1
|
Wang Y, Sun Y, Tan M, Lin X, Tai P, Huang X, Jin Q, Yuan D, Xu T, He B. Association Between Polymorphisms in DNA Damage Repair Pathway Genes and Female Breast Cancer Risk. DNA Cell Biol 2024; 43:219-231. [PMID: 38634815 DOI: 10.1089/dna.2023.0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Breast cancer risk have been discussed to be associated with polymorphisms in genes as well as abnormal DNA damage repair function. This study aims to assess the relationship between genes single nucleotide polymorphisms (SNPs) related to DNA damage repair and female breast cancer risk in Chinese population. A case-control study containing 400 patients and 400 healthy controls was conducted. Genotype was identified using the sequence MassARRAY method and expression of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor-2 (HER-2) in tumor tissues was analyzed by immunohistochemistry assay. The results revealed that ATR rs13091637 decreased breast cancer risk influenced by ER, PR (CT/TT vs. CC: adjusted odds ratio [OR] = 1.54, 95% confidence interval [CI]: 1.04-2.27, p = 0.032; CT/TT vs. CC: adjusted OR = 1.63, 95%CI: 1.14-2.35, p = 0.008) expression. Stratified analysis revealed that PALB2 rs16940342 increased breast cancer risk in response to menstrual status (AG/GG vs. AA: adjusted OR = 1.72, 95%CI: 1.13-2.62, p = 0.011) and age of menarche (AG/GG vs. AA: adjusted OR = 1.54, 95%CI: 1.03-2.31, p = 0.037), whereas ATM rs611646 and Ku70 rs132793 were associated with reduced breast cancer risk influenced by menarche (GA/AA vs. GG: adjusted OR = 0.50, 95%CI: 0.30-0.95, p = 0.033). In a summary, PALB2 rs16940342, ATR rs13091637, ATM rs611646, and Ku70 rs132793 were associated with breast cancer risk.
Collapse
Affiliation(s)
- Ying Wang
- School of Basic-Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yalan Sun
- School of Basic-Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Mingjuan Tan
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xin Lin
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ping Tai
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaoqin Huang
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qing Jin
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Dan Yuan
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tao Xu
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Bangshun He
- School of Basic-Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
O’Neill CE, Sun K, Sundararaman S, Chang JC, Glynn SA. The impact of nitric oxide on HER family post-translational modification and downstream signaling in cancer. Front Physiol 2024; 15:1358850. [PMID: 38601214 PMCID: PMC11004480 DOI: 10.3389/fphys.2024.1358850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/16/2024] [Indexed: 04/12/2024] Open
Abstract
The human epidermal growth factor receptor (HER) family consists of four members, activated by two families of ligands. They are known for mediating cell-cell interactions in organogenesis, and their deregulation has been associated with various cancers, including breast and esophageal cancers. In particular, aberrant epidermal growth factor receptor (EGFR) and HER2 signaling drive disease progression and result in poorer patient outcomes. Nitric oxide (NO) has been proposed as an alternative activator of the HER family and may play a role in this aberrant activation due to its ability to induce s-nitrosation and phosphorylation of the EGFR. This review discusses the potential impact of NO on HER family activation and downstream signaling, along with its role in the efficacy of therapeutics targeting the family.
Collapse
Affiliation(s)
- Ciara E. O’Neill
- Lambe Institute for Translational Research, Discipline of Pathology, School of Medicine, University of Galway, Galway, Ireland
| | - Kai Sun
- Houston Methodist Research Institute, Houston, TX, United States
- Dr Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, TX, United States
| | | | - Jenny C. Chang
- Houston Methodist Research Institute, Houston, TX, United States
- Dr Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, TX, United States
| | - Sharon A. Glynn
- Lambe Institute for Translational Research, Discipline of Pathology, School of Medicine, University of Galway, Galway, Ireland
| |
Collapse
|
3
|
Zhang Y, Hao Y, Pan H, Zheng H, Zhou J. Dissecting the genetic variations associated with response to first-line chemotherapy in patients with small cell lung cancer: a retrospective cohort study. J Thorac Dis 2023; 15:7013-7023. [PMID: 38249933 PMCID: PMC10797352 DOI: 10.21037/jtd-23-1772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
Background Chemotherapy has been the standard treatment for small-cell lung cancer (SCLC) for decades. Nonetheless, patients are usually responsive to initial chemotherapy but quickly suffer from relapse, resulting in a poor long-term outcome. Treating advances that greatly ameliorate survival outcomes are historically finite, and credible biomarkers for therapeutic evaluation are deficient. As the genetic biology emerges, investigating biomarkers to optimize individualized treatment for SCLC is necessary. Methods Based on following inclusion criteria: (I) patients diagnosed as SCLC by pathology; (II) patients treated with first-line etoposide/cisplatin (EP) chemotherapy; (III) patients who received long-term follow-up and signed informed consent, a total of 24 SCLC patients receiving first-line standard chemotherapy were divided into progressive disease (PD) and partial response (PR) groups. They were regularly followed every 3 months with computed tomography (CT) scan until recurrences determined by CT scan results. Next-generation sequencing (NGS) with a panel of 1,406 cancer-related genes was conducted on the tumor tissue-derived DNA of patients to compare genetic variations, including deletions (indels), single nucleotide variations (SNVs), copy number variations (CNVs), and copy number instability (CNI) between the two groups. Results For the clinical characteristics of enrolled SCLC patients, except for significant differences in sex, age, clinical stage, and limited or extensive stage, PD patients showed distinctly shorter overall survival than those with PR (6.5 vs. 14.0 months, respectively, P=0.007). Genetic variations analysis discovered several common genes with CNV mutations between the PR and PD groups, and increased epidermal growth factor receptor (EGFR) gene copy numbers gain was found in PR groups in comparing with PD patients (P=0.006). However, no significant differences in terms of SNVs, indels, genotypes associated with first-line chemotherapy, CNI of tumor tissue-derived DNA, and tumor mutational burden of tumor tissues were observed between two groups. Additionally, the relationship between EGFR gene mutation and clinicopathological features of SCLC indicated that EGFR gene mutation may be an independent indicator for SCLC patients. Conclusions Increased EGFR gene CNVs may be an independent indicator influencing the survival time and PR in SCLC patients receiving standard first-line chemotherapy.
Collapse
Affiliation(s)
- Yalei Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yan Hao
- Department of Pathology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui Pan
- Department of Thoracic Surgery, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | | |
Collapse
|
4
|
Ouyang H, Wu S, Li W, Grey MJ, Wu W, Hansen SH. p120 RasGAP and ZO-2 are essential for Hippo signaling and tumor-suppressor function mediated by p190A RhoGAP. Cell Rep 2023; 42:113486. [PMID: 37995182 PMCID: PMC10809936 DOI: 10.1016/j.celrep.2023.113486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/19/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
ARHGAP35, which encodes p190A RhoGAP (p190A), is a major cancer gene. p190A is a tumor suppressor that activates the Hippo pathway. p190A was originally cloned via direct binding to p120 RasGAP (RasGAP). Here, we determine that interaction of p190A with the tight-junction-associated protein ZO-2 is dependent on RasGAP. We establish that both RasGAP and ZO-2 are necessary for p190A to activate large tumor-suppressor (LATS) kinases, elicit mesenchymal-to-epithelial transition, promote contact inhibition of cell proliferation, and suppress tumorigenesis. Moreover, RasGAP and ZO-2 are required for transcriptional modulation by p190A. Finally, we demonstrate that low ARHGAP35 expression is associated with shorter survival in patients with high, but not low, transcript levels of TJP2 encoding ZO-2. Hence, we define a tumor-suppressor interactome of p190A that includes ZO-2, an established constituent of the Hippo pathway, and RasGAP, which, despite strong association with Ras signaling, is essential for p190A to activate LATS kinases.
Collapse
Affiliation(s)
- Hanyue Ouyang
- GI Cell Biology Laboratory, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P.R. China
| | - Shuang Wu
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Wangji Li
- GI Cell Biology Laboratory, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael J Grey
- GI Cell Biology Laboratory, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Wenchao Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P.R. China
| | - Steen H Hansen
- GI Cell Biology Laboratory, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Ouyang H, Li W, Hansen SH. p120 RasGAP and ZO-2 are essential for Hippo signaling and tumor suppressor function mediated by p190A RhoGAP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541483. [PMID: 37292741 PMCID: PMC10245842 DOI: 10.1101/2023.05.22.541483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
ARHGAP35 , which encodes p190A RhoGAP (p190A), is a major cancer gene. p190A is a tumor suppressor that activates the Hippo pathway. p190A was originally cloned via direct binding to p120 RasGAP (RasGAP). Here, we determine that a novel interaction of p190A with the tight junction-associated protein ZO-2 is dependent on RasGAP. We establish that both RasGAP and ZO-2 are necessary for p190A to activate LATS kinases, elicit mesenchymal-to-epithelial transition, promote contact inhibition of cell proliferation and suppress tumorigenesis. Moreover, RasGAP and ZO-2 are required for transcriptional modulation by p190A. Finally, we demonstrate that low ARHGAP35 expression is associated with shorter survival in patients with high, but not low, transcript levels of TJP2 encoding ZO-2. Hence, we define a tumor suppressor interactome of p190A that includes ZO-2, an established constituent of the Hippo pathway, and RasGAP, which despite strong association with Ras signaling, is essential for p190A to activate LATS kinases.
Collapse
|
6
|
Chandra S, Goswami A, Mandal P. Molecular Heterogeneity of Cervical Cancer Among Different Ethnic/Racial Populations. J Racial Ethn Health Disparities 2022; 9:2441-2450. [PMID: 34741276 DOI: 10.1007/s40615-021-01180-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/29/2022]
Abstract
The study aimed to find differential gene mutation profile and gene expression status among different ethnic/racial human populations relevant for cervical cancer pathogenesis. The study was based on freely available datasets of The Cancer Genome Atlas (TCGA) of cervical cancer samples in Genomic Data Commons (GDC) data portal. We identified that choline metabolism in cancer and Ras signaling pathways were significantly associated with the Hispanic and Latino group of cervical cancer patients. In these pathways, mutations in the PIK3CA gene, especially E545K, were significantly associated with the Hispanic and LATINO group. We found that AFF3 gene mutation was associated with downregulation of its expression only among the White racial category of cervical cancer cases. Additionally, hypomethylation of the CpG position in the S shore region of the PM20D1 gene was associated with overexpression among the Asian category of cervical cancer cases. Heterogeneity of the molecular profile of AFF3 and PM20D1 gene among racial groups reflects the potential of differential targeted therapy of cervical cancer.
Collapse
Affiliation(s)
- Sanchita Chandra
- Biomedical Genetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan, 713104, West Bengal, India
| | - Anindita Goswami
- Biomedical Genetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan, 713104, West Bengal, India
| | - Paramita Mandal
- Biomedical Genetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan, 713104, West Bengal, India.
| |
Collapse
|
7
|
Zhu H, Zheng C, Liu H, Kong F, Kong S, Chen F, Tian Y. Significance of macrophage infiltration in the prognosis of lung adenocarcinoma patients evaluated by scRNA and bulkRNA analysis. Front Immunol 2022; 13:1028440. [PMID: 36311801 PMCID: PMC9597471 DOI: 10.3389/fimmu.2022.1028440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose To investigate the significance of macrophage infiltration to the prognosis of lung adenocarcinoma. Methods R language bioinformatics analysis technology, was used to obtain macrophage infiltration-related module genes through WGCNA (Weighted Gene Co-Expression Network Analysis). Marker genes of macrophage subtypes were identified using single-cell sequencing of lung adenocarcinoma tissue. Risk score models were constructed and validated using external data cohorts and clinical samples. Results Analysis of cohorts TCGA-LUAD, GSE11969, GSE31210, GSE50081, GSE72094 and GSE8894, revealed a negative correlation between macrophage infiltration and survival. Immunohistochemical analyses of clinical samples were consistent with these data. Based on cell-cluster-markers and TAMs-related-genes, TOP8 genes were obtained (C1QTNF6, CCNB1, FSCN1, HMMR, KPNA2, PRC1, RRM2, and TK1) with a significant association to prognosis. Risk score models including 9 factors (C1QTNF6, FSCN1, KPNA2, GLI2, TYMS, BIRC3, RBBP7, KRT8, GPR65) for prognosis were constructed. The efficacy, stability and generalizability of the risk score models were validated using multiple data cohorts (GSE19188, GSE26939, GSE31210, GSE50081, GSE42127, and GSE72094). Conclusions Macrophage infiltration negatively correlates with prognosis in patients with lung adenocarcinoma. Based on cell-cluster-markers and TAMs-related-genes, both TOP8 genes (C1QTNF6, CCNB1, FSCN1, HMMR, KPNA2, PRC1, RRM2, TK1) and risk score models using C1QTNF6, FSCN1, KPNA2, GLI2, TYMS, BIRC3, RBBP7, KRT8, GPR65 could predict disease prognosis.
Collapse
Affiliation(s)
- Huaiyang Zhu
- Department of Thoracic Surgery, Shandong Second Provincial General Hospital, Jinan, China
| | - Chunning Zheng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Hongtao Liu
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Clinical Pathology, Shandong Lung Cancer Institute, Shandong Institute of Nephrology, Jinan, China
| | - Fanhua Kong
- Department of Thoracic Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Taian, China
| | - Shuai Kong
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Feng Chen
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yuan Tian
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Radiotherapy Department, Shandong Second Provincial General Hospital, Shandong University, Jinan, China
| |
Collapse
|
8
|
Prognostic Signature, Immune Features, and Therapeutic Responses of a Novel Ubiquitination-Related Gene Signature in Lung Adenocarcinoma. JOURNAL OF ONCOLOGY 2022; 2022:2524649. [PMID: 36016582 PMCID: PMC9398812 DOI: 10.1155/2022/2524649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
Growing studies have implicated the association of ubiquitination-related genes (UbRGs) with the cancer progression and the long-term survival of patients. However, the prognostic values of UbRGs in lung adenocarcinoma (LUAD) have not been investigated. Our study aimed to establish a ubiquitination-related model for prognosis prediction and internal mechanism investigation. The transcriptome expression profiles and corresponding clinical information of LUAD were obtained from TCGA and GEO datasets. Differentially expressed genes (DEGs) were screened between LUAD specimens and nontumor specimens. Kaplan–Meier analysis and univariate assays were carried out on DEGs to preliminarily screen survival-related UbRGs. Then, the LASSO Cox regression model was applied to develop a multigene signature, which was then demonstrated in two GEO datasets by the use of Kaplan-Meier, ROC, and Cox analyses. We estimated the immune cell infiltration in tumor microenvironment via CIBERSORT and immunotherapy response through the TIDE algorithm. In this study, a total of 71 ubiquitination-related DEGs were identified. Nine UbRGs, including TUBA4A, TRIM2, PLK1, ARRB1, TRIM58, PLK1, ARRB1, CCNB1, TRIM6, PTTG1, and CCT2, were included to establish a risk model, which was validated in TCGA and GEO datasets. The multivariate assays demonstrated that the 9-UbRGs signature was a robust independent prognostic factor in the overall survival of LUAD patients. The abundance of CD8 T cells, activated CD4 T memory cells, resting NK cells and macrophages was higher in the high-risk group, and the TMB of high-risk group was statistically higher than the low-risk group. Multiple drugs approved by FAD, targeting UbRGs, were available for the treatment of LUAD. Overall, we identified a nine ubiquitination-related gene signature, and the signature may be applied to be a potential biomarker for CD8 T cells response and clinical responses to immune checkpoint inhibitors for LUAD.
Collapse
|
9
|
Luo HY, Shen HY, Perkins RS, Wang YX. Adenosine Kinase on Deoxyribonucleic Acid Methylation: Adenosine Receptor-Independent Pathway in Cancer Therapy. Front Pharmacol 2022; 13:908882. [PMID: 35721189 PMCID: PMC9200284 DOI: 10.3389/fphar.2022.908882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Methylation is an important mechanism contributing to cancer pathology. Methylation of tumor suppressor genes and oncogenes has been closely associated with tumor occurrence and development. New insights regarding the potential role of the adenosine receptor-independent pathway in the epigenetic modulation of DNA methylation offer the possibility of new interventional strategies for cancer therapy. Targeting DNA methylation of cancer-related genes is a promising therapeutic strategy; drugs like 5-Aza-2′-deoxycytidine (5-AZA-CdR, decitabine) effectively reverse DNA methylation and cancer cell growth. However, current anti-methylation (or methylation modifiers) are associated with severe side effects; thus, there is an urgent need for safer and more specific inhibitors of DNA methylation (or DNA methylation modifiers). The adenosine signaling pathway is reported to be involved in cancer pathology and participates in the development of tumors by altering DNA methylation. Most recently, an adenosine metabolic clearance enzyme, adenosine kinase (ADK), has been shown to influence methylation on tumor suppressor genes and tumor development and progression. This review article focuses on recent updates on ADK and its two isoforms, and its actions in adenosine receptor-independent pathways, including methylation modification and epigenetic changes in cancer pathology.
Collapse
Affiliation(s)
- Hao-Yun Luo
- Chongqing Medical University, Chongqing, China.,Department of Gastrointestinal and Anorectal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Hai-Ying Shen
- Department of Neuroscience, Legacy Research Institute, Portland, OR, United States.,Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, United States
| | - R Serene Perkins
- Legacy Tumor Bank, Legacy Research Institute, Portland, OR, United States.,Mid-Columbia Medical Center, The Dalles, OR, United States
| | - Ya-Xu Wang
- Chongqing Medical University, Chongqing, China.,Department of Gastrointestinal and Anorectal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Bao G, Guan X, Liang J, Yao Y, Xiang Y, Li T, Zhong X. A Germline Mutation in ATR Is Associated With Lung Adenocarcinoma in Asian Patients. Front Oncol 2022; 12:855305. [PMID: 35712480 PMCID: PMC9195140 DOI: 10.3389/fonc.2022.855305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/26/2022] [Indexed: 12/01/2022] Open
Abstract
Background Familial lung cancer (FLC) accounts for 8% of lung adenocarcinoma. It is known that a few germline mutations are associated with risk increasing and may provide new screening and treatment option. The goal of this study is to identify an FLC gene among three members of an FLC family. Methods To uncover somatic and embryonic mutations linked with familial lung cancer, whole exome sequencing was done on surgical tissues and peripheral blood from three sisters in a family diagnosed with pulmonary lung adenocarcinoma (LUAD). At the same time, single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing data in public databases were enrolled to identify specific gene expression level. Results Ataxia Telangiectasia and Rad3-Related Protein (ATR) gene C.7667C >G (p.T2556S) mutation were found in 3 patients with familial lung cancer. Whole-genome sequencing revealed that the three sisters exhibited similar somatic mutation patterns. Besides ATR mutations, common mutated genes (BRCA1, EGFR, and ROS1) that characterize LUAD were also found in 5 tumor samples. Analysis for the ATR expression in LUAD patients by single-cell sequencing data, we found ATR expression of tumor patients at high level in immune cells when compared with normal patients, but the expression of ATR in stromal cells has the opposite result. Conclusion We found a germline mutation in the ATR gene in three sisters of a Chinese family affected by familial lung cancer, which may be a genetic factor for lung cancer susceptibility.
Collapse
Affiliation(s)
- Guangyao Bao
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiaojiao Guan
- Department of Pathology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Jie Liang
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yao Yao
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yifan Xiang
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xinwen Zhong
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
11
|
Sudhakar M, Rengaswamy R, Raman K. Novel ratio-metric features enable the identification of new driver genes across cancer types. Sci Rep 2022; 12:5. [PMID: 34997044 PMCID: PMC8741763 DOI: 10.1038/s41598-021-04015-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 12/13/2021] [Indexed: 12/27/2022] Open
Abstract
An emergent area of cancer genomics is the identification of driver genes. Driver genes confer a selective growth advantage to the cell. While several driver genes have been discovered, many remain undiscovered, especially those mutated at a low frequency across samples. This study defines new features and builds a pan-cancer model, cTaG, to identify new driver genes. The features capture the functional impact of the mutations as well as their recurrence across samples, which helps build a model unbiased to genes with low frequency. The model classifies genes into the functional categories of driver genes, tumour suppressor genes (TSGs) and oncogenes (OGs), having distinct mutation type profiles. We overcome overfitting and show that certain mutation types, such as nonsense mutations, are more important for classification. Further, cTaG was employed to identify tissue-specific driver genes. Some known cancer driver genes predicted by cTaG as TSGs with high probability are ARID1A, TP53, and RB1. In addition to these known genes, potential driver genes predicted are CD36, ZNF750 and ARHGAP35 as TSGs and TAB3 as an oncogene. Overall, our approach surmounts the issue of low recall and bias towards genes with high mutation rates and predicts potential new driver genes for further experimental screening. cTaG is available at https://github.com/RamanLab/cTaG .
Collapse
Affiliation(s)
- Malvika Sudhakar
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, India
| | - Raghunathan Rengaswamy
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, India.
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, India.
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, India.
| | - Karthik Raman
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India.
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, India.
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
12
|
El-Gamal MI, Mewafi NH, Abdelmotteleb NE, Emara MA, Tarazi H, Sbenati RM, Madkour MM, Zaraei SO, Shahin AI, Anbar HS. A Review of HER4 (ErbB4) Kinase, Its Impact on Cancer, and Its Inhibitors. Molecules 2021; 26:7376. [PMID: 34885957 PMCID: PMC8659013 DOI: 10.3390/molecules26237376] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
HER4 is a receptor tyrosine kinase that is required for the evolution of normal body systems such as cardiovascular, nervous, and endocrine systems, especially the mammary glands. It is activated through ligand binding and activates MAPKs and PI3K/AKT pathways. HER4 is commonly expressed in many human tissues, both adult and fetal. It is important to understand the role of HER4 in the treatment of many disorders. Many studies were also conducted on the role of HER4 in tumors and its tumor suppressor function. Mostly, overexpression of HER4 kinase results in cancer development. In the present article, we reviewed the structure, location, ligands, physiological functions of HER4, and its relationship to different cancer types. HER4 inhibitors reported mainly from 2016 to the present were reviewed as well.
Collapse
Affiliation(s)
- Mohammed I. El-Gamal
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (N.H.M.); (N.E.A.); (M.A.E.); (H.T.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.M.S.); (M.M.M.); (S.-O.Z.); (A.I.S.)
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Nada H. Mewafi
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (N.H.M.); (N.E.A.); (M.A.E.); (H.T.)
| | - Nada E. Abdelmotteleb
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (N.H.M.); (N.E.A.); (M.A.E.); (H.T.)
| | - Minnatullah A. Emara
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (N.H.M.); (N.E.A.); (M.A.E.); (H.T.)
| | - Hamadeh Tarazi
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (N.H.M.); (N.E.A.); (M.A.E.); (H.T.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.M.S.); (M.M.M.); (S.-O.Z.); (A.I.S.)
| | - Rawan M. Sbenati
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.M.S.); (M.M.M.); (S.-O.Z.); (A.I.S.)
| | - Moustafa M. Madkour
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.M.S.); (M.M.M.); (S.-O.Z.); (A.I.S.)
| | - Seyed-Omar Zaraei
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.M.S.); (M.M.M.); (S.-O.Z.); (A.I.S.)
| | - Afnan I. Shahin
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.M.S.); (M.M.M.); (S.-O.Z.); (A.I.S.)
| | - Hanan S. Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai 19099, United Arab Emirates
| |
Collapse
|
13
|
Hu X, Xu H, Xue Q, Wen R, Jiao W, Tian K. The role of ERBB4 mutations in the prognosis of advanced non-small cell lung cancer treated with immune checkpoint inhibitors. Mol Med 2021; 27:126. [PMID: 34620079 PMCID: PMC8496027 DOI: 10.1186/s10020-021-00387-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/23/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have witnessed the achievements of convincing clinical benefits that feature the significantly prolonged overall survival (OS) of patients suffering from advanced non-small cell lung cancer (NSCLC), according to reports recently. Sensitivity to immunotherapy is related to several biomarkers, such as PD-L1 expression, TMB level, MSI-H and MMR. However, a further investigation into the novel biomarkers of the prognosis on ICIs treatment is required. In addition, there is an urgent demand for the establishment of a systematic hazard model to assess the efficacy of ICIs therapy for advanced NSCLC patients. METHODS In this study, the gene mutation and clinical data of NSCLC patients was obtained from the TCGA database, followed by the analysis of the detailed clinical information and mutational data relating to two advanced NSCLC cohorts receiving the ICIs treatment from the cBioPortal of Cancer Genomics. The Kaplan-Meier plot method was used to perform survival analyses, while selected variables were adopted to develop a systematic nomogram. The prognostic significance of ERBB4 in pan-cancer was analyzed by another cohort from the cBioPortal of Cancer Genomics. RESULTS The mutation frequencies of TP53 and ERBB4 were 54% and 8% in NSCLC, respectively. The mutual exclusive analysis in cBioPortal has indicated that ERBB4 does show co-occurencing mutations with TP53. Patients with ERBB4 mutations were confirmed to have better prognosis for ICIs treatment, compared to those seeing ERBB4 wild type (PFS: exact p = 0.017; OS: exact p < 0.01) and only TP53 mutations (OS: p = 0.021). The mutation status of ERBB4 and TP53 was tightly linked to DCB of ICIs treatment, PD-L1 expression, TMB value, and TIICs. Finally, a novel nomogram was built to evaluate the efficacy of ICIs therapy. CONCLUSION ERBB4 mutations could serve as a predictive biomarker for the prognosis of ICIs treatment. The systematic nomogram was proven to have the great potential for evaluating the efficacy of ICIs therapy for advanced NSCLC patients.
Collapse
Affiliation(s)
- Xilin Hu
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Hanlin Xu
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Qianwen Xue
- Qingdao Maternal & Child Health and Family Planning Service Center, Qingdao, 266000, Shandong, China
| | - Ruran Wen
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Wenjie Jiao
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Kaihua Tian
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
14
|
Mao W, Chen R, Lu R, Wang S, Song H, You D, Liu F, He Y, Zheng M. Germline mutation analyses of malignant ground glass opacity nodules in non-smoking lung adenocarcinoma patients. PeerJ 2021; 9:e12048. [PMID: 34540367 PMCID: PMC8415279 DOI: 10.7717/peerj.12048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/03/2021] [Indexed: 11/20/2022] Open
Abstract
Background Germline mutations play an important role in the pathogenesis of lung cancer. Nonetheless, research on malignant ground glass opacity (GGO) nodules is limited. Methods A total of 13 participants with malignant GGO nodules were recruited in this study. Peripheral blood was used for exome sequencing, and germline mutations were analyzed using InterVar. The whole exome sequencing dataset was analyzed using a filtering strategy. KOBAS 3.0 was used to analyze KEGG pathway to further identify possible deleterious mutations. Results There were seven potentially deleterious germline mutations. NM_001184790:exon8: c.C1070T in PARD3, NM_001170721:exon4:c.C392T in BCAR1 and NM_001127221:exon46: c.G6587A in CACNA1A were present in three cases each; rs756875895 frameshift in MAX, NM_005732: exon13:c.2165_2166insT in RAD50 and NM_001142316:exon2:c.G203C in LMO2, were present in two cases each; one variant was present in NOTCH3. Conclusions Our results expand the germline mutation spectrum in malignant GGO nodules. Importantly, these findings will potentially help screen the high-risk population, guide their health management, and contribute to their clinical treatment and determination of prognosis.
Collapse
Affiliation(s)
- Wenjun Mao
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Ruo Chen
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Rongguo Lu
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Shengfei Wang
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Huizhu Song
- Department of Pharmacy, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Dan You
- Department of Pharmacy, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Feng Liu
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yijun He
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Mingfeng Zheng
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|
15
|
Dalberto D, Nicolau CC, Rosa De Sousa M, Garcia ALH, Boaretto F, Picada JN, De Souza GMS, Chytry P, Dias JF, Feistel CC, Ferraz ABF, Grivicich I, Da Silva J. Genotoxic effect induced by dried nicotiana tabacum leaves from tobacco barns (kiln-houses) in chinese hamster lung fibroblast cells (V79). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:689-701. [PMID: 34034641 DOI: 10.1080/15287394.2021.1930619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nicotiana tabacum is the most cultivated tobacco species in the state of Rio Grande do Sul, Brazil. Workers who handle the plant are exposed to the leaf components during the harvesting process and when separating and classifying the dried leaves. In addition to nicotine, after the drying process, other components may be found including tobacco-specific nitrosamines, polycyclic aromatic hydrocarbons, as well as pesticides residues. The objective of this study was to examine the genotoxicity attributed to the aqueous extract of dried tobacco leaves obtained from tobacco barns using Chinese hamster lung fibroblast cells (V79) as a model system by employing alkaline comet assay, micronucleus (MN) and Ames test. MTT assay was used to assess cytotoxicity and establish concentrations for this study. Data demonstrated cell viability > 85% for concentrations of 0.625-5 mg/ml while the comet assay indicated a significant increase in DNA damage at all concentrations tested. A significant elevation of MN and nuclear buds (NBUD) was found for 5 mg/ml compared to control and other dry tobacco leaves concentrations (0.625-2.5 mg/ml). Mutagenicity was not found using the Salmonella/Microsome test (TA98, TA100, and TA102 strains) with and without metabolic activation. The concentration of inorganic elements was determined employing the PIXE technique, and 13 inorganic elements were detected. Using CG/MS nicotine amounts present were 1.56 mg/g dry tobacco leaf powder. Due to the observed genotoxicity in V79 cells, more investigations are needed to protect the health of tobacco workers exposed daily to this complex mixture of toxic substances present in dry tobacco leaves.
Collapse
Affiliation(s)
- Daiana Dalberto
- Laboratory of Genetic Toxicology, Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Caroline Cardoso Nicolau
- Laboratory of Genetic Toxicology, Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Melissa Rosa De Sousa
- Laboratory of Genetic Toxicology, Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Ana Letícia Hilário Garcia
- Laboratory of Genetic Toxicology, Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Fernanda Boaretto
- Laboratory of Genetic Toxicology, Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Jaqueline Nascimento Picada
- Laboratory of Genetic Toxicology, Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | | | - Paola Chytry
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Johnny Ferraz Dias
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cleverson Costa Feistel
- Pharmacognosy and Phytochemistry Laboratory. Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Alexandre Barros Falcão Ferraz
- Pharmacognosy and Phytochemistry Laboratory. Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Ivana Grivicich
- Laboratory of Cancer Biology. Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Juliana Da Silva
- Laboratory of Genetic Toxicology, Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| |
Collapse
|
16
|
Zhang J, Yang C, Wu C, Cui W, Wang L. DNA Methyltransferases in Cancer: Biology, Paradox, Aberrations, and Targeted Therapy. Cancers (Basel) 2020; 12:cancers12082123. [PMID: 32751889 PMCID: PMC7465608 DOI: 10.3390/cancers12082123] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023] Open
Abstract
DNA methyltransferases are an essential class of modifiers in epigenetics. In mammals, DNMT1, DNMT3A and DNMT3B participate in DNA methylation to regulate normal biological functions, such as embryo development, cell differentiation and gene transcription. Aberrant functions of DNMTs are frequently associated with tumorigenesis. DNMT aberrations usually affect tumor-related factors, such as hypermethylated suppressor genes and genomic instability, which increase the malignancy of tumors, worsen the prognosis for patients, and greatly increase the difficulty of cancer therapy. However, the impact of DNMTs on tumors is still controversial, and therapeutic approaches targeting DNMTs are still under exploration. Here, we summarize the biological functions and paradoxes associated with DNMTs and we discuss some emerging strategies for targeting DNMTs in tumors, which may provide novel ideas for cancer therapy.
Collapse
Affiliation(s)
- Jiayu Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China; (J.Z.); (C.Y.); (C.W.)
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Cheng Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China; (J.Z.); (C.Y.); (C.W.)
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China; (J.Z.); (C.Y.); (C.W.)
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China; (J.Z.); (C.Y.); (C.W.)
- Correspondence: (W.C.); (L.W.)
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China; (J.Z.); (C.Y.); (C.W.)
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
- Correspondence: (W.C.); (L.W.)
| |
Collapse
|
17
|
Segers VFM, Dugaucquier L, Feyen E, Shakeri H, De Keulenaer GW. The role of ErbB4 in cancer. Cell Oncol (Dordr) 2020; 43:335-352. [PMID: 32219702 DOI: 10.1007/s13402-020-00499-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The epidermal growth factor receptor family consists of four members, ErbB1 (epidermal growth factor receptor-1), ErbB2, ErbB3, and ErbB4, which all have been found to play important roles in tumor development. ErbB4 appears to be unique among these receptors, because it is the only member with growth inhibiting properties. ErbB4 plays well-defined roles in normal tissue development, in particular the heart, the nervous system, and the mammary gland system. In recent years, information on the role of ErbB4 in a number of tumors has emerged and its general direction points towards a tumor suppressor role for ErbB4. However, there are some controversies and conflicting data, warranting a review on this topic. CONCLUSIONS Here, we discuss the role of ErbB4 in normal physiology and in breast, lung, colorectal, gastric, pancreatic, prostate, bladder, and brain cancers, as well as in hepatocellular carcinoma, cholangiocarcinoma, and melanoma. Understanding the role of ErbB4 in cancer is not only important for the treatment of tumors, but also for the treatment of other disorders in which ErbB4 plays a major role, e.g. cardiovascular disease.
Collapse
Affiliation(s)
- Vincent F M Segers
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium. .,Department of Cardiology, University Hospital Antwerp, Edegem, Belgium.
| | - Lindsey Dugaucquier
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Eline Feyen
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Hadis Shakeri
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.,Department of Cardiology, ZNA Hospital, Antwerp, Belgium
| |
Collapse
|
18
|
Li HR, Gao J, Jin C, Jiang JH, Ding JY. Downregulation of SETBP1 promoted non-small cell lung cancer progression by inducing cellular EMT and disordered immune status. Am J Transl Res 2020; 12:447-462. [PMID: 32194895 PMCID: PMC7061827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
PURPOSE SET binding protein 1 (SETBP1) has involved in cancer pathogenesis like leukemic malignancies and breast cancer. But the role and the underlying mechanism in NSCLC remain unclear. METHODS RT-PCR and western blotting were used for determining the expression level of SETBP1 in NSCLC. The clinical values of SETBP1 expression were evaluated by tissue microarray and immunohistochemistry. CCK-8, transwell and Matrigel assays were used to assess NSCLC cells proliferation, migration and invasion ability. The analysis of EMT markers was carried out by RT-PCR, western blotting and immunofluorescence. Bioinformatics analysis revealed the relationship between SETBP1 expression and tumor-associated immune cells. RESULTS SETBP1 expression was significantly downregulated in NSCLC tissues than matched peri-tumors and NSCLC patients with the decreased level of SETBP1 had worse OS. Downregulation of SETBP1 expression induced EMT to promote NSCLC cells proliferation, migration and invasion by the activation of ERK1/2 signal pathway. Aberrant SETBP1 expression was companied by disordered immune status of NSCLC patients and might be involved in regulation of polarization of tumor-associated macrophages. CONCLUSION SETBP1 can act as a tumor suppressor to reduce the progression of NSCLC and can be used for a prognostic biomarker in NSCLC. Aberrant SETBP1 expression was companied by disordered immune status of NSCLC patients.
Collapse
Affiliation(s)
- Hao-Ran Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University Shanghai 200032, P. R. China
| | - Jian Gao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University Shanghai 200032, P. R. China
| | - Chun Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University Shanghai 200032, P. R. China
| | - Jia-Hao Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University Shanghai 200032, P. R. China
| | - Jian-Yong Ding
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University Shanghai 200032, P. R. China
| |
Collapse
|
19
|
Lu J, Zhong H, Chu T, Zhang X, Li R, Sun J, Zhong R, Yang Y, Alam MS, Lou Y, Xu J, Zhang Y, Wu J, Li X, Zhao X, Li K, Lu L, Han B. Role of anlotinib-induced CCL2 decrease in anti-angiogenesis and response prediction for nonsmall cell lung cancer therapy. Eur Respir J 2019; 53:13993003.01562-2018. [PMID: 30578392 DOI: 10.1183/13993003.01562-2018] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 11/29/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Anlotinib has been demonstrated in clinical trials to be effective in prolonging the progression-free survival (PFS) and overall survival (OS) of refractory advanced nonsmall cell lung cancer (NSCLC) patients. However, the underlying molecular mechanisms and predictive biomarkers of anlotinib are still unclear. METHODS A retrospective analysis of anlotinib administered to 294 NSCLC patients was performed to screen for underlying biomarkers of anlotinib-responsive patients. Transcriptome and functional assays were performed to understand the antitumour molecular mechanisms of anlotinib. Changes in serum CCL2 levels were analysed to examine the correlation of the anlotinib response between responders and nonresponders. RESULTS Anlotinib therapy was beneficial for prolonging OS in NSCLC patients harbouring positive driver gene mutations, especially patients harbouring the epithelial growth factor receptor (EGFR)T790M mutation. Moreover, anlotinib inhibited angiogenesis in an NCI-H1975-derived xenograft model via inhibiting CCL2. Finally, anlotinib-induced serum CCL2 level decreases were associated with the benefits of PFS and OS in refractory advanced NSCLC patients. CONCLUSIONS Our study reports a novel anti-angiogenesis mechanism of anlotinib via inhibiting CCL2 in an NCI-H1975-derived xenograft model and suggests that changes in serum CCL2 levels may be used to monitor and predict clinical outcomes in anlotinib-administered refractory advanced NSCLC patients using third-line therapy or beyond.
Collapse
Affiliation(s)
- Jun Lu
- Dept of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Central laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Immunology, Shanghai Jiao Ton University School of Medicine, Shanghai, China
| | - Hua Zhong
- Dept of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Immunology, Shanghai Jiao Ton University School of Medicine, Shanghai, China
| | - Tianqing Chu
- Dept of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xueyan Zhang
- Dept of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Li
- Dept of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayuan Sun
- Dept of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Runbo Zhong
- Dept of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqin Yang
- Central laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mohammad Shah Alam
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqing Lou
- Dept of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jianlin Xu
- Dept of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yanwei Zhang
- Dept of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Wu
- School of Life Science, East China Normal University, Shanghai, China
| | - Xiaowei Li
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaodong Zhao
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,These authors contributed equally: Jun Lu and Hua Zhong
| | - Kai Li
- Dept of Thoracic Oncology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,These authors contributed equally: Jun Lu and Hua Zhong
| | - Liming Lu
- Central laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Immunology, Shanghai Jiao Ton University School of Medicine, Shanghai, China.,These authors contributed equally: Xiaodong Zhao, Kai Li, Liming Lu and Baohui Han
| | - Baohui Han
- Dept of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,These authors contributed equally: Jun Lu and Hua Zhong
| |
Collapse
|
20
|
Nikseresht M, Shahverdi M, Dehghani M, Abidi H, Mahmoudi R, Ghalamfarsa G, Manzouri L, Ghavami S. Association of single nucleotide autophagy-related protein 5 gene polymorphism rs2245214 with susceptibility to non-small cell lung cancer. J Cell Biochem 2019; 120:1924-1931. [PMID: 30242869 DOI: 10.1002/jcb.27467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/25/2018] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Autophagy is a mechanism that is involved in the regulation of cellular life, apoptosis, and stemness while its intervening genes play important functions in various cancers including lung cancer. ATG5 is one of the key genes for the regulation of the autophagy pathway. In this study, our team has investigated the potential relationship between ATG5 gene polymorphism rs2245214 with non-small cell lung cancer (NSCLC) in a subpopulation of patients from southern Iran. In this study, 34 patients with NSCLC (20 males and 14 females [mean age: 12.86 ± 60.47 years]) and 50 healthy subjects (30 males and 20 females [mean age: 13.09 ± 56.62 years]) were studied in terms of the genotype of the ATG5 gene. We used restriction fragment length polymorphism and analyzed the results using SPSS software (v.23). The results revealed that subjects harboring the guanine/cytosine (GC) genotype of the rs2245214 ATG5 gene polymorphism had suffered less from NSCLC, whereas the prevalence of the C-allele of this polymorphism was significantly higher in patients with NSCLC ( P < 0.05). On the basis of the results of logistic regression, the presence of this C-allele may predict the risk of lung cancer ( P value = 0.011; OR, 3.52; 95% CI, 1.33-9.26). This study concludes that the C-allele of the rs2245214 ATG5 gene polymorphism is associated with increased susceptibility to NSCLC, whereas the GC genotype of this polymorphism is associated with decreased risk and might therefore have a protective role in the development of NSCLC.
Collapse
Affiliation(s)
- Mohsen Nikseresht
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Maryam Shahverdi
- Students Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mehdi Dehghani
- Hematology and Medical Oncology Department, Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Abidi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Reza Mahmoudi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Leila Manzouri
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Saeid Ghavami
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Children Hospital Research Institute of Manitoba, Biology of Breathing Theme, University of Manitoba, Winnipeg, Canada.,Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
21
|
Xiong D, Pan J, Yin Y, Jiang H, Szabo E, Lubet RA, Wang Y, You M. Novel mutational landscapes and expression signatures of lung squamous cell carcinoma. Oncotarget 2017; 9:7424-7441. [PMID: 29484121 PMCID: PMC5800913 DOI: 10.18632/oncotarget.23716] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 11/26/2017] [Indexed: 12/15/2022] Open
Abstract
Lung squamous cell carcinoma (LUSC) is a major subtype of Non-Small Cell Lung Cancer. To increase our understanding of the LUSC pathobiology, we performed exome sequencing and RNA-seq in 16 murine carcinogen-induced LUSC tumors and 8 normal murine lung tissue samples. Additionally, we conducted single-cell RNA-seq on two independent tumors from the same murine model. We identified a list of 59 cancer genes recurrently mutated in the mice LUSC tumors, 47 (80%) of which were also mutated in human LUSCs. At the single cell level, we detected unique clonal mutation patterns for each of the two LUSC tumors, being initiated from clones carrying the mutant Igfbp7 and Trp53 genes, respectively. We also identified an expression signature serving as an effective classifier for LUSC tumors and a strong predictor of survival outcomes of lung cancer patients. Lastly, we found that some of the mutant LUSC genes were associated with the significantly altered tumoral expression of inhibitory immune checkpoint genes such as PD-L1, VISTA, TIM3 and LAG3 in human LUSCs. The novel findings of clonal evolution, mutational landscapes and expression signatures of LUSC suggested new targets for the overall LUSC therapy and the immunotherapy of LUSC.
Collapse
Affiliation(s)
- Donghai Xiong
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jing Pan
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yuxin Yin
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hui Jiang
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Eva Szabo
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20850, USA
| | - Ronald A Lubet
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20850, USA
| | - Yian Wang
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ming You
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|