1
|
Ibrahim MB, Adnani Y, Clément GJ, Lacroix L, Loriot Y, Besse B, Massard C, Rouleau E. Assessing actionability and incidental findings of germline variants in two precision oncology trials. Eur J Cancer 2024; 210:114256. [PMID: 39154486 DOI: 10.1016/j.ejca.2024.114256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
INTRODUCTION High-throughput sequencing techniques have revolutionized oncology. Paired germline-tumor DNA analysis has emerged as a comprehensive strategy to uncover actionable alterations in advanced cancer patients (ACP) enrolled in precision oncology trials. However, challenges persist in variant interpretation and managing incidental germline findings. METHODS We conducted a study involving 288 ACP from MOSCATO (NCT01566019) and MATCHR (NCT02517892) trials to assess germline variants impacting cancer-related genes. Germline DNA sequencing was performed using a panel of 250 cancer-related genes, and the results were discussed during tumor molecular board sessions. RESULTS Germline pathogenic variants (PV) were classified according to the ESCAT classification. Lung cancer (36.8 %), followed by prostate (18.4 %) and breast cancer (17.7 %), comprised the most prevalent tumor types. PVs were found in 12.5 % of patients. Most PVs were classified as ESCAT X (63.9 %), highlighting limited therapeutic actionability. Notably,2 % of patients had actionable variants (ESCAT I-A/II-A). Incidental findings included 7.3 % of patients with PVs in cancer-predisposition genes, with 2.4 % having very high-risk potential, necessitating mandatory oncogenetic counseling. Nearly one in five patients (21.9 %) had at least one VUS. DISCUSSION Our study underscores the significance of germline sequencing in identifying actionable alterations and the need for improved variant interpretation as well as pretest counseling plans in precision oncology trials.
Collapse
Affiliation(s)
- Maria Baz Ibrahim
- Department of oncogenetics and biochemistry, Paul Brousse University Hospital (APHP), 12 Av. Paul Vaillant Couturier, 94800 Villejuif, France.
| | - Yahia Adnani
- Bioinformatics Core Facility, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Ludovic Lacroix
- Molecular Biopathology, Medical Biology and Pathology Department, Gustave-Roussy Cancer Campus, Villejuif, France
| | - Yohann Loriot
- Department of Medical Oncology, Gustave Roussy, 94805 Villejuif, France
| | - Benjamin Besse
- Department of Medical Oncology, Gustave Roussy, 94805 Villejuif, France
| | | | - Etienne Rouleau
- Cancer Genetics Laboratory, Medical Biology and Pathology Department, Gustave-Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
2
|
Heeke AL, Sha W, Feldman R, Fisher J, Hadzikadic-Gusic L, Symanowski JT, White RL, Tan AR. The Genomic Landscape of Breast Cancer in Young and Older Women. Clin Breast Cancer 2024; 24:630-638.e3. [PMID: 39174364 DOI: 10.1016/j.clbc.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Young women with breast cancer (YWBC; ≤40 years) often have a poorer prognosis than older women with breast cancer (OWBC; ≥65 years). We explored molecular features of tumors from YWBC and OWBC to identify a biologic connection for these patterns. MATERIALS AND METHODS We retrospectively analyzed the molecular profiles of 1879 breast tumors. Testing included immunohistochemistry (IHC), in situ hybridization (ISH), and next-generation sequencing. Statistical analyses included Pearson's chi2 test for comparisons, with significance defined as FDR (false discovery rate)-P < .05. RESULTS TP53 and BRCA1 somatic mutations were more common in YWBC tumors than in OWBC tumors (53%, 42%; P = .0001, FDR-P = .0025 and 7%, 2%; P = .0001, FDR-P = .0025; respectively). Conversely, OWBC tumors had higher androgen receptor expression (55%, 45%; P = .0002, FDR-P = .0025) higher PD-L1 expression detected by IHC (8%, 5%; P = .0476, FDR-P = .2754), and more frequent PIK3CA mutations (33%, 17%; P = < .0001, FDR-P = < .0001). Among HR+/HER2- samples, YWBC had more gene amplifications in FGF3 (27%, 10%; P = .0353, FDR-P = .2462), FGF4 (27%, 9%; P = .0218, FDR-P = .1668), FGF19 (30%, 12%; P = .034, FDR-P = .2462) and CCND1 (37%, 18%; P = .0344, FDR-P = .2462) than OWBC. CONCLUSIONS Our data suggest distinct molecular aberrations exist between YWBC and OWBC. Exploiting these molecular changes could refine our treatment strategies in YWBC and OWBC.
Collapse
Affiliation(s)
- Arielle L Heeke
- Department of Solid Tumor Oncology and Investigational Therapeutics, Levine Cancer Institute, Atrium Health, Charlotte, NC; Sandra Levine Young Women's Breast Cancer Program, Levine Cancer Institute, Atrium Health, Charlotte, NC.
| | - Wei Sha
- Department of Cancer Biostatistics, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | | | - Julie Fisher
- Department of Solid Tumor Oncology and Investigational Therapeutics, Levine Cancer Institute, Atrium Health, Charlotte, NC; Sandra Levine Young Women's Breast Cancer Program, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Lejla Hadzikadic-Gusic
- Division of Surgical Oncology, Department of Surgery, Carolinas Medical Center, Levine Cancer Institute, Atrium Health, Charlotte, NC; Sandra Levine Young Women's Breast Cancer Program, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - James T Symanowski
- Department of Cancer Biostatistics, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Richard L White
- Division of Surgical Oncology, Department of Surgery, Carolinas Medical Center, Levine Cancer Institute, Atrium Health, Charlotte, NC; Sandra Levine Young Women's Breast Cancer Program, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Antoinette R Tan
- Department of Solid Tumor Oncology and Investigational Therapeutics, Levine Cancer Institute, Atrium Health, Charlotte, NC; Sandra Levine Young Women's Breast Cancer Program, Levine Cancer Institute, Atrium Health, Charlotte, NC
| |
Collapse
|
3
|
Petterson AT, Garbarini J, Baker MJ. Universal screening of colorectal tumors for lynch syndrome: a survey of patient experiences and opinions. Hered Cancer Clin Pract 2024; 22:18. [PMID: 39238026 PMCID: PMC11378365 DOI: 10.1186/s13053-024-00290-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Lynch syndrome represents the most common hereditary cause of both colorectal and endometrial cancer. It is caused by defects in mismatch repair genes, as well as EPCAM. Universal screening of colon tumors for Lynch syndrome via microsatellite instability (MSI) and/or immunohistochemistry (IHC) can identify patients and families at risk to develop further cancers and potentially impact surveillance and treatment options. The approach to implementation of universal screening, taking ethical considerations into account, is critical to its effectiveness, with patient perspectives providing valuable insight. METHODS Patients whose colon tumors underwent universal screening at Penn State Hershey Medical Center over a period of 2.5 years were mailed a survey on universal screening in 2017. Along with the survey, they received a recruitment letter and a summary explanation of research. The survey included both multiple choice and free-response questions that covered topics including respondent knowledge of Lynch syndrome, attitudes toward universal screening and experiences with the screening protocol as implemented. RESULTS Sixty-six of 297 possible patients (22.2%) responded to the survey, including 13 whose screening results raised concern for Lynch syndrome. 75.8% of respondents supported universal tumor screening without informed consent. 92.4% preferred receiving screening results regardless of outcome. Respondents described benefits to screening for themselves and their families. CONCLUSIONS While broadly supporting universal tumor screening without informed consent, respondents also wanted more information shared about the screening policy, as well as their results. These patient preferences should be one of many factors considered when implementing universal screening and can also inform practices regarding both tumor profiling and universal genetic testing, which is becoming more prevalent.
Collapse
Affiliation(s)
- Alexander T Petterson
- Genetic Counseling Program, Arcadia University, Glenside, PA, USA
- Penn State Hershey Medical Center, Hershey, PA, USA
| | | | - Maria J Baker
- Penn State Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
4
|
Kunimasa K, Sugimoto N, Yamasaki T, Kukita Y, Fujisawa F, Inoue T, Yamaguchi Y, Kitasaka M, Sakai D, Honma K, Wakamatsu T, Yamamoto S, Hayashi T, Mabuchi S, Okuno J, Kawamura T, Kai Y, Urabe M, Nishimura K. Real-world assessment of comprehensive genome profiling impact on clinical outcomes: A single-institution study in Japan. Cancer Med 2024; 13:e70249. [PMID: 39315676 PMCID: PMC11420830 DOI: 10.1002/cam4.70249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
INTRODUCTION Comprehensive genome profiling (CGP) has revolutionized healthcare by offering personalized medicine opportunities. However, its real-world utility and impact remain incompletely understood. This study examined the extent to which CGP leads to genomically matched therapy and its effectiveness. METHODS We analyzed data from advanced solid tumor patients who underwent CGP panel between December 2019 and May 2023 at the Osaka International Cancer Institute. Patient demographics, specimen details, and expert panel assessments were collected. Turnaround time (TAT) and genomically matched therapy outcomes were analyzed. Gene alterations and their co-occurrence patterns were also assessed. RESULTS Among 1437 patients, 1096 results were available for analysis. The median TAT was 63 [28-182] days. There were 667 (60.9%) cases wherein recommended clinical trials were presented and there were 12 (1.1%) cases that could be enrolled in the trial and 25 (2.3%) cases that could lead to therapies under insurance reimbursement. The median progression free survival of the trial treatment was 1.58 months (95% CI: 0.66-4.37) in clinical trials and 3.66 months (95% CI: 2.14-7.13) in treatment under insurance. Pathologic germline variants were confirmed in 15 patients (1.3%). Co-alteration of CDKN2A, CDKN2B, and MTAP was significantly observed in overall population. CONCLUSION The effectiveness of the genomically matched therapy based on the CGP panel was unsatisfactory. Expansion of clinical trials and utilization of remote clinical trials are required to ensure that the results of the CGP panel can be fully returned to patients.
Collapse
Affiliation(s)
- Kei Kunimasa
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
- Department of Genetic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Naotoshi Sugimoto
- Department of Genetic Oncology, Osaka International Cancer Institute, Osaka, Japan
- Department of Medical Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Tomoyuki Yamasaki
- Department of Genetic Oncology, Osaka International Cancer Institute, Osaka, Japan
- Department of Endocrinology and Metabolism, Clinical Laboratory, Osaka International Cancer Institute, Osaka, Japan
| | - Yoji Kukita
- Department of Genetic Oncology, Osaka International Cancer Institute, Osaka, Japan
- Laboratory of Genomic Pathology, Osaka International Cancer Institute, Osaka, Japan
| | - Fumie Fujisawa
- Department of Genetic Oncology, Osaka International Cancer Institute, Osaka, Japan
- Department of Medical Oncology, Shiga General Hospital, Shiga, Japan
| | - Tazuko Inoue
- Department of Genetic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Yuko Yamaguchi
- Department of Genetic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Mitsuko Kitasaka
- Department of Genetic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Daisuke Sakai
- Department of Genetic Oncology, Osaka International Cancer Institute, Osaka, Japan
- Department of Medical Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Keiichiro Honma
- Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan
| | - Toru Wakamatsu
- Musculoskeletal Oncology Service, Osaka International Cancer Institute, Osaka, Japan
| | - Sachiko Yamamoto
- Department of Gastrointestinal Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Takuji Hayashi
- Department of Urology, Osaka International Cancer Institute, Osaka, Japan
| | - Seiji Mabuchi
- Department of Gynecology, Osaka International Cancer Institute, Osaka, Japan
| | - Jun Okuno
- Department of Breast and Endocrine Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Takahisa Kawamura
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Yugo Kai
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Makiko Urabe
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Kazuo Nishimura
- Department of Genetic Oncology, Osaka International Cancer Institute, Osaka, Japan
- Department of Urology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
5
|
Veney DJ, Wei LY, Toland AE, Presley CJ, Hampel HL, Padamsee TJ, Lee CN, Irvin WJ, Bishop MJ, Kim JJ, Hovick SR, Senter LA, Stover DG. A video intervention to improve patient understanding of tumor genomic testing in patients with cancer. Cancer Med 2024; 13:e70095. [PMID: 39258462 PMCID: PMC11387988 DOI: 10.1002/cam4.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/14/2024] [Accepted: 07/29/2024] [Indexed: 09/12/2024] Open
Abstract
INTRODUCTION Tumor genomic testing (TGT) is standard-of-care for most patients with advanced/metastatic cancer. Despite established guidelines, patient education prior to TGT is frequently omitted. The purpose of this study was to evaluate the impact of a concise 4 min video for patient education prior to TGT. METHODS Based on a quality improvement cycle, an animated video was created to be applicable to any cancer type, incorporating culturally diverse images, available in English and Spanish. Patients undergoing standard-of-care TGT were enrolled at a tertiary academic institution and completed survey instruments prior to video viewing (T1) and immediately post-viewing (T2). Instruments included: (1) 10-question objective genomic knowledge; (2) 10-question video message-specific knowledge; (3) 11-question Trust in Provider; (4) attitudes regarding TGT. RESULTS A total of 150 participants were enrolled. For the primary objective, there was a significant increase in video message-specific knowledge (median 10 point increase; p < 0.0001) with no significant change in genomic knowledge/understanding (p = 0.89) or trust in physician/provider (p = 0.59). Results for five questions significantly improved, including the likelihood of TGT impact on treatment decision, incidental germline findings, and cost of testing. Improvement in video message-specific knowledge was consistent across demographic groups, including age, income, and education. CONCLUSIONS A concise, 3-4 min, broadly applicable video incorporating culturally diverse images administered prior to TGT significantly improved video message-specific knowledge across all demographic groups. This resource is publicly available at http://www.tumor-testing.com, with a goal to efficiently educate and empower patients regarding TGT while addressing guidelines within the flow of clinical practice.
Collapse
Affiliation(s)
- Deloris J. Veney
- Division of Medical OncologyOhio State University Comprehensive Cancer CenterColumbusOhioUSA
| | - Lai Y. Wei
- Department of Biomedical InformaticsOhio State UniversityColumbusOhioUSA
| | - Amanda E. Toland
- Division of Human Genetics, Department of Internal MedicineThe Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
- Department of Cancer Biology and GeneticsThe Ohio State UniversityColumbusOhioUSA
| | - Carolyn J. Presley
- Division of Medical OncologyOhio State University Comprehensive Cancer CenterColumbusOhioUSA
| | - Heather L. Hampel
- Division of Clinical Cancer Genomics, Department of Medical Oncology and Therapeutics ResearchCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Tasleem J. Padamsee
- Division of Health Services Management and PolicyCollege of Public Health, The Ohio State UniversityColumbusOhioUSA
| | - Clara N. Lee
- Division of Health Services Management and PolicyCollege of Public Health, The Ohio State UniversityColumbusOhioUSA
- Present address:
Division of Plastic and Reconstructive SurgeryUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | | | | | - James J. Kim
- Bon Secours‐Mercy Health St. ElizabethYoungstownOhioUSA
| | | | - Leigha A. Senter
- Division of Human Genetics, Department of Internal MedicineThe Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | - Daniel G. Stover
- Division of Medical OncologyOhio State University Comprehensive Cancer CenterColumbusOhioUSA
- Department of Biomedical InformaticsOhio State UniversityColumbusOhioUSA
- Pelotonia Institute for Immuno‐Oncology, Ohio State University Comprehensive CancerColumbusOhioUSA
| |
Collapse
|
6
|
Rives TA, Collard J, Li N, Yan D, Dietrich CS, Miller RW, Ueland FR, Pickarski J, Kolesar JM. Clinical Utility of Molecular Tumor Board Review for Identification of Possible Germline Pathogenic Variants on Tumor Next-Generation Sequencing Reports. JCO Precis Oncol 2024; 8:e2400301. [PMID: 39259913 PMCID: PMC11404756 DOI: 10.1200/po.24.00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 09/13/2024] Open
Abstract
PURPOSE Tumor next-generation sequencing (NGS) testing identifies possible germline pathogenic variants (PGPVs), creating a dilemma for appropriate recognition, triage, and management. The objective of this study was to determine the clinical utility of an institutional molecular tumor board (MTB) in assessing tumor NGS reports for PGPVs. METHODS Our institutional MTB reviews all NGS reports to provide treatment and further testing recommendations, including genetic counseling referral and consideration of genetic testing (GC/GT). We studied the patients reviewed by the MTB who were recommended for GC/GT to determine the frequency of referral to a GC, germline test completion, rate of pathogenic germline variants (PGVs), factors related to PGVs, and germline conversion rate (GCR). RESULTS Of the 2,355 patients reviewed by the MTB during the study period, 609 (25.9%) had a recommendation for GC/GT. Of the 609 with a GC/GT recommendation, only 181 (29.7%) were referred for GC/GT by their treating physicians, and only 107 (17.6%) completed GT. Of the 107 patients completing GT, 29 (26%) had a confirmed PGV. The only factors significantly associated with PGVs were testing due to a PGPV and higher mean variant allele fraction on the tumor NGS. Only 40 patients with a GC/GT recommendation (14.3%) due to a PGPV completed GT; however, the GCR was 42.5% (n = 17/40). CONCLUSION The MTB review of PGPV is clinically valuable, identifying PGPV in 12% of patients undergoing tumor NGS and a GCR of 42.5%. Rates of GC/GT completion were relatively low due to under-referral by treating physicians. Given the high GCR, the authors encourage institutional algorithms to help increase GC/GT rates for patients found to have PGPV following tumor NGS testing.
Collapse
Affiliation(s)
- Taylor A Rives
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY
| | - James Collard
- Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Ning Li
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY
| | - Donglin Yan
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY
| | - Charles S Dietrich
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY
- Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Rachel W Miller
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY
- Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Frederick R Ueland
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY
- Markey Cancer Center, University of Kentucky, Lexington, KY
| | | | - Jill M Kolesar
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY
- Markey Cancer Center, University of Kentucky, Lexington, KY
- College of Pharmacy, University of Kentucky, Lexington, KY
| |
Collapse
|
7
|
Tung N, Ricker C, Messersmith H, Balmaña J, Domchek S, Stoffel EM, Almhanna K, Arun B, Chavarri-Guerra Y, Cohen SA, Cragun D, Crew KD, Hall MJ, Idos G, Lopez G, Pal T, Pirzadeh-Miller S, Pritchard C, Rana HQ, Swami U, Vidal GA. Selection of Germline Genetic Testing Panels in Patients With Cancer: ASCO Guideline. J Clin Oncol 2024; 42:2599-2615. [PMID: 38759122 DOI: 10.1200/jco.24.00662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 05/19/2024] Open
Abstract
PURPOSE To guide use of multigene panels for germline genetic testing for patients with cancer. METHODS An ASCO Expert Panel convened to develop recommendations on the basis of a systematic review of guidelines, consensus statements, and studies of germline and somatic genetic testing. RESULTS Fifty-two guidelines and consensus statements met eligibility criteria for the primary search; 14 studies were identified for Clinical Question 4. RECOMMENDATIONS Patients should have a family history taken and recorded that includes details of cancers in first- and second-degree relatives and the patient's ethnicity. When more than one gene is relevant based on personal and/or family history, multigene panel testing should be offered. When considering what genes to include in the panel, the minimal panel should include the more strongly recommended genes from Table 1 and may include those less strongly recommended. A broader panel may be ordered when the potential benefits are clearly identified, and the potential harms from uncertain results should be mitigated. Patients who meet criteria for germline genetic testing should be offered germline testing regardless of results from tumor testing. Patients who would not normally be offered germline genetic testing based on personal and/or family history criteria but who have a pathogenic or likely pathogenic variant identified by tumor testing in a gene listed in Table 2 under the outlined circumstances should be offered germline testing.Additional information is available at www.asco.org/molecular-testing-and-biomarkers-guidelines.
Collapse
Affiliation(s)
- Nadine Tung
- Beth Israel Deaconess Medical Center, Sharon, MA
| | | | | | | | | | | | | | - Banu Arun
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yanin Chavarri-Guerra
- Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City, Mexico
| | | | | | | | | | - Gregory Idos
- City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Ghecemy Lopez
- USC Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Tuya Pal
- Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Sara Pirzadeh-Miller
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX
| | | | | | - Umang Swami
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT
| | - Gregory A Vidal
- The West Cancer Center and Research Institute and The University of Tennessee Health Sciences Center, Germantown, TN
| |
Collapse
|
8
|
Boileve A, Smolenschi C, Lambert A, Boige V, Tarabay A, Valery M, Fuerea A, Pudlarz T, Conroy T, Hollebecque A, Ducreux M. Role of molecular biology in the management of pancreatic cancer. World J Gastrointest Oncol 2024; 16:2902-2914. [PMID: 39072173 PMCID: PMC11271790 DOI: 10.4251/wjgo.v16.i7.2902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/04/2024] [Accepted: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents significant challenges in patient management due to a dismal prognosis, increasing incidence, and limited treatment options. In this regard, precision medicine, which personalizes treatments based on tumour molecular characteristics, has gained great interest. However, its widespread implementation is not fully endorsed in current recommendations. This review explores key molecular alterations in PDAC, while emphasizing differences between KRAS-mutated and KRAS-wild-type tumours. It assesses the practical application of precision medicine in clinical settings and outlines potential future directions with respect to PDAC. Actionable molecular targets are examined with the aim of enhancing our understanding of PDAC molecular biology. Insights from this analysis may contribute to a more refined and personalized approach to pancreatic cancer treatment, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Alice Boileve
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| | | | - Aurélien Lambert
- Department of Medical Oncology, Institut de Cancérologie de Lorraine, Nancy 54519, France
| | - Valérie Boige
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| | - Anthony Tarabay
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| | - Marine Valery
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| | - Alina Fuerea
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| | - Thomas Pudlarz
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| | - Thierry Conroy
- Department of Medical Oncology, Institut de Cancérologie de Lorraine, Nancy 54519, France
| | | | - Michel Ducreux
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| |
Collapse
|
9
|
Kawabata K, Nishikubo H, Kanei S, Aoyama R, Tsukada Y, Sano T, Imanishi D, Sakuma T, Maruo K, Yamamoto Y, Wang Q, Zhu Z, Fan C, Yashiro M. Significance of Multi-Cancer Genome Profiling Testing for Breast Cancer: A Retrospective Analysis of 3326 Cases from Japan's National Database. Genes (Basel) 2024; 15:792. [PMID: 38927728 PMCID: PMC11203237 DOI: 10.3390/genes15060792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Breast cancer (BC) has the highest morbidity rate and the second-highest mortality rate of all cancers among women. Recently, multi-cancer genome profiling (multi-CGP) tests have become clinically available. In this study, we aimed to clarify the significance of multi-CGP testing of BC by using the large clinical dataset from The Center for Cancer Genomics and Advanced Therapeutics (C-CAT) profiling database in Japan. Materials and Methods: A total of 3744 BC cases were extracted from the C-CAT database, which enrolled 60,250 patients between June 2019 and October 2023. Of the 3744 BC cases, a total of 3326 cases for which the C-CAT included information on ER, PR, and HER2 status were classified into four subtypes, including TNBC, HR+/HER2-, HR+/HER2+, and HR-/HER2+. Comparisons between groups were performed by the χ2 test or Fisher's exact test using EZR. Kaplan-Meier curves were created using the log-rank test. Results: Of all 3326 cases analyzed, 1114 (33.5%) were TNBC cases, HR+/HER2- accounted for 1787 cases (53.7%), HR+/HER2+ for 260 cases (7.8%), and HR-/HER2+ for 165 cases (5.0%). Genetic abnormalities were most frequently detected in TP53 (58.0%), PIK3CA (35.5%), MYC (18.7%), FGF19 (15.5%), and GATA3 (15.1%) across all BCs. The rate of TMB-High was 12.3%, and the rate of MSI-High was 0.3%, in all BC cases. Therapeutic drugs were proposed for patients with mutations in six genes: PIK3CA, ERBB2, PTEN, FGFR1, ESR1, and AKT1. The prognoses of HR+/HER2- cases were significantly (p = 0.044) better in the treated group than in the untreated group. Conclusions: These findings suggest that cancer gene panel testing is useful for HR+/HER2- cases.
Collapse
Affiliation(s)
- Kyoka Kawabata
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (K.K.); (H.N.); (S.K.); (R.A.); (Y.T.); (T.S.); (D.I.); (T.S.); (K.M.); (Y.Y.); (Q.W.); (Z.Z.); (C.F.)
| | - Hinano Nishikubo
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (K.K.); (H.N.); (S.K.); (R.A.); (Y.T.); (T.S.); (D.I.); (T.S.); (K.M.); (Y.Y.); (Q.W.); (Z.Z.); (C.F.)
| | - Saki Kanei
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (K.K.); (H.N.); (S.K.); (R.A.); (Y.T.); (T.S.); (D.I.); (T.S.); (K.M.); (Y.Y.); (Q.W.); (Z.Z.); (C.F.)
| | - Rika Aoyama
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (K.K.); (H.N.); (S.K.); (R.A.); (Y.T.); (T.S.); (D.I.); (T.S.); (K.M.); (Y.Y.); (Q.W.); (Z.Z.); (C.F.)
| | - Yuki Tsukada
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (K.K.); (H.N.); (S.K.); (R.A.); (Y.T.); (T.S.); (D.I.); (T.S.); (K.M.); (Y.Y.); (Q.W.); (Z.Z.); (C.F.)
| | - Tomoya Sano
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (K.K.); (H.N.); (S.K.); (R.A.); (Y.T.); (T.S.); (D.I.); (T.S.); (K.M.); (Y.Y.); (Q.W.); (Z.Z.); (C.F.)
| | - Daiki Imanishi
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (K.K.); (H.N.); (S.K.); (R.A.); (Y.T.); (T.S.); (D.I.); (T.S.); (K.M.); (Y.Y.); (Q.W.); (Z.Z.); (C.F.)
| | - Takashi Sakuma
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (K.K.); (H.N.); (S.K.); (R.A.); (Y.T.); (T.S.); (D.I.); (T.S.); (K.M.); (Y.Y.); (Q.W.); (Z.Z.); (C.F.)
| | - Koji Maruo
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (K.K.); (H.N.); (S.K.); (R.A.); (Y.T.); (T.S.); (D.I.); (T.S.); (K.M.); (Y.Y.); (Q.W.); (Z.Z.); (C.F.)
| | - Yurie Yamamoto
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (K.K.); (H.N.); (S.K.); (R.A.); (Y.T.); (T.S.); (D.I.); (T.S.); (K.M.); (Y.Y.); (Q.W.); (Z.Z.); (C.F.)
| | - Qiang Wang
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (K.K.); (H.N.); (S.K.); (R.A.); (Y.T.); (T.S.); (D.I.); (T.S.); (K.M.); (Y.Y.); (Q.W.); (Z.Z.); (C.F.)
| | - Zhonglin Zhu
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (K.K.); (H.N.); (S.K.); (R.A.); (Y.T.); (T.S.); (D.I.); (T.S.); (K.M.); (Y.Y.); (Q.W.); (Z.Z.); (C.F.)
| | - Canfeng Fan
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (K.K.); (H.N.); (S.K.); (R.A.); (Y.T.); (T.S.); (D.I.); (T.S.); (K.M.); (Y.Y.); (Q.W.); (Z.Z.); (C.F.)
| | - Masakazu Yashiro
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (K.K.); (H.N.); (S.K.); (R.A.); (Y.T.); (T.S.); (D.I.); (T.S.); (K.M.); (Y.Y.); (Q.W.); (Z.Z.); (C.F.)
- Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| |
Collapse
|
10
|
Al-Shinnag M, Cheong PL, Goodwin A, Trent R, Yu B. Germline potential should not be overlooked for cancer variants identified in tumour-only somatic mutation testing. Pathology 2024; 56:468-472. [PMID: 38627125 DOI: 10.1016/j.pathol.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/04/2024] [Accepted: 03/19/2024] [Indexed: 05/13/2024]
Abstract
DNA sequencing of tumour tissue has become the standard care for many solid cancers because of the option to detect somatic variants that have significant therapeutic, diagnostic and prognostic implications. Variants found within the tumour may be either somatic or germline in origin. Somatic cancer gene panels are developed to detect acquired (somatic) variants that are relevant for therapeutic or molecular characterisation of the tumour, expanding gene panels now include genes which may also inform patient management such as cancer predisposition syndromes (CPS) genes. Identifying germline cancer predisposition variants can alter cancer management, the risk of developing new primary cancers and risk for cancer in at-risk family members. This paper discusses the clinical, technical and ethical challenges related to identifying and reporting potential germline pathogenic variants that are detected on tumour sequencing. It also highlights the existence of the eviQ national guidelines for CPS with advice on germline confirmation of somatic findings to pathology laboratories in Australia.
Collapse
Affiliation(s)
- Mohammad Al-Shinnag
- Department of Medical Genomics, Royal Prince Alfred Hospital, Camperdown NSW, Australia; Institute of Precision Medicine and Bioinformatics, Sydney Local Health District, Camperdown, NSW, Australia; New South Wales Health Pathology (East), NSW, Australia; Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| | - Pak Leng Cheong
- Department of Medical Genomics, Royal Prince Alfred Hospital, Camperdown NSW, Australia; Institute of Precision Medicine and Bioinformatics, Sydney Local Health District, Camperdown, NSW, Australia; New South Wales Health Pathology (East), NSW, Australia; Central Clinical School, Faculty of Medicine and Health, the University of Sydney, NSW, Australia
| | - Annabel Goodwin
- Central Clinical School, Faculty of Medicine and Health, the University of Sydney, NSW, Australia; Department of Cancer Genetics, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Medical Oncology, Concord Repatriation General Hospital, Concord, NSW, Australia
| | - Ronald Trent
- Department of Medical Genomics, Royal Prince Alfred Hospital, Camperdown NSW, Australia; Institute of Precision Medicine and Bioinformatics, Sydney Local Health District, Camperdown, NSW, Australia; New South Wales Health Pathology (East), NSW, Australia; Central Clinical School, Faculty of Medicine and Health, the University of Sydney, NSW, Australia
| | - Bing Yu
- Department of Medical Genomics, Royal Prince Alfred Hospital, Camperdown NSW, Australia; Institute of Precision Medicine and Bioinformatics, Sydney Local Health District, Camperdown, NSW, Australia; New South Wales Health Pathology (East), NSW, Australia; Central Clinical School, Faculty of Medicine and Health, the University of Sydney, NSW, Australia.
| |
Collapse
|
11
|
Vanni I, Pastorino L, Andreotti V, Comandini D, Fornarini G, Grassi M, Puccini A, Tanda ET, Pastorino A, Martelli V, Mastracci L, Grillo F, Cabiddu F, Guadagno A, Coco S, Allavena E, Barbero F, Bruno W, Dalmasso B, Bellomo SE, Marchiò C, Spagnolo F, Sciallero S, Berrino E, Ghiorzo P. Combining germline, tissue and liquid biopsy analysis by comprehensive genomic profiling to improve the yield of actionable variants in a real-world cancer cohort. J Transl Med 2024; 22:462. [PMID: 38750555 PMCID: PMC11097509 DOI: 10.1186/s12967-024-05227-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Comprehensive next-generation sequencing is widely used for precision oncology and precision prevention approaches. We aimed to determine the yield of actionable gene variants, the capacity to uncover hereditary predisposition and liquid biopsy appropriateness instead of, or in addition to, tumor tissue analysis, in a real-world cohort of cancer patients, who may benefit the most from comprehensive genomic profiling. METHODS Seventy-eight matched germline/tumor tissue/liquid biopsy DNA and RNA samples were profiled using the Hereditary Cancer Panel (germline) and the TruSight Oncology 500 panel (tumor tissue/cfDNA) from 23 patients consecutively enrolled at our center according to at least one of the following criteria: no available therapeutic options; long responding patients potentially fit for other therapies; rare tumor; suspected hereditary cancer; primary cancer with high metastatic potential; tumor of unknown primary origin. Variants were annotated for OncoKB and AMP/ASCO/CAP classification. RESULTS The overall yield of actionable somatic and germline variants was 57% (13/23 patients), and 43.5%, excluding variants previously identified by somatic or germline routine testing. The accuracy of tumor/cfDNA germline-focused analysis was demonstrated by overlapping results of germline testing. Five germline variants in BRCA1, VHL, CHEK1, ATM genes would have been missed without extended genomic profiling. A previously undetected BRAF p.V600E mutation was emblematic of the clinical utility of this approach in a patient with a liver undifferentiated embryonal sarcoma responsive to BRAF/MEK inhibition. CONCLUSIONS Our study confirms the clinical relevance of performing extended parallel tumor DNA and cfDNA testing to broaden therapeutic options, to longitudinally monitor cfDNA during patient treatment, and to uncover possible hereditary predisposition following tumor sequencing in patient care.
Collapse
Affiliation(s)
- I Vanni
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - L Pastorino
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132, Genoa, Italy
| | - V Andreotti
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - D Comandini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - G Fornarini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - M Grassi
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - A Puccini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - E T Tanda
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132, Genoa, Italy
- Medical Oncology Unit 2, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - A Pastorino
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - V Martelli
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132, Genoa, Italy
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - L Mastracci
- Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132, Genoa, Italy
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - F Grillo
- Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132, Genoa, Italy
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - F Cabiddu
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - A Guadagno
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - S Coco
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - E Allavena
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132, Genoa, Italy
| | - F Barbero
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - W Bruno
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132, Genoa, Italy
| | - B Dalmasso
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - S E Bellomo
- Pathology Unit, Candiolo Cancer Institute, FPO - IRCCS, 10060, Candiolo, Turin, Italy
| | - C Marchiò
- Pathology Unit, Candiolo Cancer Institute, FPO - IRCCS, 10060, Candiolo, Turin, Italy
- Department of Medical Sciences, University of Torino, 10060, Turin, Italy
| | - F Spagnolo
- Medical Oncology Unit 2, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
- Plastic Surgery, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132, Genoa, Italy
| | - S Sciallero
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - E Berrino
- Pathology Unit, Candiolo Cancer Institute, FPO - IRCCS, 10060, Candiolo, Turin, Italy
- Department of Medical Sciences, University of Torino, 10060, Turin, Italy
| | - P Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy.
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132, Genoa, Italy.
| |
Collapse
|
12
|
Horn IP, Zakas AL, Smith-Simmer KJ, Birkeland LE, Sundstrom R, Burkard ME, Weiss JM. Genetic Testing Utilization: Discrepancies Between Somatic and Germline Results in Patients With Cancer Reviewed at the UW Health Precision Medicine Molecular Tumor Board. JCO Precis Oncol 2024; 8:e2300466. [PMID: 38810171 DOI: 10.1200/po.23.00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/26/2024] [Accepted: 03/15/2024] [Indexed: 05/31/2024] Open
Abstract
PURPOSE Somatic and germline testing are increasingly used to estimate risks for patients with cancer. Although both germline testing and somatic testing can identify genetic variants that could change a patient's care and eligible treatments, the aims of these tests and their technologies are fundamentally different and cannot be used interchangeably. This study examines the timing and results of somatic and germline genetic testing for patients with cancer at UW Health. METHODS Eight hundred and seventy-seven participants underwent somatic genetic testing, which was reviewed by the Precision Medicine Molecular Tumor Board (PMMTB). Patients were diagnosed with cancers, including breast, colorectal, endometrial, pancreatic, or ovarian cancer, and met National Comprehensive Cancer Network criteria for germline genetic testing. Germline testing details were collected by medical record review. RESULTS The results of this study found that only 310 patients (35%) had germline evaluation before PMMTB review. The percent of germline pathogenic/likely pathogenic variants identified in actionable genes was 28%. Most germline variants were identified in the BRCA1 (26%) and BRCA2 (28%) genes. In total, 65% (54/83) of germline variants were detected with both germline testing and somatic testing; however, 35% (29/83) of germline variants were not identified on somatic results. These results demonstrate the importance of combination germline and somatic testing. CONCLUSION This study highlights the differences in genetic testing types and demonstrates that conducting germline testing at earlier stages of diagnoses is necessary to identify potentially actionable and treatment-specific variants in patients with cancer.
Collapse
Affiliation(s)
- Isaac P Horn
- University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Anna L Zakas
- Oncology Genetics, University of Wisconsin Carbone Cancer Center, UW Health, Madison, WI
- Master of Genetic Counselor Studies, Academic Affairs, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Kelcy J Smith-Simmer
- Oncology Genetics, University of Wisconsin Carbone Cancer Center, UW Health, Madison, WI
- Master of Genetic Counselor Studies, Academic Affairs, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Laura E Birkeland
- University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Rachel Sundstrom
- Oncology Genetics, University of Wisconsin Carbone Cancer Center, UW Health, Madison, WI
| | - Mark E Burkard
- Oncology Genetics, University of Wisconsin Carbone Cancer Center, UW Health, Madison, WI
- Department of Medicine, Division of Hematology and Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Jennifer M Weiss
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
13
|
Fujiwara Y, Kato S, Kurzrock R. Evolution of Precision Oncology, Personalized Medicine, and Molecular Tumor Boards. Surg Oncol Clin N Am 2024; 33:197-216. [PMID: 38401905 PMCID: PMC10894322 DOI: 10.1016/j.soc.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
With multiple molecular targeted therapies available for patients with cancer that correspond to a specific genetic alteration, the selection of the best treatment is essential to ensure therapeutic efficacy. Molecular tumor boards (MTBs) play a key role in this process to deliver personalized medicine to patients with cancer in a multidisciplinary manner. Historically, personalized medicine has been offered to patients with advanced cancer, but the incorporation of molecular targeted therapies and immunotherapy into the perioperative setting requires clinicians to understand the role of the MTB. Evidence is accumulating to support feasibility and survival benefit in patients treated with matched therapy.
Collapse
Affiliation(s)
- Yu Fujiwara
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | - Shumei Kato
- Center for Personalized Cancer Therapy, University of California San Diego Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, CA 92093, USA; Division of Hematology and Oncology, Department of Medicine, University of California San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Razelle Kurzrock
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Froedtert and Medical College of Wisconsin Cancer Center and Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA; WIN Consortium, Paris, France; University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
14
|
Sakai Y, Kuwahara K. Carcinogenesis caused by transcription-coupled DNA damage through GANP and other components of the TREX-2 complex. Pathol Int 2024; 74:103-118. [PMID: 38411330 DOI: 10.1111/pin.13415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/28/2024]
Abstract
Perturbation of genes is important for somatic hypermutation to increase antibody affinity during B-cell immunity; however, it may also promote carcinogenesis. Previous studies have revealed that transcription is an important process that can induce DNA damage and genomic instability. Transciption-export-2 (TREX-2) complex, which regulates messenger RNA (mRNA) nuclear export, has been studied in the budding yeast Saccharomyces cerevisiae; however, recent studies have started investigating the molecular function of the mammalian TREX-2 complex. The central molecule in the TREX-2 complex, that is, germinal center-associated nuclear protein (GANP), is closely associated with antibody affinity maturation as well as cancer etiology. In this review, we focus on carcinogenesis, lymphomagenesis, and teratomagenesis caused by transcription-coupled DNA damage through GANP and other components of the TREX-2 complex. We review the basic machinery of mRNA nuclear export and transcription-coupled DNA damage. We then briefly describe the immunological relationship between GANP and the affinity maturation of antibodies. Finally, we illustrate that the aberrant expression of the components of the TREX-2 complex, especially GANP, is associated with the etiology of various solid tumors, lymphomas, and testicular teratoma. These components serve as reliable predictors of cancer prognosis and response to chemotherapy.
Collapse
Affiliation(s)
- Yasuhiro Sakai
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Shizuoka, Japan
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Aichi, Japan
| | - Kazuhiko Kuwahara
- Department of Diagnostic Pathology, Kindai University Hospital, Osaka, Japan
| |
Collapse
|
15
|
Nowlen CJ, Daniels M, Uzunparmak B, Ileana Dumbrava EE, Yuan Y, Patel KP, Rayes N, Harkenrider J, Wathoo C, Veazie J, Luna KA, Wang W, Horombe C, Javle M, Ahnert JR, Yap TA, Arun B, Lu KH, Meric-Bernstam F. Limited Independent Follow-Up with Germline Testing of Variants Detected in BRCA1 and BRCA2 by Tumor-Only Sequencing. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2024; 7:7-17. [PMID: 38327755 PMCID: PMC10846638 DOI: 10.36401/jipo-23-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/28/2023] [Accepted: 10/10/2023] [Indexed: 02/09/2024]
Abstract
Introduction Genomic profiling is performed in patients with advanced or metastatic cancer, in order to direct cancer treatment, often sequencing tumor-only, without a matched germline comparator. However, because many of the genes analyzed on tumor profiling overlap with those known to be associated with hereditary cancer predisposition syndromes (HCPS), tumor-only profiling can unknowingly uncover germline pathogenic (P) and likely pathogenic variants (LPV). In this study, we evaluated the number of patients with P/LPVs identified in BRCA1 and BRCA2 (BRCA1/2) via tumor-only profiling, then determined the germline testing outcomes for those patients. Methods A retrospective chart review was performed to identify patients with BRCA1/2 variants on tumor-only genomic profiling, and whether they had germline testing. Results This study found that of 2923 patients with 36 tumor types who underwent tumor-only testing, 554 had a variant in BRCA1/2 (19.0%); 119 of the 554 patients (21.5%) had a P/LP BRCA1/2 variant, representing 4.1% of the overall population who underwent genomic profiling. Seventy-three (61.3%) of 119 patients with BRCA1/2 P/LPV on tumor-only testing did not undergo germline testing, 34 (28.6%) had already had germline testing before tumor-only testing, and 12 (10.1%) underwent germline testing after tumor-only testing. Twenty-eight germline BRCA1/2 P/LPVs were detected, 24 in those who had prior germline testing, and 4 among the 12 patients who had germline testing after tumor-only testing. Conclusion Tumor-only testing is likely to identify P/LPVs in BRCA1/2. Efforts to improve follow-up germline testing is needed to improve identification of germline BRCA1/2 alterations.
Collapse
Affiliation(s)
- Carol J. Nowlen
- The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Molly Daniels
- Department of Clinical Cancer Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Burak Uzunparmak
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ecaterina E. Ileana Dumbrava
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ying Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keyur P. Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nadine Rayes
- Department of Clinical Cancer Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jacqueline Harkenrider
- Department of Obstetrics, Gynecology, and Reproductive Sciences, The University of Texas Health Science Center at Houston John P. and Katherine G. McGovern Medical School, Houston, TX, USA
| | - Chetna Wathoo
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer Veazie
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Krystle A. Luna
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wanlin Wang
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chacha Horombe
- Department of Enterprise Development & Integration, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jordi Rodon Ahnert
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy A. Yap
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Banu Arun
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Karen H. Lu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
16
|
Koster R, Schipper LJ, Giesbertz NAA, van Beek D, Mendeville M, Samsom KG, Rosenberg EH, Hogervorst FBL, Roepman P, Boelens MC, Bosch LJW, van den Berg JG, Meijer GA, Voest EE, Cuppen E, Ruijs MWG, van Wezel T, van der Kolk L, Monkhorst K. Impact of genetic counseling strategy on diagnostic yield and workload for genome-sequencing-based tumor diagnostics. Genet Med 2024; 26:101032. [PMID: 38006283 DOI: 10.1016/j.gim.2023.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023] Open
Abstract
PURPOSE Genome sequencing (GS) enables comprehensive molecular analysis of tumors and identification of hereditary cancer predisposition. According to guidelines, directly determining pathogenic germline variants (PGVs) requires pretest genetic counseling, which is cost-ineffective. Referral for genetic counseling based on tumor variants alone could miss relevant PGVs and/or result in unnecessary referrals. METHODS We validated GS for detection of germline variants and simulated 3 strategies using paired tumor-normal GS data of 937 metastatic patients. In strategy-1, genetic counseling before tumor testing allowed direct PGV analysis. In strategy-2 and -3, germline testing and referral for post-test genetic counseling is based on tumor variants using Dutch (strategy-2) or Europen Society for Medical Oncology (ESMO) Precision Medicine Working Group (strategy-3) guidelines. RESULTS In strategy-1, PGVs would be detected in 50 patients (number-needed-to counsel; NTC = 18.7). In strategy-2, 86 patients would have been referred for genetic counseling and 43 would have PGVs (NTC = 2). In strategy-3, 94 patients would have been referred for genetic counseling and 32 would have PGVs (NTC = 2.9). Hence, 43 and 62 patients, respectively, were unnecessarily referred based on a somatic variant. CONCLUSION Both post-tumor test counseling strategies (2 and 3) had significantly lower NTC, and strategy-2 had the highest PGV yield. Combining pre-tumor test mainstreaming and post-tumor test counseling may maximize the clinically relevant PGV yield and minimize unnecessary referrals.
Collapse
Affiliation(s)
- Roelof Koster
- The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Luuk J Schipper
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | - Kris G Samsom
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | - Paul Roepman
- Hartwig Medical Foundation, Amsterdam, The Netherlands
| | | | - Linda J W Bosch
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Gerrit A Meijer
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Emile E Voest
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Edwin Cuppen
- Hartwig Medical Foundation, Amsterdam, The Netherlands
| | | | - Tom van Wezel
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Kim Monkhorst
- The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Hayashi H, Kunimasa K, Tanishima S, Nakamura K, Ishikawa M, Kato Y, Aimono E, Kawano R, Nishihara H. Germline BRCA2 variant with low variant allele frequency detected in tumor-only comprehensive genomic profiling. Cancer Sci 2024; 115:682-686. [PMID: 38086530 PMCID: PMC10859595 DOI: 10.1111/cas.16043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 02/13/2024] Open
Abstract
Germline BRCA1/2 variants in comprehensive genomic profiling (CGP) often exhibit variant allele frequency (VAF) exceeding 50%. However, when genomic loss occurs at the ipsilateral allele, including the germline variant in tumor cells, the VAF is low. This case report presents a patient with uterine sarcoma with a pathogenic BRCA2 mutation and low VAF in tumor-only CGP, which was later identified as a germline variant. When genomic alterations in BRCA1/2 are identified in tumor-only CGP, the possible germline origin of the variants should be considered, even if their VAF is very low.
Collapse
Affiliation(s)
- Hideyuki Hayashi
- Genomics Unit, Keio Cancer CenterKeio University School of MedicineTokyoJapan
| | - Kei Kunimasa
- Department of Thoracic OncologyOsaka International Cancer InstituteOsakaJapan
| | - Shigeki Tanishima
- Department of Biomedical Informatics DevelopmentMitsubishi Electric Software Co., LtdTokyoJapan
| | - Kohei Nakamura
- Genomics Unit, Keio Cancer CenterKeio University School of MedicineTokyoJapan
| | - Marin Ishikawa
- Genomics Unit, Keio Cancer CenterKeio University School of MedicineTokyoJapan
| | - Yasutaka Kato
- Genomics Unit, Keio Cancer CenterKeio University School of MedicineTokyoJapan
| | - Eriko Aimono
- Genomics Unit, Keio Cancer CenterKeio University School of MedicineTokyoJapan
| | - Ryutaro Kawano
- Genomics Unit, Keio Cancer CenterKeio University School of MedicineTokyoJapan
| | - Hiroshi Nishihara
- Genomics Unit, Keio Cancer CenterKeio University School of MedicineTokyoJapan
| |
Collapse
|
18
|
Borges dos Reis R, Aguilar-Ponce JL, Cayol F, Jansen AM, K RM, Merino TR, Sanku G, Vaca LB, Isaacsson Velho P, Korbenfeld EP. Latin American Challenges and Recommendations for Poly Adenosine Diphosphate Ribose Polymerase Inhibitor Treatment in Metastatic Castration Resistant Prostate Cancer: An Expert Overview. Cancer Control 2024; 31:10732748241280446. [PMID: 39387315 PMCID: PMC11526293 DOI: 10.1177/10732748241280446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/21/2024] [Accepted: 08/14/2024] [Indexed: 10/15/2024] Open
Abstract
In Latin America, prostate cancer is the third most common cancer overall and the most common in men, with the highest mortality rate of all cancers. In 2022, there were approximately 22,985 new prostate cancer cases and 61,056 deaths from prostate cancer in the region. Patients with metastatic disease that is resistant to cure by castration now have multiple therapeutic options, including poly-ADP ribose polymerase inhibitors. These treatment advances present new challenges, such as developing monitoring protocols for early detection of disease progression to castration resistance. The Americas Health Foundation organized a 3-day meeting with 8 regional oncologists and pathologists to create a paper on metastatic castration-resistant prostate cancer diagnosis and therapy, including the new poly-ADP ribose polymerase inhibitors. The panel examined metastatic castration-resistant prostate cancer in Latin America and recommended ways to improve patient care using published literature and their expertise. Gene mutations play an important role in prostate cancer development. Precision medicine innovations highlight the importance of genotyping DNA variants and tumor biomarkers for targeted treatment. Access to appropriate genetic testing is difficult, medications are available but expensive, and there is a lack of infrastructure and regulatory frameworks that prevent patients from benefiting from innovative therapies. The panel recommends developing a population database and biobank and creating tumor tissue collection, processing, and storage facilities. Multi-stakeholder collaboration is needed to integrate the information gathered, train staff, select target populations, improve patient accessibility, and reduce the cost burden of drugs, genetic counselors, and cancer geneticists in Latin America. Collaboration is essential among healthcare professionals, policymakers, patient advocacy groups, pharmaceutical companies, and international organizations to address these challenges and needs in Latin America.
Collapse
Affiliation(s)
| | - José L. Aguilar-Ponce
- Department of Medica Oncology, Instituto Nacional de CancerologiaMéxico, Mexico City, Mexico
| | - Federico Cayol
- Sección de Oncología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | | | - Ray Manneh K
- Medical Oncology Research Institute, Sociedad de Oncología y Hematología del Cesar, Valledupar, Cesar, Colombia
| | - Tomas R Merino
- Departamento de Hemato Oncología, Universidad de Santiago de Chile, Santiago, Chile
| | | | - Laura B. Vaca
- Clinical Oncology, Clínica Universitaria Colombia, Clínica de Marly Bogotá, Colombia
| | - Pedro Isaacsson Velho
- Oncology, Hospital Moinhos de Vento, Porto Alegre, Brazil
- Johns Hopkins Hospital, Baltimore, MD, USA
| | | |
Collapse
|
19
|
Currey M, Solomon I, McGraw S, Shen J, Munoz F, Sosa E, Puello-Lozano V, Wing S, Lopez L, Afkhami M, LoBello J, Szelinger S, Gray SW. Preparing for the unexpected: Recommendations for returning secondary findings in late-stage cancer care. Genet Med 2024; 26:100991. [PMID: 37791544 DOI: 10.1016/j.gim.2023.100991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023] Open
Abstract
PURPOSE We conducted qualitative interviews with patients with cancer and providers to identify gaps in clinical care and highlight care delivery solutions for the return of secondary germline findings. METHODS Twelve patients and 19 cancer providers from the United States were interviewed between January 2019 and May 2021. Interviews elicited feedback about patient information needs, emotional responses to secondary findings, and recommendations for improving pre-test education. RESULTS Patients' responses ranged from gratitude to regret, depending on how much pre-test counseling they received before tumor testing. Providers cited insufficient clinic time as a major barrier to pretest education, favoring online support tools and standardized pre-test education models. Providers had differing perspectives on how pre-test education should be integrated into clinical workflows but agreed that it should include the differences between somatic and germline testing, the likelihood of medically actionable findings, and the possibility of being referred to a genetics provider. CONCLUSION The spectrum of participants' responses to their secondary findings underscores the importance of adequate pre-test discussions before somatic sequencing. Although educational interventions could address patients' information needs and augment traditional pre-test counseling, health care systems, labs, and genetic providers may be called on to play greater roles in pre-test education.
Collapse
Affiliation(s)
| | - Ilana Solomon
- Department of Population Sciences, City of Hope, Duarte, CA
| | | | - Jenny Shen
- Department of Psychology, The State University of New York at Stony Brook, Stony Brook, NY
| | | | | | | | - Sam Wing
- Intuitive Surgical, Health Economics and Outcomes Research, Sunnyvale, CA
| | - Lisa Lopez
- School of Nursing, University of Texas at Austin, Austin, TX
| | | | | | | | - Stacy W Gray
- Department Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA.
| |
Collapse
|
20
|
Veney D, Wei L, Toland AE, Presley CJ, Hampel H, Padamsee TJ, Lee CN, Irvin WJ, Bishop M, Kim J, Hovick SR, Senter L, Stover DG. A Video Intervention to Improve Patient Understanding of Tumor Genomic Testing in Patients with Cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.05.23299443. [PMID: 38106014 PMCID: PMC10723483 DOI: 10.1101/2023.12.05.23299443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Background Tumor genomic testing (TGT) has become standard-of-care for most patients with advanced/metastatic cancer. Despite established guidelines, patient education prior to TGT is variable or frequently omitted. The purpose of this study was to evaluate the impact of a concise (3-4 minute) video for patient education prior to TGT. Methods Based on a quality improvement cycle, an animated video was created to be applicable to any cancer type, incorporating culturally diverse images, available in English and Spanish. Patients undergoing standard-of care TGT were enrolled at a tertiary academic institution and completed validated survey instruments immediately prior to video viewing (T1) and immediately post-viewing (T2). Instruments included: 1) 10-question objective genomic knowledge/understanding; 2) 10-question video message-specific knowledge/recall; 3) 11-question Trust in Physician/Provider; 4) attitudes regarding TGT. The primary objective was change in outcomes from before to after the video was assessed with Wilcoxon signed rank test. Results From April 2022 to May 2023, a total of 150 participants were enrolled (MBC n=53, LC n=38, OC n=59). For the primary endpoint, there was a significant increase in video message-specific knowledge (median 10 point increase; p<0.0001) with no significant change in genomic knowledge/understanding (p=0.89) or Trust in Physician/Provider (p=0.59). Results for five questions significantly improved, including the likelihood of TGT impact on treatment decision, incidental germline findings, and cost of testing. Improvement in video message-specific knowledge was consistent across demographic groups, including age, income, and education. Individuals with less educational attainment had had greater improvement from before to after video viewing. Conclusions A concise, 3-4 minute, broadly applicable video incorporating culturally diverse images administered prior to TGT significantly improved video message-specific knowledge across all demographic groups. This resource is publicly available at http://www.tumor-testing.com, with a goal to efficiently educate and empower patients regarding TGT while addressing guidelines within the flow of clinical practice. Clinical Trial Registration ClinicalTrials.gov NCT05215769.
Collapse
Affiliation(s)
- Deloris Veney
- Division of Medical Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210 USA
| | - Lai Wei
- Department of Biomedical Informatics, Ohio State University, Columbus, OH, 43210 USA
| | - Amanda E. Toland
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210 USA
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210 USA
| | - Carolyn J. Presley
- Division of Medical Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210 USA
| | - Heather Hampel
- Division of Clinical Cancer Genomics, Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010
| | - Tasleem J. Padamsee
- Division of Health Services Management and Policy, College of Public Health, The Ohio State University, Columbus, OH, 43210, USA
| | - Clara N. Lee
- Division of Health Services Management and Policy, College of Public Health, The Ohio State University, Columbus, OH, 43210, USA
| | - William J. Irvin
- Bon Secours Cancer Institute at St. Francis, Richmond, Virginia, USA
| | | | - James Kim
- Bon Secours-Mercy Health St. Elizabeth, Youngstown, Ohio, USA
| | - Shelly R. Hovick
- School of Communication, Ohio State University, Columbus, OH, 43210 USA
| | - Leigha Senter
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210 USA
| | - Daniel G. Stover
- Division of Medical Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210 USA
- Department of Biomedical Informatics, Ohio State University, Columbus, OH, 43210 USA
- Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer, Columbus, OH, 43210 USA
| |
Collapse
|
21
|
Garcia-Casado Z, Millán-Esteban D, Manrique-Silva E, Requena C, Traves V, Nagore E. Germline cancer-related mutations detected by routine targeted NGS for tumour analysis: A series of 357 melanoma patients. J Eur Acad Dermatol Venereol 2023; 37:e1384-e1387. [PMID: 37422710 DOI: 10.1111/jdv.19323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Affiliation(s)
- Z Garcia-Casado
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, Valencia, Spain
| | - D Millán-Esteban
- School of Medicine, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - E Manrique-Silva
- Department of Dermatology, Fundación Instituto Valenciano de Oncología, Valencia, Spain
| | - C Requena
- Department of Dermatology, Fundación Instituto Valenciano de Oncología, Valencia, Spain
| | - V Traves
- Department of Pathological Anatomy, Fundación Instituto Valenciano de Oncología, Valencia, Spain
| | - E Nagore
- School of Medicine, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
- Department of Dermatology, Fundación Instituto Valenciano de Oncología, Valencia, Spain
| |
Collapse
|
22
|
Satake T, Kondo S, Tanabe N, Mizuno T, Katsuya Y, Sato J, Koyama T, Yoshida T, Hirata M, Yamamoto N. Pathogenic Germline Variants in BRCA1/2 and p53 Identified by Real-world Comprehensive Cancer Genome Profiling Tests in Asian Patients. CANCER RESEARCH COMMUNICATIONS 2023; 3:2302-2311. [PMID: 37916805 PMCID: PMC10644847 DOI: 10.1158/2767-9764.crc-23-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/05/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
Cancer genome profiling (CGP) occasionally identifies pathogenic germline variants (PGV) in cancer susceptibility genes (CSG) as secondary findings. Here, we analyzed the prevalence and clinical characteristics of PGVs based on nationwide real-world data from CGP tests in Japan. We analyzed the genomic information and clinical characteristics of 23,928 patients with solid cancers who underwent either tumor-only (n = 20,189) or paired tumor-normal (n = 3,739) sequencing CGP tests between June 2019 and December 2021 using the comprehensive national database. We assigned clinical significance for all variants and highlighted the prevalence and characteristics of PGVs. Our primary analysis of the tumor-normal sequencing cohort revealed that 152 patients (4.1%) harbored PGVs in 15 CSGs. Among 783 germline variants, 113 were annotated as PGVs, 70 as benign variants, and 600 as variants of uncertain significance. The number of PGVs identified was highest in BRCA1/2, with 56, followed by TP53, with 18. PGVs were the most prevalent in ovarian and peritoneal cancers, including among cancer types common in Asia. In the tumor-only sequencing cohort, of the 5,184 pathogenic somatic variants across 26 CSGs, 784 (15.1%) were extracted according to the European Society for Medical Oncology recommendations for germline-focused tumor analysis. The prevalence of PGVs was similar to that previously reported in Europe and the United States. This is the largest analysis based on real-world tumor-normal sequencing tests in Asia. The more widespread use of the tumor-normal sequencing CGP test could be reasonable for evaluating PGVs. SIGNIFICANCE We analyzed real-world data from over 23,000 patients in Japan, revealing 4.1% harbored PGVs, particularly in BRCA1/2 and TP53, in CSGs. It highlights the prevalence of PGVs in Asian populations and supports the broader adoption of tumor-normal sequencing CGP tests for PGV evaluation.
Collapse
Affiliation(s)
- Tomoyuki Satake
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shunsuke Kondo
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
- Outpatient Treatment Center, National Cancer Center Hospital, Tokyo, Japan
| | - Noriko Tanabe
- Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
| | - Takaaki Mizuno
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Yuki Katsuya
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Jun Sato
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Takafumi Koyama
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Tatsuya Yoshida
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Makoto Hirata
- Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
| | - Noboru Yamamoto
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
23
|
Grandjean B, Scherz A, Rabaglio M. Eleven Years of Oncogenetic Consultations in a Swiss Center: Patient and Testing Characteristics. Appl Clin Genet 2023; 16:205-213. [PMID: 37965626 PMCID: PMC10642386 DOI: 10.2147/tacg.s410261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Oncogenetic counseling has been provided at the University Hospital of Bern since 2004. Since the public announcement by Ms. Angelina Jolie in 2013 that she had undergone bilateral prophylactic mastectomy, other oncogenetic centers have reported an increase in consultations. We conducted a retrospective review of the oncogenetic consultations at our center to evaluate the presence and the consequences of a potential "Angelina Jolie effect" and to characterize this patient population over a decade. Methods All initial oncogenetic consultations between 2005 and 2015 were collected, using electronic records. Demographics, cancer type, testing, and mutation results, as well as consultation rates, were recorded. The yearly trends were analyzed using Joinpoint regression analysis (JPA). Results In total, 823 patient cases were included, mostly women (84%), half of them with a positive personal cancer history. A hereditary breast and ovarian cancer (HBOC) risk was the main reason for consultation (72%). Moreover, 22% of patients had a previously detected familial mutation. Two-thirds underwent testing, which yielded a positive test result in 31% of the cases. According to JPA, the consultation rate increased throughout the decade, with a significant upward trend from 2013. Rates of testing and positive results remained stable over time. Most patients (86%) fulfilled the referral criteria of published guidelines. Discussion At our center, we found retrospectively a disproportionate growth in the referral rate for HBOC cases compared to other oncological cases after the year 2013, but overall, no change in testing rates was detected.
Collapse
Affiliation(s)
- Bastien Grandjean
- Department of Medical Oncology, Inselspital University Hospital, Bern, Switzerland
| | - Amina Scherz
- Department of Medical Oncology, Inselspital University Hospital, Bern, Switzerland
| | - Manuela Rabaglio
- Department of Medical Oncology, Inselspital University Hospital, Bern, Switzerland
| |
Collapse
|
24
|
Stout LA, Hunter C, Schroeder C, Kassem N, Schneider BP. Clinically significant germline pathogenic variants are missed by tumor genomic sequencing. NPJ Genom Med 2023; 8:30. [PMID: 37833309 PMCID: PMC10575977 DOI: 10.1038/s41525-023-00374-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
A germline pathogenic variant may be present even if the results of tumor genomic sequencing do not suggest one. There are key differences in the assay design and reporting of variants between germline and somatic laboratories. When appropriate, both tests should be completed to aid in therapy decisions and determining optimal screening and risk-reduction interventions.
Collapse
Affiliation(s)
- Leigh Anne Stout
- Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Health Precision Genomics, Indianapolis, IN, USA
| | - Cynthia Hunter
- Indiana University Health Precision Genomics, Indianapolis, IN, USA
| | | | - Nawal Kassem
- Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Health Precision Genomics, Indianapolis, IN, USA
| | - Bryan P Schneider
- Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana University Health Precision Genomics, Indianapolis, IN, USA.
| |
Collapse
|
25
|
Yang L, Xiao Y, Ren S. Identification of common genetic features and pathways involved in pulmonary lymphangioleiomyomatosis and ER-positive breast cancer. Medicine (Baltimore) 2023; 102:e34810. [PMID: 37773865 PMCID: PMC10545372 DOI: 10.1097/md.0000000000034810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/27/2023] [Indexed: 10/01/2023] Open
Abstract
Accumulating evidence suggests that patients with pulmonary lymphangioleiomyomatosis (PLAM) have a markedly higher prevalence of breast cancer (BC) than the general population. However, the underlying pathophysiological mechanisms remain unclear. Therefore, in this study, we employed a bioinformatics approach to understand the association between PLAM and estrogen receptor (ER)-positive BC. The PLAM (GSE12027) and ER-positive BC (GSE42568, GSE29044, and GSE29431) datasets were obtained from the Gene Expression Omnibus database, and GEO2R was used to identify common differentially expressed genes (DEGs) between them. Functional annotation was performed, and a protein-protein interaction (PPI) network was constructed. Hub genes were identified and verified using western blotting and immunohistochemistry. We conducted an immune infiltration analysis; based on the results, selected 102 common DEGs for follow-up analysis. Functional analyses revealed that the DEGs were mostly enriched in cell proliferation, gene expression regulation, and tumor-related pathways. Four hub genes-ESR1, IL6, PLA2G4A, and CAV1-were further analyzed, and CAV1 was revealed to be associated with clinical outcomes and immune infiltration in ER-positive BC. This study proposes a common, possible pathogenesis of PLAM and ER-positive BC. These common pathways and pivotal genes may provide new directions for further mechanistic studies.
Collapse
Affiliation(s)
- Lulu Yang
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying Xiao
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Siying Ren
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
26
|
Hao S, Zhao X, Fan Y, Liu Z, Zhang X, Li W, Yuan H, Zhang J, Zhang Y, Ma T, Tao H. Prevalence and spectrum of cancer predisposition germline mutations in young patients with the common late-onset cancers. Cancer Med 2023; 12:18394-18404. [PMID: 37610374 PMCID: PMC10524041 DOI: 10.1002/cam4.6445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/30/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Pathogenic germline variants (PGVs) can play a vital role in the oncogenesis process in carriers. Previous studies have recognized that PGVs contribute to early onset of tumorigenesis in certain cancer types, for example, colorectal cancer and breast cancer. However, the reported prevalence data of cancer-associated PGVs were highly inconsistent due to nonuniform patient cohorts, sequencing methods, and prominent difficulties in pathogenicity interpretation of variants. In addition to the above difficulties, due to the rarity of cases, the prevalence of cancer PGV carriers in young cancer patients affected by late-onset cancer types has not been comprehensively evaluated to date. METHODS A total of 131 young cancer patients (1-29 years old at diagnosis) were enrolled in this study. The patients were affected by six common late-onset cancer types, namely, lung cancer, liver cancer, colorectal cancer, gastric cancer, renal cancer, and head-neck cancer. Cancer PGVs were identified and analyzed. based on NGS-based targeted sequencing followed by bioinformatic screening and strict further evaluations of variant pathogenicity. RESULTS Twenty-three cancer PGVs in 21 patients were identified, resulting in an overall PGV prevalence of 16.0% across the six included cancer types, which was approximately double the prevalence reported in a previous pancancer study. Nine of the 23 PGVs are novel, thus expanding the cancer PGV spectrum. Seven of the 23 (30.4%) PGVs are potential therapeutic targets of olaparib, with potential implications for clinical manipulation. Additionally, a small prevalence of somatic mutations of some classic cancer hallmark genes in young patients, in contrast to all-age patients, was revealed. CONCLUSION This study demonstrates the high prevalence of PGVs in young cancer patients with the common late-onset cancers and the potentially significant clinical implications of cancer PGVs, the findings highlight the value of PGV screening in young patients across lung cancer, liver cancer, colorectal cancer, gastric cancer, renal cancer, or head-neck cancer.
Collapse
Affiliation(s)
- Shaoyu Hao
- Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Ximeng Zhao
- Jichenjunchuang Clinical LaboratoryHangzhouChina
| | - Yue Fan
- Department of Integrated Traditional Chinese Medicine and Western MedicineZhong Shan Hospital, Fudan UniversityShanghaiChina
| | - Zhengchuang Liu
- Key Laboratory of Gastroenterology of Zhejiang ProvinceZhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Xiang Zhang
- Jichenjunchuang Clinical LaboratoryHangzhouChina
| | - Wei Li
- Jichenjunchuang Clinical LaboratoryHangzhouChina
| | | | - Jie Zhang
- Jichenjunchuang Clinical LaboratoryHangzhouChina
| | | | - Tonghui Ma
- Jichenjunchuang Clinical LaboratoryHangzhouChina
| | - Houquan Tao
- Key Laboratory of Gastroenterology of Zhejiang ProvinceZhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical CollegeHangzhouChina
- Department of GastroenterologyZhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical CollegeHangzhouChina
| |
Collapse
|
27
|
Tung N, Dougherty KC, Gatof ES, DeLeonardis K, Hogan L, Tukachinsky H, Gornstein E, Oxnard GR, McGregor K, Keller RB. Potential pathogenic germline variant reporting from tumor comprehensive genomic profiling complements classic approaches to germline testing. NPJ Precis Oncol 2023; 7:76. [PMID: 37568048 PMCID: PMC10421918 DOI: 10.1038/s41698-023-00429-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Existing guidance regarding clinically informed germline testing for patients with cancer is effective for evaluation of classic hereditary cancer syndromes and established gene/cancer type associations. However, current screening methods may miss patients with rare, reduced penetrance, or otherwise occult hereditary risk. Secondary finding of suspected germline variants that may confer inherited cancer risk via tumor comprehensive genomic profiling (CGP) has the potential to help address these limitations. However, reporting practices for secondary finding of germline variants are inconsistent, necessitating solutions for transparent and coherent communication of these potentially important findings. A workflow for improved confidence detection and clear reporting of potential pathogenic germline variants (PPGV) in select cancer susceptibility genes (CSG) was applied to a research dataset from real-world clinical tumor CGP of > 125,000 patients with advanced cancer. The presence and patterns of PPGVs identified across tumor types was assessed with a focus on scenarios in which traditional clinical germline evaluation may have been insufficient to capture genetic risk. PPGVs were identified in 9.7% of tumor CGP cases using tissue- and liquid-based assays across a broad range of cancer types, including in a number of "off-tumor" contexts. Overall, PPGVs were identified in a similar proportion of cancers with National Comprehensive Cancer Network (NCCN) recommendations for germline testing regardless of family history (11%) as in all other cancer types (9%). These findings suggest that tumor CGP can serve as a tool that is complementary to traditional germline genetic evaluation in helping to ascertain inherited susceptibility in patients with advanced cancer.
Collapse
Affiliation(s)
- Nadine Tung
- Department of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Emily Stern Gatof
- Department of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Kim DeLeonardis
- Department of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Lauren Hogan
- Department of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
28
|
Santini D, Botticelli A, Galvano A, Iuliani M, Incorvaia L, Gristina V, Taffon C, Foderaro S, Paccagnella E, Simonetti S, Fazio F, Scagnoli S, Pomati G, Pantano F, Perrone G, De Falco E, Russo A, Spinelli GP. Network approach in liquidomics landscape. J Exp Clin Cancer Res 2023; 42:193. [PMID: 37542343 PMCID: PMC10401883 DOI: 10.1186/s13046-023-02743-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/27/2023] [Indexed: 08/06/2023] Open
Abstract
Tissue-based biopsy is the present main tool to explore the molecular landscape of cancer, but it also has many limits to be frequently executed, being too invasive with the risk of side effects. These limits and the ability of cancer to constantly evolve its genomic profile, have recently led to the need of a less invasive and more accurate alternative, such as liquid biopsy. By searching Circulating Tumor Cells and residues of their nucleic acids or other tumor products in body fluids, especially in blood, but also in urine, stools and saliva, liquid biopsy is becoming the future of clinical oncology. Despite the current lack of a standardization for its workflows, that makes it hard to be reproduced, liquid biopsy has already obtained promising results for cancer screening, diagnosis, prognosis, and risk of recurrence.Through a more accessible molecular profiling of tumors, it could become easier to identify biomarkers predictive of response to treatment, such as EGFR mutations in non-small cell lung cancer and KRAS mutations in colorectal cancer, or Microsatellite Instability and Mismatch Repair as predictive markers of pembrolizumab response.By monitoring circulating tumor DNA in longitudinal repeated sampling of blood we could also predict Minimal Residual Disease and the risk of recurrence in already radically resected patients.In this review we will discuss about the current knowledge of limitations and strengths of the different forms of liquid biopsies for its inclusion in normal cancer management, with a brief nod to their newest biomarkers and its future implications.
Collapse
Affiliation(s)
- Daniele Santini
- Oncologia Medica A, Policlinico Umberto 1, La Sapienza Università Di Roma, Rome, Italy
| | - Andrea Botticelli
- Oncologia Medica A, Policlinico Umberto 1, La Sapienza Università Di Roma, Rome, Italy
| | - Antonio Galvano
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Michele Iuliani
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Selcetta, Italy
| | - Lorena Incorvaia
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Valerio Gristina
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Chiara Taffon
- Anatomical Pathology Operative Research Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Department of Medicine and Surgery, Research Unit of Anatomical Pathology, Università Campus Bio-Medico Di Roma, Rome, Italy
| | - Simone Foderaro
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Selcetta, Italy
| | - Elisa Paccagnella
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.So Della Repubblica 79, 04100, Latina, Italy
| | - Sonia Simonetti
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Selcetta, Italy
| | - Federico Fazio
- UOC Oncologia Territoriale, Polo Pontino, La Sapienza Università Di Roma, Latina, Italy.
| | - Simone Scagnoli
- Oncologia Medica A, Policlinico Umberto 1, La Sapienza Università Di Roma, Rome, Italy
| | | | - Francesco Pantano
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Selcetta, Italy
| | - Giuseppe Perrone
- Anatomical Pathology Operative Research Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Department of Medicine and Surgery, Research Unit of Anatomical Pathology, Università Campus Bio-Medico Di Roma, Rome, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.So Della Repubblica 79, 04100, Latina, Italy
- Mediterranea Cardiocentro, 80122, Naples, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Gian Paolo Spinelli
- UOC Oncologia Territoriale, Polo Pontino, La Sapienza Università Di Roma, Latina, Italy
| |
Collapse
|
29
|
An J, Oh JH, Oh B, Oh YJ, Ju JS, Kim W, Kang HJ, Sung CO, Shim JH. Clinicogenomic characteristics and synthetic lethal implications of germline homologous recombination-deficient hepatocellular carcinoma. Hepatology 2023; 78:452-467. [PMID: 36177702 DOI: 10.1002/hep.32812] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUNDS AND AIMS We performed an in-depth examination of pathogenic germline variants (PGVs) and somatic variants in DNA damage response (DDR) genes in hepatocellular carcinoma (HCC) to explore their clinical and genomic impacts. APPROACH AND RESULTS We used a merged whole-exome or RNA sequencing data set derived from in-house ( n = 230) and The Cancer Genome Atlas ( n = 362) databases of multiethnic HCC samples. We also evaluated synthetic lethal approaches targeting mutations in homologous recombination (HR) genes using HCC cells selected from five genomic databases of cancer cell lines. A total of 110 PGVs in DDR pathways in 96 patients were selected. Of the PGV carriers, 44 were HR-altered and found to be independently associated with poorer disease-free survival after hepatectomy. The most frequently altered HR gene in both germline and somatic tissues was POLQ , and this variant was detected in 22.7% (10/44) and 23.8% (5/21) of all the corresponding carriers, respectively. PGVs in HR were significantly associated with upregulation of proliferation and replication-related genes and familial risk of HCC. Samples harboring PGVs in HR with loss of heterozygosity were most strongly correlated with the genomic footprints of deficient HR, such as mutation burden and denovoSig2 (analogous to Catalogue of Somatic Mutations in Cancer [COSMIC] 3), and poor outcome. Pharmacologic experiments with HCC cells defective in BRCA2 or POLQ suggested that tumors with this phenotype are synthetic lethal with poly(ADP-ribose) polymerase inhibitors. CONCLUSIONS Our findings suggest that germline HR defects in HCC tend to confer a poor prognosis and result in distinctive genomic scarring. Tests of the clinical benefits of HR-directed treatments in the affected patients are needed.
Collapse
Affiliation(s)
- Jihyun An
- Gastroenterology and Hepatology , Hanyang University College of Medicine , Guri , Republic of Korea
| | - Ji-Hye Oh
- Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine , Seoul , Republic of Korea
| | - Bora Oh
- Asan Institute for Life Science, Asan Medical Center , Seoul , Republic of Korea
| | - Yoo-Jin Oh
- Asan Institute for Life Science, Asan Medical Center , Seoul , Republic of Korea
| | - Jin-Sung Ju
- Asan Institute for Life Science, Asan Medical Center , Seoul , Republic of Korea
| | - Wonkyung Kim
- Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine , Seoul , Republic of Korea
| | - Hyo Jung Kang
- Pathology, Asan Medical Center , University of Ulsan College of Medicine , Seoul , Republic of Korea
- Asan Liver Center, Asan Medical Center , University of Ulsan College of Medicine , Seoul , South Korea
| | - Chang Ohk Sung
- Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine , Seoul , Republic of Korea
- Pathology, Asan Medical Center , University of Ulsan College of Medicine , Seoul , Republic of Korea
- Center for Cancer Genome Discovery , Asan Institute for Life Science, University of Ulsan College of Medicine, Asan Medical Center , Seoul , Republic of Korea
| | - Ju Hyun Shim
- Asan Liver Center, Asan Medical Center , University of Ulsan College of Medicine , Seoul , South Korea
- Gastroenterology, Asan Medical Center , University of Ulsan College of Medicine , Seoul , Republic of Korea
- Digestive Diseases Research Center , University of Ulsan College of Medicine , Seoul , Republic of Korea
| |
Collapse
|
30
|
Mitchell OD, Gilliam K, del Gaudio D, McNeely KE, Smith S, Acevedo M, Gaduraju M, Hodge R, Ramsland ASS, Segal J, Das S, Hathaway F, Bryan DS, Tawde S, Galasinski S, Wang P, Tjota MY, Husain AN, Armato SG, Donington J, Ferguson MK, Turaga K, Churpek JE, Kindler HL, Drazer MW. Germline Variants Incidentally Detected via Tumor-Only Genomic Profiling of Patients With Mesothelioma. JAMA Netw Open 2023; 6:e2327351. [PMID: 37556141 PMCID: PMC10413174 DOI: 10.1001/jamanetworkopen.2023.27351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/08/2023] [Indexed: 08/10/2023] Open
Abstract
IMPORTANCE Patients with mesothelioma often have next-generation sequencing (NGS) of their tumor performed; tumor-only NGS may incidentally identify germline pathogenic or likely pathogenic (P/LP) variants despite not being designed for this purpose. It is unknown how frequently patients with mesothelioma have germline P/LP variants incidentally detected via tumor-only NGS. OBJECTIVE To determine the prevalence of incidental germline P/LP variants detected via tumor-only NGS of mesothelioma. DESIGN, SETTING, AND PARTICIPANTS A series of 161 unrelated patients with mesothelioma from a high-volume mesothelioma program had tumor-only and germline NGS performed during April 2016 to October 2021. Follow-up ranged from 18 months to 7 years. Tumor and germline assays were compared to determine which P/LP variants identified via tumor-only NGS were of germline origin. Data were analyzed from January to March 2023. MAIN OUTCOMES AND MEASURES The proportion of patients with mesothelioma who had P/LP germline variants incidentally detected via tumor-only NGS. RESULTS Of 161 patients with mesothelioma, 105 were male (65%), the mean (SD) age was 64.7 (11.2) years, and 156 patients (97%) self-identified as non-Hispanic White. Most (126 patients [78%]) had at least 1 potentially incidental P/LP germline variant. The positive predictive value of a potentially incidental germline P/LP variant on tumor-only NGS was 20%. Overall, 26 patients (16%) carried a P/LP germline variant. Germline P/LP variants were identified in ATM, ATR, BAP1, CHEK2, DDX41, FANCM, HAX1, MRE11A, MSH6, MUTYH, NF1, SAMD9L, and TMEM127. CONCLUSIONS AND RELEVANCE In this case series of 161 patients with mesothelioma, 16% had confirmed germline P/LP variants. Given the implications of a hereditary cancer syndrome diagnosis for preventive care and familial counseling, clinical approaches for addressing incidental P/LP germline variants in tumor-only NGS are needed. Tumor-only sequencing should not replace dedicated germline testing. Universal germline testing is likely needed for patients with mesothelioma.
Collapse
Affiliation(s)
- Owen D. Mitchell
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Illinois
| | - Katie Gilliam
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Illinois
| | | | - Kelsey E. McNeely
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Illinois
| | - Shaili Smith
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Illinois
| | - Maria Acevedo
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Illinois
| | - Meghana Gaduraju
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Illinois
| | - Rachel Hodge
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Illinois
| | | | - Jeremy Segal
- Department of Pathology, The University of Chicago, Illinois
| | - Soma Das
- Department of Human Genetics, The University of Chicago, Illinois
| | - Feighanne Hathaway
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Illinois
| | | | - Sanjukta Tawde
- Department of Human Genetics, The University of Chicago, Illinois
| | | | - Peng Wang
- Department of Pathology, The University of Chicago, Illinois
| | | | - Aliya N. Husain
- Department of Pathology, The University of Chicago, Illinois
| | | | | | | | - Kiran Turaga
- Department of Surgery, The University of Chicago, Illinois
| | - Jane E. Churpek
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin, Madison
| | - Hedy L. Kindler
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Illinois
| | - Michael W. Drazer
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Illinois
| |
Collapse
|
31
|
Yap TA, Stadler ZK, Stout LA, Schneider BP. Aligning Germline Cancer Predisposition With Tumor-Based Next-Generation Sequencing for Modern Oncology Diagnosis, Interception, and Therapeutic Development. Am Soc Clin Oncol Educ Book 2023; 43:e390738. [PMID: 37390373 DOI: 10.1200/edbk_390738] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
In the era of precision medicine, genomic interrogation for identification of both germline and somatic genetic alterations has become increasingly important. While such germline testing was usually undertaken via a phenotype-driven single-gene approach, with the advent of next-generation sequencing (NGS) technologies, the widespread utilization of multigene panels, often agnostic of cancer phenotype, has become a commonplace in many different cancer types. At the same time, somatic tumor testing in oncology performed for the purpose of guiding therapeutic decisions for targeted therapies has also rapidly expanded, recently starting to incorporate not just patients with recurrent or metastatic cancer but even patients with early-stage disease. An integrated approach may be the best approach for the optimal management of patients with different cancers. The lack of complete congruence between germline and somatic NGS tests does not minimize the power or importance of either, but highlights the need to understand their limitations so as not to overlook an important finding or omission. NGS tests built to more uniformly and comprehensively evaluate both the germline and tumor simultaneously are urgently required and are in development. In this article, we discuss approaches to somatic and germline analyses in patients with cancer and the knowledge gained from integration of tumor-normal sequencing. We also detail strategies for the incorporation of genomic analysis into oncology care delivery models and the important emergence of poly(ADP-ribose) polymerase and other DNA Damage Response inhibitors in the clinic for patients with cancer with germline and somatic BRCA1 and BRCA2 mutations.
Collapse
Affiliation(s)
- Timothy A Yap
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Leigh Anne Stout
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN
| | - Bryan P Schneider
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN
| |
Collapse
|
32
|
Yoshida T, Yatabe Y, Kato K, Ishii G, Hamada A, Mano H, Sunami K, Yamamoto N, Kohno T. The evolution of cancer genomic medicine in Japan and the role of the National Cancer Center Japan. Cancer Biol Med 2023; 21:j.issn.2095-3941.2023.0036. [PMID: 37133223 PMCID: PMC10875288 DOI: 10.20892/j.issn.2095-3941.2023.0036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/10/2023] [Indexed: 05/04/2023] Open
Abstract
The journey to implement cancer genomic medicine (CGM) in oncology practice began in the 1980s, which is considered the dawn of genetic and genomic cancer research. At the time, a variety of activating oncogenic alterations and their functional significance were unveiled in cancer cells, which led to the development of molecular targeted therapies in the 2000s and beyond. Although CGM is still a relatively new discipline and it is difficult to predict to what extent CGM will benefit the diverse pool of cancer patients, the National Cancer Center (NCC) of Japan has already contributed considerably to CGM advancement for the conquest of cancer. Looking back at these past achievements of the NCC, we predict that the future of CGM will involve the following: 1) A biobank of paired cancerous and non-cancerous tissues and cells from various cancer types and stages will be developed. The quantity and quality of these samples will be compatible with omics analyses. All biobank samples will be linked to longitudinal clinical information. 2) New technologies, such as whole-genome sequencing and artificial intelligence, will be introduced and new bioresources for functional and pharmacologic analyses (e.g., a patient-derived xenograft library) will be systematically deployed. 3) Fast and bidirectional translational research (bench-to-bedside and bedside-to-bench) performed by basic researchers and clinical investigators, preferably working alongside each other at the same institution, will be implemented; 4) Close collaborations between academia, industry, regulatory bodies, and funding agencies will be established. 5) There will be an investment in the other branch of CGM, personalized preventive medicine, based on the individual's genetic predisposition to cancer.
Collapse
Affiliation(s)
- Teruhiko Yoshida
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Ken Kato
- Clinical Research Support Office, Clinical Research Coordinating Section, Biobank Translational Research Support Section, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Genichiro Ishii
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Chiba 277-8577, Japan
| | - Akinobu Hamada
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Hiroyuki Mano
- National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Kuniko Sunami
- Department of Laboratory Medicine, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Noboru Yamamoto
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| |
Collapse
|
33
|
McGee RB, Oak N, Harrison L, Xu K, Nuccio R, Blake AK, Mostafavi R, Lewis S, Taylor LM, Kubal M, Ouma A, Hines-Dowell SJ, Cheng C, Furtado LV, Nichols KE. Pathogenic Variants in Adult-Onset Cancer Predisposition Genes in Pediatric Cancer: Prevalence and Impact on Tumor Molecular Features and Clinical Management. Clin Cancer Res 2023; 29:1243-1251. [PMID: 36693186 PMCID: PMC10642481 DOI: 10.1158/1078-0432.ccr-22-2482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/09/2022] [Accepted: 01/23/2023] [Indexed: 01/25/2023]
Abstract
PURPOSE Clinical genomic sequencing of pediatric tumors is increasingly uncovering pathogenic variants in adult-onset cancer predisposition genes (aoCPG). Nevertheless, it remains poorly understood how often aoCPG variants are of germline origin and whether they influence tumor molecular profiles and/or clinical care. In this study, we examined the prevalence, spectrum, and impacts of aoCPG variants on tumor genomic features and patient management at our institution. EXPERIMENTAL DESIGN This is a retrospective study of 1,018 children with cancer who underwent clinical genomic sequencing of their tumors. Tumor genomic data were queried for pathogenic variants affecting 24 preselected aoCPGs. Available tumor whole-genome sequencing (WGS) data were evaluated for second hit mutations, loss of heterozygosity (LOH), DNA mutational signatures, and homologous recombination deficiency (HRD). Patients whose tumors harbored one or more pathogenic aoCPG variants underwent subsequent germline testing based on hereditary cancer evaluation and family or provider preference. RESULTS Thirty-three patients (3%) had tumors harboring pathogenic variants affecting one or more aoCPGs. Among 21 tumors with sufficient WGS sequencing data, six (29%) harbored a second hit or LOH affecting the remaining aoCPG allele with four of these six tumors (67%) also exhibiting a DNA mutational signature consistent with the altered aoCPG. Two additional tumors demonstrated HRD, of uncertain relation to the identified aoCPG variant. Twenty-one of 26 patients (81%) completing germline testing were positive for the aoCPG variant in the germline. All germline-positive patients were counseled regarding future cancer risks, surveillance, and risk-reducing measures. No patients had immediate cancer therapy changed due to aoCPG data. CONCLUSIONS AoCPG variants are rare in pediatric tumors; however, many originate in the germline. Almost one third of tumor aoCPG variants examined exhibited a second hit and/or conferred an abnormal DNA mutational profile suggesting a role in tumor formation. aoCPG information aids in cancer risk prediction but is not commonly used to alter the treatment of pediatric cancers.
Collapse
Affiliation(s)
- Rose B. McGee
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Ninad Oak
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Lynn Harrison
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Ke Xu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Regina Nuccio
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Alise K. Blake
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Roya Mostafavi
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Sara Lewis
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Leslie M. Taylor
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Manish Kubal
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Annastasia Ouma
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | | | - Cheng Cheng
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Larissa V. Furtado
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Kim E. Nichols
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| |
Collapse
|
34
|
Hoffman TL, Kershberg H, Goff J, Holmquist KJ, Haque R, Alvarado M. Next-generation universal hereditary cancer screening: implementation of an automated hereditary cancer screening program for patients with advanced cancer undergoing tumor sequencing in a large HMO. Fam Cancer 2023; 22:225-235. [PMID: 36261688 PMCID: PMC10020326 DOI: 10.1007/s10689-022-00317-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022]
Abstract
Variants in hereditary cancer risk genes are frequently identified following tumor-based DNA sequencing and represent an opportunity to diagnose hereditary cancer. We implemented an automated hereditary cancer screening program in a large HMO for all patients who underwent tumor-based DNA sequencing to identify patients with hereditary cancer and determine if this approach augmented existing genetic counseling approaches driven by personal/family history criteria. Regular automated searches of a centralized tumor DNA variant database were performed for ATM, BRCA1, BRCA2, MLH1, MSH2, MSH6, PALB2, and/or PMS2 variants, and germline hereditary cancer gene panel testing was offered to patients with tumor variants who had never undergone germline testing. Patients completing germline testing due to their tumor DNA test results were considered part of the tumor DNA safety net. Patients previously completing germline testing via traditional genetic counseling and tumor DNA safety net were compared for demographics, tumor type, presence of germline pathogenic/likely pathogenic (P/LP) variant, and whether NCCN criteria were met for hereditary cancer genetic testing. Germline P/LP variants were common in both groups. Patients who received germline testing through traditional genetic counseling were more likely to have cardinal hereditary tumors than the tumor DNA safety net group. Patients identified with hereditary cancer through traditional genetic counseling were more likely to meet NCCN personal/family history criteria for germline testing than the tumor DNA safety net group (99% versus 34%). A universal tumor DNA safety net screen is an important diagnostic strategy which augments traditional genetic counseling approaches based on personal/family history.
Collapse
Affiliation(s)
- Trevor L Hoffman
- Department of Regional Genetics, Southern California Permanente Medical Group, Pasadena, CA, USA.
| | - Hilary Kershberg
- Department of Regional Genetics, Southern California Permanente Medical Group, Pasadena, CA, USA
| | - John Goff
- Department of Regional Genetics, Southern California Permanente Medical Group, Pasadena, CA, USA
| | - Kimberly J Holmquist
- Department of Research & Evaluation, Southern California Permanente Medical Group, Pasadena, CA, USA
| | - Reina Haque
- Department of Research & Evaluation, Southern California Permanente Medical Group, Pasadena, CA, USA
- Dept. of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, 91101, Pasadena, CA, USA
| | - Monica Alvarado
- Department of Regional Genetics, Southern California Permanente Medical Group, Pasadena, CA, USA
| |
Collapse
|
35
|
Karpel H, Manderski E, Pothuri B. Frequency of actionable germline pathogenic variants identified through tumor next-generation sequencing in a gynecologic cancer cohort. Int J Gynecol Cancer 2023:ijgc-2022-004142. [PMID: 36889816 DOI: 10.1136/ijgc-2022-004142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Tumor next-generation sequencing can identify potential germline pathogenic variants associated with cancer susceptibility. OBJECTIVE To describe the frequency of tumor sequencing results that met European Society of Medical Oncology (ESMO) recommendations for further germline genetic testing, and the frequency of germline variants among a cohort with gynecologic cancer. METHODS Patients with gynecologic cancer who underwent tumor sequencing between September 2019 and February 2022 in a large healthcare system in New York City were retrospectively identified. Eligible patients with suspected germline pathogenic variants on tumor sequencing were identified based on ESMO guidelines. Logistic regression was used to explore variables associated with referral and completion of germline testing. RESULTS Of 358 patients with gynecologic cancers who underwent tumor sequencing, 81 (22.6%) had ≥1 suspected germline variant according to ESMO guidelines. Of the 81 patients with qualifying tumor sequencing results, 56 (69.1%) received germline testing: 41/46 (89.1%) eligible patients with ovarian cancer and 15/33 (45.5%) with endometrial cancer. In the endometrial cancer cohort, 11/33 (33.3%) eligible patients were not referred for germline testing and the majority of these patients had tumor variants in genes commonly known to cause hereditary cancer. Of the 56 patients who underwent germline testing, 40 (71.4%) had pathogenic germline variants. In multivariable analysis, race/ethnicity other than non-Hispanic white was associated with lower odds of germline testing referral and completion (OR=0.1, 95% CI 0.01 to 0.5 and OR=0.2, 95% CI 0.04 to 0.6, respectively). CONCLUSION Given the high rate of pathogenic germline variant detection and the importance of identifying such variants for both patients and their family, it is imperative that eligible patients undergo germline testing. Additional education for providers on multidisciplinary guidelines and development of clinical pathways to ensure germline testing of suspected pathogenic variants identified on tumor sequencing is warranted, especially in light of the racial/ethnic inequity observed.
Collapse
Affiliation(s)
- Hannah Karpel
- New York University Grossman School of Medicine, New York, New York, USA
| | - Elizabeth Manderski
- Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Bhavana Pothuri
- Department of Obstetrics and Gynecology, Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| |
Collapse
|
36
|
Loboda AP, Adonin LS, Zvereva SD, Guschin DY, Korneenko TV, Telegina AV, Kondratieva OK, Frolova SE, Pestov NB, Barlev NA. BRCA Mutations-The Achilles Heel of Breast, Ovarian and Other Epithelial Cancers. Int J Mol Sci 2023; 24:ijms24054982. [PMID: 36902416 PMCID: PMC10003548 DOI: 10.3390/ijms24054982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Two related tumor suppressor genes, BRCA1 and BRCA2, attract a lot of attention from both fundamental and clinical points of view. Oncogenic hereditary mutations in these genes are firmly linked to the early onset of breast and ovarian cancers. However, the molecular mechanisms that drive extensive mutagenesis in these genes are not known. In this review, we hypothesize that one of the potential mechanisms behind this phenomenon can be mediated by Alu mobile genomic elements. Linking mutations in the BRCA1 and BRCA2 genes to the general mechanisms of genome stability and DNA repair is critical to ensure the rationalized choice of anti-cancer therapy. Accordingly, we review the literature available on the mechanisms of DNA damage repair where these proteins are involved, and how the inactivating mutations in these genes (BRCAness) can be exploited in anti-cancer therapy. We also discuss a hypothesis explaining why breast and ovarian epithelial tissues are preferentially susceptible to mutations in BRCA genes. Finally, we discuss prospective novel therapeutic approaches for treating BRCAness cancers.
Collapse
Affiliation(s)
- Anna P. Loboda
- Laboratory of Molecular Oncology, Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | | | - Svetlana D. Zvereva
- Laboratory of Molecular Oncology, Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Dmitri Y. Guschin
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | - Tatyana V. Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | | | | | | | - Nikolay B. Pestov
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, 108819 Moscow, Russia
- Correspondence: (N.B.P.); (N.A.B.)
| | - Nick A. Barlev
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, 108819 Moscow, Russia
- Institute of Cytology, Tikhoretsky ave 4, 194064 St-Petersburg, Russia
- Correspondence: (N.B.P.); (N.A.B.)
| |
Collapse
|
37
|
Prostate Cancer Genomic Testing: When Sequencing Is Not Sufficient and Germline Testing Is Necessary. Eur Urol 2023; 83:39-40. [PMID: 36208965 DOI: 10.1016/j.eururo.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022]
|
38
|
Lahiri S, Pirzadeh-Miller S, Moriarty K, Kubiliun N. Implementation of a Population-Based Cancer Family History Screening Program for Lynch Syndrome. Cancer Control 2023; 30:10732748231175011. [PMID: 37161761 DOI: 10.1177/10732748231175011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
OBJECTIVES Lynch syndrome increases risks for colorectal and other cancers. Though published Lynch syndrome cancer risk-management guidelines are effective for risk-reduction, the condition remains under-recognized. The Cancer Genetics Program at an academic medical center implemented a population-based cancer family history screening program, Detecting Unaffected Individuals with Lynch syndrome, to aid in identification of individuals with Lynch syndrome. METHODS In this retrospective cohort study, simple cancer family history screening questionnaires were used to identify those at risk for Lynch syndrome. Program navigators triaged and educated those who screened positive about hereditary cancer, and genetic counseling and testing services, offering genetic counseling if eligible. Genetic counseling was provided primarily via telephone. Genetic counselors performed hereditary cancer risk assessment and offered genetic testing via hereditary cancer panels to those eligible. Remote service delivery models via telephone genetic counseling and at-home saliva testing were used to increase access to medical genetics services. RESULTS This program screened 212,827 individuals, over half of whom were considered underserved, and identified 133 clinically actionable genetic variants associated with hereditary cancer. Of these, 47 (35%) were associated with Lynch syndrome while notably, 70 (53%) were not associated with hereditary colorectal cancer. Of 3,344 patients offered genetic counseling after initial triage, 2,441 (73%) elected to schedule the appointment and 1,775 individuals (73%) completed genetic counseling. Among underserved patients, telephone genetic counseling completion rates were significantly higher than in-person appointment completion rates (P < .05). While remote service delivery improved appointment completion rates, challenges with genetic test completion using at-home saliva sample collection kits were observed, with 242 of 1592 individuals (15%) not completing testing. CONCLUSION Population-based cancer family history screening and navigation can help identify individuals with hereditary cancer syndromes across diverse patient populations, but logistics of certain downstream service delivery models can impact outcomes.
Collapse
Affiliation(s)
- Sayoni Lahiri
- Department of Cancer Genetics, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Kelsey Moriarty
- Department of Cancer Genetics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nisa Kubiliun
- Division of Digestive and Liver Diseases, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
39
|
Truong H, Breen K, Nandakumar S, Sjoberg DD, Kemel Y, Mehta N, Lenis AT, Reisz PA, Carruthers J, Benfante N, Joseph V, Khurram A, Gopalan A, Fine SW, Reuter VE, Vickers AJ, Birsoy O, Liu Y, Walsh M, Latham A, Mandelker D, Stadler ZK, Pietzak E, Ehdaie B, Touijer KA, Laudone VP, Slovin SF, Autio KA, Danila DC, Rathkopf DE, Eastham JA, Chen Y, Morris MJ, Offit K, Solit DB, Scher HI, Abida W, Robson ME, Carlo MI. Gene-based Confirmatory Germline Testing Following Tumor-only Sequencing of Prostate Cancer. Eur Urol 2023; 83:29-38. [PMID: 36115772 PMCID: PMC10208030 DOI: 10.1016/j.eururo.2022.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Tumor-only genomic profiling is an important tool in therapeutic management of men with prostate cancer. Since clinically actionable germline variants may be reflected in tumor profiling, it is critical to identify which variants have a higher risk of being germline in origin to better counsel patients and prioritize genetic testing. OBJECTIVE To determine when variants found on tumor-only sequencing of prostate cancers should prompt confirmatory germline testing. DESIGN, SETTING, AND PARTICIPANTS Men with prostate cancer who underwent both tumor and germline sequencing at Memorial Sloan Kettering Cancer Center from January 1, 2015 to January 31, 2020 were evaluated. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Tumor and germline profiles were analyzed for pathogenic and likely pathogenic ("pathogenic") variants in 60 moderate- or high-penetrance genes associated with cancer predisposition. The germline probability (germline/germline + somatic) of a variant was calculated for each gene. Clinical and pathologic factors were analyzed as potential modifiers of germline probability. RESULTS AND LIMITATIONS Of the 1883 patients identified, 1084 (58%) had a somatic or germline pathogenic variant in one of 60 cancer susceptibility genes, and of them, 240 (22%) had at least one germline variant. Overall, the most frequent variants were in TP53, PTEN, APC, BRCA2, RB1, ATM, and CHEK2. Variants in TP53, PTEN, or RB1 were identified in 746 (40%) patients and were exclusively somatic. Variants with the highest germline probabilities were in PALB2 (69%), MITF (62%), HOXB13 (60%), CHEK2 (55%), BRCA1 (55%), and BRCA2 (47%), and the overall germline probability of a variant in any DNA damage repair gene was 40%. Limitations were that most of the men included in the cohort had metastatic disease, and different thresholds for pathogenicity exist for somatic and germline variants. CONCLUSIONS Of patients with pathogenic variants found on prostate tumor sequencing, 22% had clinically actionable germline variants, for which the germline probabilities varied widely by gene. Our results provide an evidenced-based clinical framework to prioritize referral to genetic counseling following tumor-only sequencing. PATIENT SUMMARY Patients with advanced prostate cancer are recommended to have germline genetic testing. Genetic sequencing of a patient's prostate tumor may also identify certain gene variants that are inherited. We found that patients who had variants in certain genes, such as ones that function in DNA damage repair, identified in their prostate tumor sequencing, had a high risk for having an inherited cancer syndrome.
Collapse
Affiliation(s)
- Hong Truong
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kelsey Breen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Subhiksha Nandakumar
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel D Sjoberg
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yelena Kemel
- Niehaus Center for Inherited Cancer Genomics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nikita Mehta
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew T Lenis
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Peter A Reisz
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jessica Carruthers
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicole Benfante
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vijai Joseph
- Niehaus Center for Inherited Cancer Genomics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aliya Khurram
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anuradha Gopalan
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samson W Fine
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Victor E Reuter
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew J Vickers
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ozge Birsoy
- Niehaus Center for Inherited Cancer Genomics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ying Liu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael Walsh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Niehaus Center for Inherited Cancer Genomics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alicia Latham
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Diana Mandelker
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Niehaus Center for Inherited Cancer Genomics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eugene Pietzak
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Behfar Ehdaie
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karim A Touijer
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vincent P Laudone
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Susan F Slovin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karen A Autio
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel C Danila
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dana E Rathkopf
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James A Eastham
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu Chen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael J Morris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Niehaus Center for Inherited Cancer Genomics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David B Solit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Howard I Scher
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wassim Abida
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark E Robson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Niehaus Center for Inherited Cancer Genomics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria I Carlo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Niehaus Center for Inherited Cancer Genomics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
40
|
Sorscher S. Germline Testing of Patients With Non-small Cell Lung Cancers Demonstrating Incidentally Uncovered BRCA2 Apparent Pathogenic Germline Variants. Clin Lung Cancer 2022; 23:e405-e407. [PMID: 35977876 DOI: 10.1016/j.cllc.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/17/2021] [Indexed: 01/27/2023]
Abstract
Tumor next generation sequencing (NGS) is used to interrogate nearly every non-small cell lung cancer (NSCLC) for the purpose of identifying actionable genetic alterations. Occasionally, tumor NGS also uncovers "incidental" apparent pathogenic germline variants (PGVs), with BRCA2 being among the most common of those. If germline testing confirms a BRCA2 PGV in a patient with NSCLC, therapies targeting that BRCA2 PGV might be considered, if the patient has exhausted standard NSCLC therapeutic options. Surveillance and preventive therapies for BRCA2-related cancers would be recommended or considered for that patient, as well as for family members found to carry that same BRCA2 PGV. Here, I offer my perspective related to the evidence supporting and against germline testing in patients with NSCLCs that show incidental BRCA2 apparent PGVs. I use an example to underscore how important it is to explain to patients, before tumor NGS, the possibility of uncovering an incidental PGV. I also review the myriad uncertainties related to identifying a BRCA2 PGV, when the sole indication for germline testing was the uncovering of the incidental BRCA2 apparent PGV.
Collapse
|
41
|
Somatic tumor mutations in moderate risk cancer genes: Targets for germline confirmatory testing. Cancer Genet 2022; 268-269:22-27. [PMID: 36116289 DOI: 10.1016/j.cancergen.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/11/2022] [Accepted: 09/01/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Recent changes in oncology practice guidelines indicate that mutations in cancer susceptibility genes identified on tumor genomic profiling (TGP) should prompt confirmatory germline testing. Our study aimed to determine the proportion of patients with TGP-identified mutations in moderate risk breast and ovarian cancer genes who previously would not have been considered for germline testing. METHODS From January 2013 to September 2020, 7468 adult Stanford Health Care patients underwent TGP on solid tumor samples and 166 had TGP-identified mutations in moderate risk breast and ovarian cancer susceptibility genes (ATM, BRIP1, CHEK2, PALB2, RAD51C and RAD51D). Retrospective chart reviews were performed on 160 patients. Cases were analyzed to determine eligibility for germline testing using established NCCN criteria, and somatic and germline results were compared where both were available. RESULTS Nearly half (45.3% [73/160]) of patients would not have been eligible for germline testing if not for a TGP-identified mutation in a moderate risk breast or ovarian cancer gene. Of the 64 cases that underwent germline testing, about half (51.5% [33/64]) had results that confirmed germline origin of the TGP finding. High rates of germline confirmation were found in PALB2 (100% [5/5]), ATM (40% [14/35]), CHEK2 (61.5% [8/13]), and BRIP1 (57.1% [4/7]). CONCLUSION Our study shows that the presence of TGP-identified mutations in moderate risk breast and ovarian cancer genes increases eligibility for germline testing beyond those that would be eligible based largely on personal and family history criteria alone. Additionally, results of germline testing in these newly eligible cases supports that this expanded eligibility captures individuals with hereditary cancer syndromes that would not have otherwise been identified.
Collapse
|
42
|
Ceyhan-Birsoy O, Jayakumaran G, Kemel Y, Misyura M, Aypar U, Jairam S, Yang C, Li Y, Mehta N, Maio A, Arnold A, Salo-Mullen E, Sheehan M, Syed A, Walsh M, Carlo M, Robson M, Offit K, Ladanyi M, Reis-Filho JS, Stadler ZK, Zhang L, Latham A, Zehir A, Mandelker D. Diagnostic yield and clinical relevance of expanded genetic testing for cancer patients. Genome Med 2022; 14:92. [PMID: 35971132 PMCID: PMC9377129 DOI: 10.1186/s13073-022-01101-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic testing (GT) for hereditary cancer predisposition is traditionally performed on selected genes based on established guidelines for each cancer type. Recently, expanded GT (eGT) using large hereditary cancer gene panels uncovered hereditary predisposition in a greater proportion of patients than previously anticipated. We sought to define the diagnostic yield of eGT and its clinical relevance in a broad cancer patient population over a 5-year period. METHODS A total of 17,523 cancer patients with a broad range of solid tumors, who received eGT at Memorial Sloan Kettering Cancer Center between July 2015 to April 2020, were included in the study. The patients were unselected for current GT criteria such as cancer type, age of onset, and/or family history of disease. The diagnostic yield of eGT was determined for each cancer type. For 9187 patients with five common cancer types frequently interrogated for hereditary predisposition (breast, colorectal, ovarian, pancreatic, and prostate cancer), the rate of pathogenic/likely pathogenic (P/LP) variants in genes that have been associated with each cancer type was analyzed. The clinical implications of additional findings in genes not known to be associated with a patients' cancer type were investigated. RESULTS 16.7% of patients in a broad cancer cohort had P/LP variants in hereditary cancer predisposition genes identified by eGT. The diagnostic yield of eGT in patients with breast, colorectal, ovarian, pancreatic, and prostate cancer was 17.5%, 15.3%, 24.2%, 19.4%, and 15.9%, respectively. Additionally, 8% of the patients with five common cancers had P/LP variants in genes not known to be associated with the patient's current cancer type, with 0.8% of them having such a variant that confers a high risk for another cancer type. Analysis of clinical and family histories revealed that 74% of patients with variants in genes not associated with their current cancer type but which conferred a high risk for another cancer did not meet the current GT criteria for the genes harboring these variants. One or more variants of uncertain significance were identified in 57% of the patients. CONCLUSIONS Compared to targeted testing approaches, eGT can increase the yield of detection of hereditary cancer predisposition in patients with a range of tumors, allowing opportunities for enhanced surveillance and intervention. The benefits of performing eGT should be weighed against the added number of VUSs identified with this approach.
Collapse
Affiliation(s)
- Ozge Ceyhan-Birsoy
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gowtham Jayakumaran
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yelena Kemel
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maksym Misyura
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Umut Aypar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sowmya Jairam
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ciyu Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yirong Li
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nikita Mehta
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna Maio
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Angela Arnold
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Erin Salo-Mullen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Margaret Sheehan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aijazuddin Syed
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael Walsh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Carlo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark Robson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Liying Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Present Address: Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Alicia Latham
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ahmet Zehir
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Present Address: Precision Medicine and Biosamples, Oncology R&D, AstraZeneca, New York, NY, USA.
| | - Diana Mandelker
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
43
|
Pauley K, Koptiuch C, Greenberg S, Kohlmann W, Jeter J, Colonna S, Werner T, Kinsey C, Gilcrease G, Weis J, Whisenant J, Florou V, Garrido-Laguna I. Discrepancies between tumor genomic profiling and germline genetic testing. ESMO Open 2022; 7:100526. [PMID: 35780590 PMCID: PMC9511791 DOI: 10.1016/j.esmoop.2022.100526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Tumor genomic profiling (TGP) often incidentally identifies germline pathogenic variants (PVs) associated with cancer predisposition syndromes. Methods used by somatic testing laboratories, including germline analysis, differ from designated germline laboratories that have optimized the identification of germline PVs. This study evaluated discrepancies between somatic and germline testing results, and their impact on patients. PATIENTS AND METHODS Chart reviews were carried out at a single institution for patients who had both somatic and designated germline genetic testing. Cases with discrepant results in which germline PVs were not detected by the somatic laboratory or in which variant classification differed are summarized. RESULTS TGP was carried out on 2811 cancer patients, 600 of whom also underwent designated germline genetic testing. Germline PVs were identified for 109 individuals. Discrepancies between germline genetic testing and tumor profiling reports were identified in 20 cases, including 14 PVs identified by designated germline genetic testing laboratories that were not reported by somatic testing laboratories and six variants with discrepant classifications between the designated germline and somatic testing laboratories. Three PVs identified by designated germline laboratories are targets for poly adenosine diphosphate-ribose polymerase (PARP) inhibitors and resulted in different treatment options. Of the PVs identified by designated germline laboratories, 60% (n = 12) were in genes with established associations to the patients' cancer, and 40% of the PVs were incidental. The majority (90%) of all discrepant findings, both contributory and incidental, changed management recommendations for these patients, highlighting the importance of comprehensive germline assessment. CONCLUSIONS Methods used by somatic laboratories, regardless of the inclusion of germline analysis, differ from those of designated germline laboratories for identifying germline PVs. Unrecognized germline PVs may harm patients by missing hereditary syndromes and targeted therapy opportunities (e.g. anti-programmed cell death protein 1 immunotherapy, PARP inhibitors). Clinicians should refer patients who meet the criteria for genetic evaluation regardless of somatic testing outcomes.
Collapse
Affiliation(s)
- K Pauley
- Family Cancer Assessment Clinic, Huntsman Cancer Institute, Salt Lake City, USA.
| | - C Koptiuch
- Family Cancer Assessment Clinic, Huntsman Cancer Institute, Salt Lake City, USA
| | - S Greenberg
- Family Cancer Assessment Clinic, Huntsman Cancer Institute, Salt Lake City, USA
| | - W Kohlmann
- Family Cancer Assessment Clinic, Huntsman Cancer Institute, Salt Lake City, USA
| | - J Jeter
- Department of Internal Medicine, Huntsman Cancer Institute, Salt Lake City, USA
| | - S Colonna
- Department of Internal Medicine, Huntsman Cancer Institute, Salt Lake City, USA
| | - T Werner
- Department of Internal Medicine, Huntsman Cancer Institute, Salt Lake City, USA
| | - C Kinsey
- Department of Internal Medicine, Huntsman Cancer Institute, Salt Lake City, USA
| | - G Gilcrease
- Department of Internal Medicine, Huntsman Cancer Institute, Salt Lake City, USA
| | - J Weis
- Department of Internal Medicine, Huntsman Cancer Institute, Salt Lake City, USA
| | - J Whisenant
- Department of Medical Oncology and Hematology, Utah Cancer Specialists, Salt Lake City, USA
| | - V Florou
- Department of Internal Medicine, Huntsman Cancer Institute, Salt Lake City, USA
| | - I Garrido-Laguna
- Department of Internal Medicine, Huntsman Cancer Institute, Salt Lake City, USA
| |
Collapse
|
44
|
Ceyhan-Birsoy O. Germline Testing for the Evaluation of Hereditary Cancer Predisposition. Clin Lab Med 2022; 42:497-506. [DOI: 10.1016/j.cll.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Yap TA, Ashok A, Stoll J, Mauer E, Nepomuceno VM, Blackwell KL, Garber JE, Meric-Bernstam F. Prevalence of Germline Findings Among Tumors From Cancer Types Lacking Hereditary Testing Guidelines. JAMA Netw Open 2022; 5:e2213070. [PMID: 35594047 PMCID: PMC9123503 DOI: 10.1001/jamanetworkopen.2022.13070] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
Importance Germline testing guidelines are suggested for specific disease types or a family history of cancer, yet alterations are found in cancer types in which germline testing is not routinely indicated. The clinical role of identifying germline variants in these populations is valuable to patients and their at-risk relatives. Objective To evaluate the prevalence of germline findings in patients undergoing tumor/normal matched sequencing among cancer types lacking guidelines. Design, Setting, and Participants This retrospective cross-sectional study took place on August 18, 2021, and included data from deidentified records of patients tested, using the Tempus xT tumor/normal matched approach from November 2017 to August 2021. Records included in this study were from 34 642 patients treated in geographically diverse oncology practices in the US with a diagnosis of any of the following cancers: bladder, brain, lung, esophagus, cholangiocarcinoma, head and neck, breast, ovarian, pancreatic, prostate, endometrial, and colorectal. Main Outcomes and Measures The rate of germline findings (ie, single-nucleotide variants and small insertions or deletions) detected in 50 reportable hereditary cancer genes was calculated for cancer types lacking guidelines for germline testing (bladder, brain, lung, esophagus, cholangiocarcinoma, and head and neck) and cancer types for which germline testing is frequently performed (breast, ovarian, pancreatic, prostate, endometrial, and colorectal). Same-gene second somatic hits were assessed to provide a comprehensive assessment on genomic drivers. Results Of 34 642 patients, 18 888 were female (54.5%); of 27 498 patients whose age at diagnosis was known, mean (SD) age was 62.23 (3.36) years. A total of 2534 of 34 642 patients (7.3%) harbored pathogenic or likely pathogenic germline variants. Within the tumor types lacking testing guidelines, germline mutations were at 6.6% (79/1188) in bladder cancer and 5.8% (448/7668) in lung cancer. Conclusions and Relevance This study may present the largest retrospective analysis to date of deidentified real-world data from patients diagnosed with advanced cancer with tumor/normal matched sequencing data and the prevalence of pathogenic or likely pathogenic germline variants in cancer types lacking hereditary cancer testing guidelines. The findings suggest there may be clinical implications for patients and their at-risk family members in cancers for which germline assessment primarily based on the cancer diagnosis is rarely obtained.
Collapse
Affiliation(s)
- Timothy A. Yap
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | | | | | | | | | | | | | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston
| |
Collapse
|
46
|
Azzollini J, Vingiani A, Agnelli L, Tamborini E, Perrone F, Conca E, Capone I, Busico A, Peissel B, Rosina E, Ducceschi M, Mantiero M, Lopez S, Raspagliesi F, Niger M, Duca M, Damian S, Proto C, de Braud F, Pruneri G, Manoukian S. Management of BRCA Tumour Testing in an Integrated Molecular Tumour Board Multidisciplinary Model. Front Oncol 2022; 12:857515. [PMID: 35463374 PMCID: PMC9026437 DOI: 10.3389/fonc.2022.857515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Tumour testing of the BRCA1/2 genes is routinely performed in patients with different cancer histological subtypes. To accurately identify patients with tumour-detected germline pathogenic variants (PVs) is a relevant issue currently under investigation. This study aims at evaluating the performance of the tumour-to-germline diagnostic flowchart model defined at our Institutional Molecular Tumour Board (MTB). Results from tumour BRCA sequencing of 641 consecutive unselected cancer patients were discussed during weekly MTB meetings with the early involvement of clinical geneticists for appropriate referral to genetic counselling. The overall tumour detection rate of BRCA1/2 PVs was 8.7% (56/641), ranging from 24.4% (31/127) in high-grade ovarian cancer to 3.9% (12/304) in tumours not associated with germline BRCA1/2 PVs. Thirty-seven patients with PVs (66%) were evaluated by a clinical geneticist, and in 24 of them (64.9%), germline testing confirmed the presence of the PV in blood. Nine of these patients (37.5%) were not eligible for germline testing according to the criteria in use at our institution. Cascade testing was subsequently performed on 18 relatives. The tumour-to-germline diagnostic pipeline, developed in the framework of our institutional MTB, compared with guideline-based germline testing following genetic counselling, proved to be effective in identifying a higher number of germline BRCA PVs carriers.
Collapse
Affiliation(s)
- Jacopo Azzollini
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Vingiani
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Oncology and Hemato-oncology Department, University of Milan, Milan, Italy
| | - Luca Agnelli
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elena Tamborini
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica Perrone
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elena Conca
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Iolanda Capone
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Adele Busico
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Bernard Peissel
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Erica Rosina
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monika Ducceschi
- Department of Gynecologic Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mara Mantiero
- Department of Gynecologic Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Salvatore Lopez
- Department of Gynecologic Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesco Raspagliesi
- Department of Gynecologic Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Niger
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Matteo Duca
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvia Damian
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudia Proto
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo de Braud
- Oncology and Hemato-oncology Department, University of Milan, Milan, Italy.,Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giancarlo Pruneri
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Oncology and Hemato-oncology Department, University of Milan, Milan, Italy
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
47
|
Higashigawa S, Matsubayashi H, Kiyozumi Y, Kado N, Nishimura S, Oishi T, Sugino T, Fushiki K, Shirasu H, Yasui H, Mamesaya N, Fukuzaki N, Kunitomo K, Horiuchi Y, Kenmotsu H, Serizawa M. Present status of germline findings in precision medicine for Japanese cancer patients: issues in the current system. Jpn J Clin Oncol 2022; 52:599-608. [PMID: 35411369 DOI: 10.1093/jjco/hyac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/11/2021] [Accepted: 03/07/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE Since 2019, precision cancer medicine has been covered by national insurance in Japan; however, to date, germline findings have not been fully reported. The aim of this study was to evaluate the current status and raise a problem of germline finding analysis and disclosure in Japanese precision cancer medicine. METHODS Germline findings of 52 genes were examined in 296 cases with advanced cancer by a case series study. RESULTS Six (2.0%) cases were examined by the Oncoguide™ NCC Oncopanel with germline testing, but no germline findings were reported. The remaining 290 (98.0%) cases were analyzed by FoundationOne® CDx (tumor-only testing), which recognized 404 pathogenic variants; those of BRCA1/2 were recognized in 16 (5.5%) tumors. Our institutional algorithm suggested 39 candidate germline findings in 34 cases, while the public algorithm listed at least 91 candidate germline findings. Four germline findings had been previously identified (BRCA1: 3 and ATM: 1). Nine of 30 cases with candidate germline findings excluding these known germline findings refused or deferred germline testing. Only 4 of 16 cases that received counseling underwent germline testing, and those 4 revealed 3 germline findings (BRCA2, CDK4 and RAD51C); in total, 8 (2.7%) germline findings were revealed. Reasons for refusing genetic counseling and/or germline testing included extra hospital visits, added expense for germline testing due to limited national insurance coverage, poor patient physical condition and no known family members associated with the possible germline finding. CONCLUSIONS In current Japanese precision cancer medicine, only a small fraction of the patients undergoes germline testing and demonstrated germline finding. The current results suggested a need for earlier indications for precision cancer medicine, broader insurance coverage and more efficient germline finding prediction algorithms, to increase the number of germline testings and to improve the following managements.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Yasue Horiuchi
- Division of Genetic Medicine Promotion.,Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | | | - Masakuni Serizawa
- Clinical Research Center, Shizuoka Cancer Center, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| |
Collapse
|
48
|
Chakravarty D, Johnson A, Sklar J, Lindeman NI, Moore K, Ganesan S, Lovly CM, Perlmutter J, Gray SW, Hwang J, Lieu C, André F, Azad N, Borad M, Tafe L, Messersmith H, Robson M, Meric-Bernstam F. Somatic Genomic Testing in Patients With Metastatic or Advanced Cancer: ASCO Provisional Clinical Opinion. J Clin Oncol 2022; 40:1231-1258. [PMID: 35175857 DOI: 10.1200/jco.21.02767] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE An ASCO provisional clinical opinion offers timely clinical direction to ASCO's membership following publication or presentation of potentially practice-changing data from major studies. This provisional clinical opinion addresses the appropriate use of tumor genomic testing in patients with metastatic or advanced solid tumors. CLINICAL CONTEXT An increasing number of therapies are approved to treat cancers harboring specific genomic biomarkers. However, there is a lack of clarity as to when tumor genomic sequencing should be ordered, what type of assays should be performed, and how to interpret the results for treatment selection. PROVISIONAL CLINICAL OPINION Patients with metastatic or advanced cancer should undergo genomic sequencing in a certified laboratory if the presence of one or more specific genomic alterations has regulatory approval as biomarkers to guide the use of or exclusion from certain treatments for their disease. Multigene panel-based assays should be used if more than one biomarker-linked therapy is approved for the patient's disease. Site-agnostic approvals for any cancer with a high tumor mutation burden, mismatch repair deficiency, or neurotrophic tyrosine receptor kinase (NTRK) fusions provide a rationale for genomic testing for all solid tumors. Multigene testing may also assist in treatment selection by identifying additional targets when there are few or no genotype-based therapy approvals for the patient's disease. For treatment planning, the clinician should consider the functional impact of the targeted alteration and expected efficacy of genomic biomarker-linked options relative to other approved or investigational treatments.Additional information is available at www.asco.org/assays-and-predictive-markers-guidelines.
Collapse
Affiliation(s)
| | | | | | - Neal I Lindeman
- Brigham and Womens' Hospital, Harvard Medical School, Boston, MA
| | | | | | | | | | | | | | | | - Fabrice André
- PRISM, Precision Medicine Center, Institut Gustave Roussy, Villejuif, France
| | | | | | - Laura Tafe
- Dartmouth-Hitchcock Medical Center and The Geisel School of Medicine at Dartmouth, Darmouth, NH
| | | | - Mark Robson
- Memorial Sloan Kettering Cancer Center, New York City, NY
| | | |
Collapse
|
49
|
Current status and issues related to secondary findings in the first public insurance covered tumor genomic profiling in Japan: multi-site questionnaire survey. J Hum Genet 2022; 67:557-563. [PMID: 35322199 DOI: 10.1038/s10038-022-01028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/23/2022] [Indexed: 11/08/2022]
Abstract
In June 2019, the Japanese National Health Insurance (NHI) system introduced coverage for two types of tumor genomic profiling (TGP): FoundationOneⓇ CDx (F1) and OncoGuide™ NCC OncoPanel System (NCCOP). TGP sometimes reveals germline variants that are potentially pathogenic as secondary findings (SFs). We conducted a questionnaire-based survey to find out the operational statuses of F1 and NCCOP at institutions where TGP was performed to elucidate issues related to SFs. Responses were received from 97 of 112 institutions (86.6%). As of May 31, 2020, 88 (90.7%) and 78 (80.4%) institutions started performing F1 and NCCOP, respectively. Since F1 only examines tumor samples, germline confirmatory testing is necessary to determine whether they are actually germline pathogenic variants (GPVs). When physicians are obtaining informed consent all but 2.3% of the patients requested SF disclosure. Conversely, when presumed germline pathogenic variants (PGPVs) were detected, 46.2% were not willing to receive confirmatory tests as they wanted to prioritize cancer treatment over SFs investigation, while only 23.3% underwent confirmatory tests. Problems in cancer genomic medicine reported by clinical genetics departments included short-staffing (n = 10), insufficient interdepartmental cooperation (n = 9), inconsistent understanding of genetics among healthcare professionals (n = 8), and low utilization rate of SFs due to lack of insurance coverage for confirmatory tests and post-test health checkups (n = 8). Solutions include; determining the appropriate timing to confirm patient intent on SF disclosure, covering confirmatory tests for PGPVs by the NHI, and establishing cooperation between the oncology and clinical genetics departments.
Collapse
|
50
|
Extraneural Metastases of Diffuse Midline Glioma, H3 K27M-Mutant at Diagnosis: Case Report, Review of the Literature, and Identifying Targetable Alterations. J Pediatr Hematol Oncol 2022; 44:e597-e604. [PMID: 33974582 DOI: 10.1097/mph.0000000000002189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/25/2021] [Indexed: 11/26/2022]
Abstract
Extraneural metastases are rare in pediatric high-grade gliomas and little is known about the genomic profiles of tumors that disseminate beyond the central nervous system. We describe a pediatric patient with H3 K27M-mutant diffuse midline glioma of the brain and spine with biopsy-confirmed osseous metastases present at diagnosis and suspected metastatic parenchymal pulmonary disease. Several potentially clinically and/or therapeutically relevant genomic alterations were identified, including H3F3A and TP53 mutations as well as MET, CDK6, EMSY, and PIK3CG amplifications. Sequencing is critical to improve our understanding of the molecular drivers of distant metastases and discover therapeutic targets that penetrate all disease sites.
Collapse
|