzmann Institute for Cancer Research, AT-1090 Vienna, Austria
| | - Petra Aigner
- Ludwig Boltzmann Institute for Cancer Research, AT-1090 Vienna, Austria
| | - Patricia Stiedl
- Ludwig Boltzmann Institute for Cancer Research, AT-1090 Vienna, Austria
| | - Luka Brcic
- Institute of Pathology, Medical University of Graz, AT-8036 Graz, Austria
| | - Viktoria Laszlo
- Division of Thoracic Surgery, Department of Surgery and CCC, Medical University of Vienna, AT-1090 Vienna, Austria.,Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, AT-1090 Vienna, Austria
| | - Daniel Schramek
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, AT-1030 Vienna, Austria.,Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, ON-M5G 1X5 Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, ON-M5S 1A8 Toronto, Ontario, Canada
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, AT-1090 Vienna, Austria.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Medical University of Vienna, AT-1210 Vienna, Austria.,Medical University of Vienna, AT-1090 Vienna, Austria
| | - Robert Eferl
- Institute of Cancer Research, Medical University of Vienna and CCC, AT-1090 Vienna, Austria
| | - Judit Moldvay
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Semmelweis University, HU-1122 Budapest, Hungary
| | - Katalin Dezso
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, HU-1122 Budapest, Hungary
| | | | - Dagmar Stoiber
- Ludwig Boltzmann Institute for Cancer Research, AT-1090 Vienna, Austria.,Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, AT-1090 Vienna, Austria
| | - Manuel Hidalgo
- Spanish National Cancer Research Centre, E-28029 Madrid, Spain
| | - Josef Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, AT-1030 Vienna, Austria
| | - Maria Sibilia
- Institute of Cancer Research, Medical University of Vienna and CCC, AT-1090 Vienna, Austria
| | - Balázs Győrffy
- MTA TK Lendület Cancer Biomarker Research Group, Institute of Enzymology and Second Department of Pediatrics, Semmelweis University, HU-1122 Budapest, Hungary
| | | | - Balázs Dome
- Division of Thoracic Surgery, Department of Surgery and CCC, Medical University of Vienna, AT-1090 Vienna, Austria.,Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, AT-1090 Vienna, Austria.,Department of Tumor Biology, National Korányi Institute of Pulmonology, Semmelweis University, HU-1122 Budapest, Hungary.,Department of Thoracic Surgery, National Institute of Oncology and Semmelweis University, HU-1122 Budapest, Hungary
| | - Helmut Popper
- Institute of Pathology, Medical University of Graz, AT-8036 Graz, Austria
| | - Emilio Casanova
- Department of Physiology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, AT-1090 Vienna, Austria. .,Ludwig Boltzmann Institute for Cancer Research, AT-1090 Vienna, Austria
| |
Collapse
|
25
|
Yang H, Liang SQ, Schmid RA, Peng RW. New Horizons in KRAS-Mutant Lung Cancer: Dawn After Darkness. Front Oncol 2019; 9:953. [PMID: 31612108 PMCID: PMC6773824 DOI: 10.3389/fonc.2019.00953] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
In non-small cell lung cancer (NSCLC), the most frequent oncogenic mutation in western countries is KRAS, for which, however, there remains no clinically approved targeted therapies. Recent progress on high biological heterogeneity including diverse KRAS point mutations, varying dependence on mutant KRAS, wide spectrum of other co-occurring genetic alterations, as well as distinct cellular status across the epithelial-to-mesenchymal transition (EMT), has not only deepened our understanding about the pathobiology of KRAS-mutant NSCLC but also brought about unprecedented new hopes for precision treatment of patients. In this review, we provide an update on the most recent advances in KRAS-mutant lung cancer, with a focus on mechanistic insights into tumor heterogeneity, the potential clinic implications and new therapies on horizons tailored for KRAS-mutant lung cancer.
Collapse
Affiliation(s)
- Haitang Yang
- Department of General Thoracic Surgery, Department of BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Shun-Qing Liang
- Department of General Thoracic Surgery, Department of BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- University of Massachusetts Medical School, Worcester, MA, United States
| | - Ralph A. Schmid
- Department of General Thoracic Surgery, Department of BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ren-Wang Peng
- Department of General Thoracic Surgery, Department of BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
26
|
Comparing and contrasting predictive biomarkers for immunotherapy and targeted therapy of NSCLC. Nat Rev Clin Oncol 2019; 16:341-355. [PMID: 30718843 DOI: 10.1038/s41571-019-0173-9] [Citation(s) in RCA: 345] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The era of personalized medicine for advanced-stage non-small-cell lung cancer (NSCLC) began when biomarker-based evidence of molecular pathway and/or oncogene addiction of the tumour became mandatory for the allocation of specific targeted therapies. More recently, the immunotherapy revolution, specifically, the development of immune-checkpoint inhibitors (ICIs), has dramatically altered the NSCLC treatment landscape. Herein, we compare and contrast the clinical development of immunotherapy and oncogene-directed therapy for NSCLC, focusing on the role of predictive biomarkers. Immunotherapy biomarkers are fundamentally different from oncogene biomarkers in that they are continuous rather than categorical (binary), spatially and temporally variable and reliant on multiple complex interactions rather than a single, dominant determinant. The performance of predictive biomarkers for ICIs might be improved by combining different markers to reduce the assumptive risks associated with each one. Novel combinations with chemotherapy and ICIs complicate biomarker discovery but do not decrease the value of the markers identified. Perfectly predictive biomarkers of benefit from immunotherapy are unlikely to be identified, although exclusionary biomarkers of minimal benefit or an unacceptable risk of toxicity might be feasible. The clinical adoption and applicability of such biomarkers might vary depending on line of treatment, the available therapeutic alternatives and health economic considerations.
Collapse
|
27
|
Das D, Xie L, Wang J, Xu X, Zhang Z, Shi J, Le X, Hong J. Discovery of new quinazoline derivatives as irreversible dual EGFR/HER2 inhibitors and their anticancer activities – Part 1. Bioorg Med Chem Lett 2019; 29:591-596. [DOI: 10.1016/j.bmcl.2018.12.056] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/17/2018] [Accepted: 12/24/2018] [Indexed: 11/25/2022]
|
28
|
Moll HP, Casanova E. Breaking bad family ties: Pan-ERBB blockers inhibit KRAS driven lung tumorigenesis. Mol Cell Oncol 2018; 5:e1513724. [PMID: 30525091 PMCID: PMC6276852 DOI: 10.1080/23723556.2018.1513724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
Abstract
Oncogenic K-RAS mutations were believed to lock the molecular switch in the ON state, independent of upstream activation. However, we demonstrate in preclinical models that activity of mutated K-RAS depends on upstream signaling events involving EGF receptor family members. This finding reveals a potential therapeutic vulnerability using pan-ERBB inhibitors to fight K-RAS mutated lung tumors.
Collapse
Affiliation(s)
- Herwig P Moll
- Department of Physiology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
| | - Emilio Casanova
- Department of Physiology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria
| |
Collapse
|
29
|
Kordiak J, Szemraj J, Grabska-Kobylecka I, Bialasiewicz P, Braun M, Kordek R, Nowak D. Intratumor heterogeneity and tissue distribution of KRAS mutation in non-small cell lung cancer: implications for detection of mutated KRAS oncogene in exhaled breath condensate. J Cancer Res Clin Oncol 2018; 145:241-251. [PMID: 30368666 PMCID: PMC6325989 DOI: 10.1007/s00432-018-2779-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 10/23/2018] [Indexed: 12/15/2022]
Abstract
Purpose Mutated KRAS oncogene in exhaled breath condensate (EBC) can be a genetic marker of non-small cell lung cancer (NSCLC). However, a possibility of inhomogeneous distribution in cancer tissue and intratumor heterogeneity of KRAS mutation may decrease its significance. We investigated a status of KRAS point mutation and its sequence at codon 12 in 51 NSCLC patients after tumor resection. The comparison of KRAS mutation status between EBC–DNA and cancer tissue was performed in 19 cases. Methods Five cancer tissue samples from disparate tumor regions and one from normal lung were harvested at surgery. EBC was collected for DNA analysis the previous day. KRAS point mutations at codon 12 were detected using mutant-enriched PCR technique and pyrosequenced. Results Forty-six cancers revealed concordance of KRAS mutation status: 27 contained mutated KRAS and 19 had only wild KRAS. Five NSCLCs revealed inhomogeneous distribution of KRAS mutation. Two different mutations were found in 14 NSCLCs and the most frequent one was G12D and G12V (n = 8). No mutated KRAS was found in normal lung. The concordance ratios of KRAS sequence in codon 12 between EBC–DNA and cancer were 18/19 for NSCLC patients and 11/12 for KRAS mutation positive NSCLC. Conclusions Intratumor heterogeneity and inhomogeneous distribution of KRAS point mutation in codon 12 in cancer tissue can occur in NSCLCs. There was a high accordance between KRAS mutation status in EBC–DNA and cancer tissue in NSCLC patients what suggests usefulness of monitoring KRAS mutation in EBC–DNA as a biomarker of NSCLC.
Collapse
Affiliation(s)
- Jacek Kordiak
- Department of Chest Surgery, Oncologic and General Surgery, Medical University of Lodz, University Hospital No. 2, Zeromskiego St. 113, 91-647, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Mazowiecka St. 6/8, 92-215, Lodz, Poland
| | - Izabela Grabska-Kobylecka
- Department of Clinical Physiology, Medical University of Lodz, Mazowiecka St. 6/8, 92-215, Lodz, Poland
| | - Piotr Bialasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Mazowiecka St. 6/8, 92-215, Lodz, Poland
| | - Marcin Braun
- Department of Pathology, Medical University of Lodz, Pomorska St. 251, 92-215, Lodz, Poland
| | - Radzisław Kordek
- Department of Pathology, Medical University of Lodz, Pomorska St. 251, 92-215, Lodz, Poland
| | - Dariusz Nowak
- Department of Clinical Physiology, Medical University of Lodz, Mazowiecka St. 6/8, 92-215, Lodz, Poland.
| |
Collapse
|
30
|
Metformin Enhances Cisplatin-Induced Apoptosis and Prevents Resistance to Cisplatin in Co-mutated KRAS/LKB1 NSCLC. J Thorac Oncol 2018; 13:1692-1704. [PMID: 30149143 DOI: 10.1016/j.jtho.2018.07.102] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/02/2018] [Accepted: 07/19/2018] [Indexed: 12/22/2022]
Abstract
INTRODUCTION We hypothesized that activating KRAS mutations and inactivation of the liver kinase B1 (LKB1) oncosuppressor can cooperate to sustain NSCLC aggressiveness. We also hypothesized that the growth advantage of KRAS/LKB1 co-mutated tumors could be balanced by higher sensitivity to metabolic stress conditions, such as metformin treatment, thus revealing new strategies to target this aggressive NSCLC subtype. METHODS We retrospectively determined the frequency and prognostic value of KRAS/LKB1 co-mutations in tissue specimens from NSCLC patients enrolled in the TAILOR trial. We generated stable LKB1 knockdown and LKB1-overexpressing isogenic H1299 and A549 cell variants, respectively, to test the in vitro efficacy of metformin. We also investigated the effect of metformin on cisplatin-resistant CD133+ cells in NSCLC patient-derived xenografts. RESULTS We found a trend towards worse overall survival in patients with KRAS/LKB1 co-mutated tumors as compared to KRAS-mutated ones (hazard ratio: 2.02, 95% confidence interval: 0.94-4.35, p = 0.072). In preclinical experiments, metformin produced pro-apoptotic effects and enhanced cisplatin anticancer activity specifically in KRAS/LKB1 co-mutated patient-derived xenografts. Moreover, metformin prevented the development of acquired tumor resistance to 5 consecutive cycles of cisplatin treatment (75% response rate with metformin-cisplatin as compared to 0% response rate with cisplatin), while reducing CD133+ cells. CONCLUSIONS LKB1 mutations, especially when combined with KRAS mutations, may define a specific and more aggressive NSCLC subtype. Metformin synergizes with cisplatin against KRAS/LKB1 co-mutated tumors, and may prevent or delay the onset of resistance to cisplatin by targeting CD133+ cancer stem cells. This study lays the foundations for combining metformin with standard platinum-based chemotherapy in the treatment of KRAS/LKB1 co-mutated NSCLC.
Collapse
|
31
|
Buttigliero C, Shepherd FA, Barlesi F, Schwartz B, Orlov S, Favaretto AG, Santoro A, Hirsh V, Ramlau R, Blackler AR, Roder J, Spigel D, Novello S, Akerley W, Scagliotti GV. Retrospective Assessment of a Serum Proteomic Test in a Phase III Study Comparing Erlotinib plus Placebo with Erlotinib plus Tivantinib (MARQUEE) in Previously Treated Patients with Advanced Non-Small Cell Lung Cancer. Oncologist 2018; 24:e251-e259. [PMID: 30139835 DOI: 10.1634/theoncologist.2018-0089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/05/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The VeriStrat test provides accurate predictions of outcomes in all lines of therapy for patients with non-small cell lung cancer (NSCLC). We investigated the predictive and prognostic role of VeriStrat in patients enrolled on the MARQUEE phase III trial of tivantinib plus erlotinib (T+E) versus placebo plus erlotinib (P+E) in previously treated patients with advanced NSCLC. METHODS Pretreatment plasma samples were available for 996 patients and were analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry to generate VeriStrat labels (good, VS-G, or poor, VS-P). RESULTS Overall, no significant benefit in overall survival (OS) and progression-free survival (PFS) were observed for the addition of tivantinib to erlotinib. Regardless of treatment arm, patients who were classified as VS-G had significantly longer PFS (3.8 mo for T+E arm, 2.0 mo for P+E arm) and OS (11.6 mo for T+E, 10.2 mo for P+E arm) than patients classified as VS-P (PFS: 1.9 mo for both arms, hazard ratio [HR], 0.584; 95% confidence interval [CI], 0.468-0.733; p < .0001 for T+E, HR, 0.686; 95% CI, 0.546-0.870; p = .0015 for P+E; OS: 4.0 mo for both arms, HR, 0.333; 95% CI, 0.264-0.422; p < .0001 for T+E; HR, 0.449; 95% CI, 0.353-0.576; p < .0001 for P+E). The VS-G population had higher OS than the VS-P population within Eastern Cooperative Oncology Group (ECOG) performance score (PS) categories. VS-G patients on the T+E arm had longer PFS, but not OS, than VS-G patients on the P+E arm (p = .0108). Among EGFR mutation-positive patients, those with VS-G status had a median OS more than twice that of any other group (OS: 31.6 mo for T+E and 22.8 mo for P+E), whereas VS-P patients had similar survival rates as VS-G, EGFR-wild type patients (OS: 13.7 mo for T+E and 6.5 mo for P+E). CONCLUSION In these analyses, VeriStrat showed a prognostic role within EGOC PS categories and regardless of treatment arm and EGFR status, suggesting that VeriStrat could be used to identify EGFR mutation-positive patients who will have a poor response to EGFR tyrosine kinase inhibitors. IMPLICATIONS FOR PRACTICE This study suggests that VeriStrat testing could enhance the prognostic role of performance status and smoking status and replicates findings from other trials that showed that the VeriStrat test identifies EGFR mutation-positive patients likely to have a poor response to EGFR tyrosine kinase inhibitors (TKIs). Although these findings should be confirmed in other populations, VeriStrat use could be considered in EGFR mutation-positive patients as an additional prognostic tool, and these results suggest that EGFR mutation-positive patients with VeriStrat "poor" classification could benefit from other therapeutic agents given in conjunction with TKI monotherapy.
Collapse
Affiliation(s)
- Consuelo Buttigliero
- Division of Medical Oncology, Department of Oncology, University of Torino at San Luigi Gonzaga Hospital, Turin, Italy
| | | | | | | | - Sergey Orlov
- St. Petersburg State Medical University, St. Petersburg, Russian Federation
| | | | | | - Vera Hirsh
- McGill University Health Centre, Montreal, Canada
| | - Rodryg Ramlau
- Oncology Department, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | - David Spigel
- Tennessee Oncology Associates, Nashville, Tennessee, USA
| | - Silvia Novello
- Division of Medical Oncology, Department of Oncology, University of Torino at San Luigi Gonzaga Hospital, Turin, Italy
| | | | - Giorgio V Scagliotti
- Division of Medical Oncology, Department of Oncology, University of Torino at San Luigi Gonzaga Hospital, Turin, Italy
| |
Collapse
|
32
|
KRAS-Mutant non-small cell lung cancer: From biology to therapy. Lung Cancer 2018; 124:53-64. [PMID: 30268480 DOI: 10.1016/j.lungcan.2018.07.013] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/30/2022]
Abstract
In patients with non-small cell lung cancer (NSCLC), the most frequent oncogene driver mutation in Western countries is Kirsten rat sarcoma viral oncogene homolog (KRAS), and KRAS-mutant NSCLC is associated with smoking. There are various sources of biological heterogeneity of KRAS-mutant NSCLC, including different genotypes that may be associated with specific clinical outcomes, the presence of other co-mutations that exhibit different biological features and drug sensitivity patterns, and mutant allelic content. The efficacy of chemotherapy in patients with KRAS-mutant NSCLC is generally poor and numerous novel therapeutic strategies have been developed. These approaches include targeting KRAS membrane associations, targeting downstream signalling pathways, the use of KRAS synthetic lethality, direct targeting of KRAS, and immunotherapy. Of these, immunotherapy may be one of the most promising treatment approaches for patients with KRAS-mutant NSCLC. Recent data also suggest the potential for distinct efficacy of immunotherapy according to the presence of other co-mutations. In view of the biological heterogeneity of KRAS-mutant NSCLC, treatment will likely need to be individualised and, in future, may require the use of rational combinations of treatment, many of which are currently under investigation.
Collapse
|
33
|
Inno A, Di Noia V, Martini M, D'Argento E, Di Salvatore M, Arena V, Schinzari G, Orlandi A, Larocca LM, Cassano A, Barone C. Erlotinib for Patients with EGFR Wild-Type Metastatic NSCLC: a Retrospective Biomarkers Analysis. Pathol Oncol Res 2018; 25:513-520. [PMID: 29557085 DOI: 10.1007/s12253-018-0404-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 03/07/2018] [Indexed: 12/14/2022]
Abstract
Erlotinib is approved for the treatment of patients with EGFR mutation positive, metastatic NSCLC. It is also approved as second/third line therapy for EGFR mutation negative patients, but in this setting the benefit of erlotinib is modest and there is no validated biomarker for selecting EGFR wild-type patients who may benefit the most from the treatment. We retrospectively assessed EGFR and K-RAS mutational status, and EGFR, c-MET and IGF1-R expression in tumor samples of 72 patients with metastatic NSCLC treated with erlotinib after at least one prior line of chemotherapy, from 2008 to 2012. We analyzed the association between biomarkers and outcome (RR, PFS, and OS). EGFR mutated patients achieved a better RR (56% vs 8%, p = .002), PFS (10 vs 3 months, HR 0.53, p = 0.48) and OS (20 vs 6 months, HR 0.55, p = .07), compared to EGFR wild-type patients. Among 63 EGFR wild-type patients, those with EGFR high-expression had a better outcome in terms of RR (40% vs 2%, p = .002), PFS (7.5 vs 2 months, HR 0.45, p = .007) and OS (30 vs 5 months, HR 0.34, p < .001) compared to patients with EGFR intermediate or low/negative-expression. IGF1-R expression, c-MET expression and K-RAS mutational status did not significantly affect the outcome; however, no patients with K-RAS mutation or c-MET high-expression achieved an objective response. In patients with metastatic, chemo-refractory EGFR wild-type NSCLC, EGFR high-expression may represent a positive predictor of activity for erlotinib, whereas K-RAS mutation and c-MET high-expression may predict lack of activity. These findings deserve further prospective evaluation.
Collapse
Affiliation(s)
- Alessandro Inno
- Medical Oncology Unit, Cancer Care Center, Ospedale Sacro Cuore Don Calabria, Via don A. Sempreboni 5, 37024 Negrar, Verona, Italy.
| | - Vincenzo Di Noia
- Department of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maurizio Martini
- Department of Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ettore D'Argento
- Department of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Vincenzo Arena
- Department of Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Schinzari
- Department of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Armando Orlandi
- Department of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Alessandra Cassano
- Department of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carlo Barone
- Department of Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
34
|
Jia Y, Jiang T, Li X, Zhao C, Zhang L, Zhao S, Liu X, Qiao M, Luo J, Shi J, Yang H, Wang Y, Xi L, Zhang S, Gao G, Su C, Ren S, Zhou C. Characterization of distinct types of KRAS mutation and its impact on first-line platinum-based chemotherapy in Chinese patients with advanced non-small cell lung cancer. Oncol Lett 2017; 14:6525-6532. [PMID: 29163686 PMCID: PMC5686437 DOI: 10.3892/ol.2017.7016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/07/2017] [Indexed: 12/12/2022] Open
Abstract
We performed this retrospective study to investigate whether the KRAS mutation status and its subtypes could predict the effect of first-line platinum-based chemotherapy in Chinese patients with non-small cell lung cancer (NSCLC). Patients received who had KRAS mutations were enrolled. Correlations between KRAS mutations, specific mutant subtypes and responses to chemotherapy were analyzed using Kaplan-Meier and Cox proportional hazard methods. A total of 2,183 cases who received KRAS mutation detection were included. A total of 218 of these cases were indicated to have KRAS mutations. KRAS mutations were identified more commonly in males compared with females (P=0.035). The most common subtypes were G12C, G12D and G12V. Among 73 KRAS mutant patients and 100 EGFR/ALK/KRAS wild-type patients with advanced NSCLC, KRAS-mutant NSCLC patients had a significantly shorter progression-free survival (P=0.007) compared with NSCLC patients with KRAS wild-type. In addition, there was a shorter but marginally statistically significant progression-free survival (PFS) in KRAS mutant patients with adenocarcinoma compared with those with non-adenocarcinoma (P=0.051). In the KRAS mutant group, patients with the KRAS G12V mutation had the poorest PFS compared with non-G12V mutant cases (P=0.045). In conclusion, KRAS mutation was a negative predictive factor of PFS in Chinese patients with advanced NSCLC who received first platinum-based chemotherapy. Patients with KRAS G12V mutations exhibited the poorest PFS compared with those with other KRAS mutant types.
Collapse
Affiliation(s)
- Yijun Jia
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Chao Zhao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Limin Zhang
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Sha Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Xiaozhen Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Meng Qiao
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Jiawei Luo
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Jinpeng Shi
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Hui Yang
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Yan Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Lei Xi
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Shijia Zhang
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Guanghui Gao
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, P.R. China
| |
Collapse
|
35
|
Lu W, Zhang H, Niu Y, Wu Y, Sun W, Li H, Kong J, Ding K, Shen HM, Wu H, Xia D, Wu Y. Long non-coding RNA linc00673 regulated non-small cell lung cancer proliferation, migration, invasion and epithelial mesenchymal transition by sponging miR-150-5p. Mol Cancer 2017; 16:118. [PMID: 28697764 PMCID: PMC5504775 DOI: 10.1186/s12943-017-0685-9] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 06/22/2017] [Indexed: 12/21/2022] Open
Abstract
Background The function of a new long non-coding RNA linc00673 remains unclear. While identified as an oncogenic player in non-small cell lung cancer (NSCLC), linc00673 was found to be anti-oncogenic in pancreatic ductal adenocarcinoma (PDAC). However whether linc00673 regulated malignancy and epithelial mesenchymal transition (EMT) has not been characterized. Methods Cell proliferation was assessed using CCK-8 and EdU assays, and cell migration and invasion were assessed using scratch assays and transwell invasion assays. Epithelial mesenchymal transition was examined using western blot, qRT-PCR and immunofluorescence staining. Interaction between miRNA and linc00673 was determined using luciferase reporter assays. In vivo experiments were performed to assess tumor formation. In addition, the expression data of NSCLC specimens of TCGA and patient survival data were utilized to explore the prognostic significance of linc00673. Results In the present study, we found high linc00673 expression was associated with poor prognosis of NSCLC patients. In vitro experiments showed linc00673 knockdown reversed TGF-β induced EMT, and miR-150-5p was predicted to target linc00673 through bioinformatics tools. Overexpression of miR-150-5p suppressed lin00673’s expression while inhibition of miR-150-5p led to significant upregulation of lin00673, suggesting that linc00673 could be negatively regulated by miR-150-5p, which was further confirmed by the inverse correlation between linc00673 and miR-150-5p in NSCLC patients’ specimen. Furthermore, we proved that miR-150-5p could directly target linc00673 through luciferase assay, so linc00673 could sponge miR-150-5p and modulate the expression of a key EMT regulator ZEB1 indirectly. In addition, miR-150-5p inhibition abrogated linc00673 silence mediated proliferation, migration, invasion and EMT suppressing effect. Moreover, the inhibition of linc00673 significantly attenuated the tumorigenesis ability of A549 cells in vivo. Conclusions We validated linc00673 as a novel oncogenic lncRNA and demonstrated the molecular mechanism by which it promotes NSCLC, which will advance our understanding of its clinical significance. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0685-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Lu
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou, People's Republic of China.,Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Honghe Zhang
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yuequn Niu
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou, People's Republic of China
| | - Yongfeng Wu
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou, People's Republic of China
| | - Wenjie Sun
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Hongyi Li
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou, People's Republic of China
| | - Jianlu Kong
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Kefeng Ding
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Han Wu
- Department of Ophthalmology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Dajing Xia
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou, People's Republic of China.
| | - Yihua Wu
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou, People's Republic of China.
| |
Collapse
|
36
|
Van Der Steen N, Mentens Y, Ramael M, Leon LG, Germonpré P, Ferri J, Gandara DR, Giovannetti E, Peters GJ, Pauwels P, Rolfo C. Double Trouble: A Case Series on Concomitant Genetic Aberrations in NSCLC. Clin Lung Cancer 2017; 19:35-41. [PMID: 28757336 DOI: 10.1016/j.cllc.2017.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 01/03/2023]
Abstract
Several oncogenic drivers have been identified in non-small cell lung cancer. Targeted therapies for these aberrations have already been successfully developed and implemented in clinical practice. Owing to improved sensitivity in genetic testing, more and more tumors with multiple driver mutations are identified, resulting in dilemmas for treating physicians whether and which targeted therapy to use. In this case series, we provide an overview of patients with intrinsic double mutations in oncogenic drivers and their reported response to targeted therapies, with a focus on epidermal growth factor receptor, anaplastic lymphoma kinase, cMET, and Kirsten rat sarcoma viral oncogene. We also include an unpublished case report on a patient with an epidermal growth factor receptor L858R and cMET exon 14 skipping.
Collapse
Affiliation(s)
- Nele Van Der Steen
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium; Department of Pathology, Antwerp University Hospital, Antwerp, Belgium; Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Yves Mentens
- Department of Pneumology, AZ Herentals, Herentals, Belgium
| | - Marc Ramael
- Department of Pathology, AZ Herentals, Herentals, Belgium; Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Leticia G Leon
- Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| | - Paul Germonpré
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium; Department of Pneumology, AZ Maria Middelares, Ghent, Belgium
| | - Jose Ferri
- Phase I - Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital, Antwerp, Belgium
| | - David R Gandara
- Department of Medicine, University of California Davis Cancer Center, Sacramento, CA
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands; Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Patrick Pauwels
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium; Department of Pathology, Antwerp University Hospital, Antwerp, Belgium
| | - Christian Rolfo
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium; Phase I - Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital, Antwerp, Belgium.
| |
Collapse
|
37
|
KRAS mutation is a weak, but valid predictor for poor prognosis and treatment outcomes in NSCLC: A meta-analysis of 41 studies. Oncotarget 2016; 7:8373-88. [PMID: 26840022 PMCID: PMC4884999 DOI: 10.18632/oncotarget.7080] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/13/2016] [Indexed: 01/06/2023] Open
Abstract
Mutation of oncogene KRAS is common in non-small cell lung cancer (NSCLC), however, its clinical significance is still controversial. Independent studies evaluating its prognostic and predictive value usually drew inconsistent conclusions. Hence, We performed a meta-analysis with 41 relative publications, retrieved from multi-databases, to reconcile these controversial results and to give an overall impression of KRAS mutation in NSCLC. According to our findings, KRAS mutation was significantly associated with worse overall survival (OS) and disease-free survival (DFS) in early stage resected NSCLC (hazard ratio or HR=1.56 and 1.57, 95% CI 1.39-1.76 and 1.17-2.09 respectively), and with inferior outcomes of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) treatment and chemotherapy (relative risk or RR=0.21 and 0.66 for objective response rate or ORR, 95% CI 0.12-0.39 and 0.54-0.81 respectively; HR=1.46 and 1.30 for progression-free survival or PFS, 95%CI 1.23-1.74 and 1.14-1.50 respectively) in advanced NSCLC. When EGFR mutant patients were excluded, KRAS mutation was still significantly associated with worse OS and PFS of EGFR-TKIs (HR=1.40 and 1.35, 95 % CI 1.21-1.61 and 1.11-1.64). Although KRAS mutant patients presented worse DFS and PFS of chemotherapy (HR=1.33 and 1.11, 95% CI 0.97-1.84 and 0.95-1.30), and lower response rate to EGFR-TKIs or chemotherapy (RR=0.55 and 0.88, 95 % CI 0.27-1.11 and 0.76-1.02), statistical differences were not met. In conclusion, KRAS mutation is a weak, but valid predictor for poor prognosis and treatment outcomes in NSCLC. There's a need for developing target therapies for KRAS mutant lung cancer and other tumors.
Collapse
|
38
|
Ambrogio C, Nadal E, Villanueva A, Gómez-López G, Cash TP, Barbacid M, Santamaría D. KRAS-driven lung adenocarcinoma: combined DDR1/Notch inhibition as an effective therapy. ESMO Open 2016; 1:e000076. [PMID: 27843638 PMCID: PMC5070278 DOI: 10.1136/esmoopen-2016-000076] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/25/2016] [Accepted: 07/29/2016] [Indexed: 12/28/2022] Open
Abstract
Understanding the early evolution of cancer heterogeneity during the initial steps of tumorigenesis can uncover vulnerabilities of cancer cells that may be masked at later stages. We describe a comprehensive approach employing gene expression analysis in early lesions to identify novel therapeutic targets and the use of mouse models to test synthetic lethal drug combinations to treat human Kirsten rat sarcoma viral oncogene homologue (KRAS)-driven lung adenocarcinoma.
Collapse
Affiliation(s)
- Chiara Ambrogio
- Experimental Oncology, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ernest Nadal
- Department of Medical Oncology, Multidisciplinary Thoracic Oncology Unit , Catalan Institute of Oncology , Barcelona , Spain
| | - Alberto Villanueva
- Xenopat S.L., Business Bioincubator, Bellvitge Health Science Campus, Barcelona, Spain; Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - Gonzalo Gómez-López
- Bioinformatics Unit , Structural Biology and Biocomputing Programme, Centro Nacional de Investigaciones Oncológicas (CNIO) , Madrid , Spain
| | - Timothy P Cash
- Tumour Suppression, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO) , Madrid , Spain
| | - Mariano Barbacid
- Experimental Oncology, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO) , Madrid , Spain
| | - David Santamaría
- Experimental Oncology, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO) , Madrid , Spain
| |
Collapse
|
39
|
Marabese M, Ganzinelli M, Garassino MC, Shepherd FA, Piva S, Caiola E, Macerelli M, Bettini A, Lauricella C, Floriani I, Farina G, Longo F, Bonomi L, Fabbri MA, Veronese S, Marsoni S, Broggini M, Rulli E. KRAS mutations affect prognosis of non-small-cell lung cancer patients treated with first-line platinum containing chemotherapy. Oncotarget 2016; 6:34014-22. [PMID: 26416458 PMCID: PMC4741822 DOI: 10.18632/oncotarget.5607] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/26/2015] [Indexed: 11/25/2022] Open
Abstract
KRAS mutations seem to indicate a poor outcome in Non-Small-Cell Lung Cancer (NSCLC) but such evidence is still debated. The aim of this planned ancillary study within the TAILOR trial was to assess the prognostic value of KRAS mutations in advanced NSCLC patients treated with platinum-based first-line chemotherapy. Patients (N = 540), enrolled in the study in 52 Italian hospitals, were centrally genotyped twice in two independent laboratories for EGFR and KRAS mutational status. Of these, 247 patients were eligible and included in the present study. The primary endpoint was overall survival (OS) according to KRAS mutational status in patients harboring EGFR wild-type. Sixty (24.3%) out of 247 patients harbored KRAS mutations. Median OS was 14.3 months and 10.6 months in wild-type and mutated KRAS patients, respectively (unadjusted Hazard Ratio [HR]=1.41, 95%Confidence Interval [CI]: 1.03-1.94 P = 0.032; adjusted HR=1.39, 95%CI: 1.00-1.94 P = 0.050). This study, with all consecutive patients genotyped, indicates that the presence of KRAS mutations has a mild negative impact on OS in advanced NSCLC patient treated with a first-line platinum-containing regimen. Trial Registration: clinicaltrials.gov identifier NCT00637910
Collapse
Affiliation(s)
- Mirko Marabese
- Oncology Department, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Monica Ganzinelli
- Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marina C Garassino
- Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Sheila Piva
- Oncology Department, Ospedale Fatebenefratelli e Oftalmico, Milan, Italy
| | - Elisa Caiola
- Oncology Department, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Marianna Macerelli
- Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Anna Bettini
- Oncology Department, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Calogero Lauricella
- Molecular Pathology Unit, Niguarda Cancer Center, Ospedale Niguarda Ca' Granda, Milan, Italy
| | - Irene Floriani
- Oncology Department, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Gabriella Farina
- Oncology Department, Ospedale Fatebenefratelli e Oftalmico, Milan, Italy
| | - Flavia Longo
- Medical Oncology, Policlinico Umberto I, Rome, Italy
| | - Lucia Bonomi
- Oncology Department, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | | | - Silvio Veronese
- Molecular Pathology Unit, Niguarda Cancer Center, Ospedale Niguarda Ca' Granda, Milan, Italy
| | - Silvia Marsoni
- Clinical Trials Coordination Unit, Institute for Cancer Research and Treatment, IRCCS, Candiolo, Italy
| | - Massimo Broggini
- Oncology Department, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Eliana Rulli
- Oncology Department, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| |
Collapse
|
40
|
Role of KRAS-LCS6 polymorphism in advanced NSCLC patients treated with erlotinib or docetaxel in second line treatment (TAILOR). Sci Rep 2015; 5:16331. [PMID: 26573509 PMCID: PMC4648064 DOI: 10.1038/srep16331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/13/2015] [Indexed: 11/10/2022] Open
Abstract
MicroRNAs were described to target mRNA and regulate the transcription of genes involved in processes de-regulated in tumorigenesis, such as proliferation, differentiation and survival. In particular, the miRNA let-7 has been suggested to regulate the expression of the KRAS gene, a common mutated gene in non-small cell lung cancer (NSCLC), through a let-7 complementary site (LCS) in 3′UTR of KRAS mRNA. We have reported the analysis performed on the role of the polymorphism located in the KRAS-LCS (rs61764370) which is involved in the disruption of the let-7 complementary site in NSCLC patients enrolled within the TAILOR trial, a randomised trial comparing erlotinib versus docetaxel in second line treatment. In our cohort of patients, KRAS-LCS6 polymorphism did not have any impact on both overall survival (OS) and progression free survival (PFS) and was not associated with any patient’s baseline characteristics included in the study. Overall, patients had a better prognosis when treated with docetaxel instead of erlotinib for both OS and PFS. Considering KRAS-LCS6 status, the TG/GG patients had a benefit from docetaxel treatment (HR(docetaxel vs erlotinib) = 0.35, 95% CI 0.15–0.79, p = 0.011) compared with the TT patients (HR(docetaxel vs erlotinib) = 0.72, 95% CI 0.52–1.01, p = 0.056) in terms of PFS.
Collapse
|
41
|
Correlation between KRAS mutation status and response to chemotherapy in patients with advanced non-small cell lung cancer☆. Lung Cancer 2015; 92:29-34. [PMID: 26775593 DOI: 10.1016/j.lungcan.2015.11.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/29/2015] [Accepted: 11/04/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVES KRAS mutations are the most commonly found mutations in patients with non-small cell lung cancer (NSCLC) adenocarcinoma histology. The clinical implications of KRAS mutations in patients with advanced NSCLC are not well defined. We sought to determine if there is a correlation between KRAS mutation status, response to cytotoxic chemotherapy, and survival in patients with metastatic or recurrent NSCLC. MATERIALS AND METHODS Patients with metastatic or recurrent NSCLC and tumor mutation analyses were analyzed for response to conventional chemotherapy. The presence or absence of tumor mutations was assessed with the SNaPshot assay, which detects >40 somatic mutations in eight genes, including KRAS. ALK fluorescence in-situ hybridization analysis was done separately. Associations between KRAS mutation status and response to chemotherapy and survival were assessed. RESULTS We identified 80 patients with metastatic or recurrent NSCLC and a KRAS activating mutation, and we compared these patients to 70 patients who were pan negative (no detectable mutation by the SNaPshot assay and ALK negative). Patients with KRAS-mutant advanced NSCLC demonstrated a significantly shorter progression-free survival in response to first line chemotherapy (4.5 months versus 5.7 months, p=0.008) compared to pan-mutation negative patients. Overall survival was also significantly shorter in patients with KRAS-mutant advanced NSCLC compared to patients without KRAS activating mutations (8.8 months versus 13.5 months, p=0.038). CONCLUSIONS Within this single institution retrospective analysis, patients with advanced NSCLC and a KRAS activating mutation exhibited inferior responses to cytotoxic chemotherapy and decreased survival compared to patients with advanced NSCLC and no KRAS mutation.
Collapse
|