1
|
Ramkissoon C, Gaskin S, Song Y, Pisaniello D, Zosky GR. From Engineered Stone Slab to Silicosis: A Synthesis of Exposure Science and Medical Evidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:683. [PMID: 38928930 PMCID: PMC11203299 DOI: 10.3390/ijerph21060683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Engineered stone (ES) is a popular building product, due to its architectural versatility and generally lower cost. However, the fabrication of organic resin-based ES kitchen benchtops from slabs has been associated with alarming rates of silicosis among workers. In 2024, fifteen years after the first reported ES-related cases in the world, Australia became the first country to ban the use and importation of ES. A range of interacting factors are relevant for ES-associated silicosis, including ES material composition, characteristics of dust exposure and lung cell-particle response. In turn, these are influenced by consumer demand, work practices, particle size and chemistry, dust control measures, industry regulation and worker-related characteristics. This literature review provides an evidence synthesis using a narrative approach, with the themes of product, exposure and host. Exposure pathways and pathogenesis are explored. Apart from crystalline silica content, consideration is given to non-siliceous ES components such as resins and metals that may modify chemical interactions and disease risk. Preventive effort can be aligned with each theme and associated evidence.
Collapse
Affiliation(s)
- Chandnee Ramkissoon
- Adelaide Exposure Science and Health, School of Public Health, University of Adelaide, Adelaide, SA 5064, Australia; (S.G.); (D.P.)
| | - Sharyn Gaskin
- Adelaide Exposure Science and Health, School of Public Health, University of Adelaide, Adelaide, SA 5064, Australia; (S.G.); (D.P.)
| | - Yong Song
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia; (Y.S.); (G.R.Z.)
| | - Dino Pisaniello
- Adelaide Exposure Science and Health, School of Public Health, University of Adelaide, Adelaide, SA 5064, Australia; (S.G.); (D.P.)
| | - Graeme R. Zosky
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia; (Y.S.); (G.R.Z.)
| |
Collapse
|
2
|
Weller M, Clemence D, Lau A, Rawlings M, Robertson A, Sankaran B. An assessment of worker exposure to respirable dust and crystalline silica in workshops fabricating engineered stone. Ann Work Expo Health 2024; 68:170-179. [PMID: 38096573 DOI: 10.1093/annweh/wxad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/29/2023] [Indexed: 02/21/2024] Open
Abstract
There is a significant silicosis risk for workers fabricating engineered stone (ES) products containing crystalline silica. The aims of this study by SafeWork NSW were to: (i) assess current worker exposure to respirable dust (RD) and respirable crystalline silica (RCS) following a 5-y awareness and compliance program of inspections in ES workshops and (ii) to identify improvements in work practices from the available evidence base to further reduce exposures. One hundred and twenty-three personal full shift samples taken on as many workers and 34 static samples across 27 workshops fabricating ES were included in the final assessment. The exposure assessment was conducted using Casella Higgins-Dewell cyclones (Casella TSI) placed in the breathing zone of workers attached to SKC Air Check XR 5000 or SKC Chek TOUCH sampling pumps. Sample filters were sent to an ISO (2017) 17025:2017 accredited laboratory for gravimetric analysis for RD and X-Ray Diffraction (XRD) analysis to determine the amount of deposited RCS i.e. alpha-quartz and cristobalite. All workshops used wet methods of fabrication. The geometric mean (GM) of the pooled result for respirable dust (RD) was 0.09 mg/m3 TWA-8 h and 0.034 mg/m3 TWA-8 h for RCS. The highest exposed workers with a GM RCS of 0.062 mg/m3 TWA-8 h were those using pneumatic hand tools for cutting or grinding combined with polishing tasks. Workers operating semiautomated routers and edge polishers had the lowest GM RCS exposures of 0.022 mg/m3 TWA-8 h and 0.018 mg/m3 TWA-8 h respectively. Although ES workers remain exposed to RCS above the workplace exposure limit (WEL) of 0.05 mg/m 3 TWA-8 h, these results point to a very substantial reduction in exposures compared to poorly controlled dry methods of fabrication. Therefore, the wearing of respiratory protection by workers remains necessary until further control measures are more widely adopted across the entire industry e.g. reduction in the crystalline silica content of ES.
Collapse
Affiliation(s)
- Michael Weller
- Hygiene and Toxicology; (Chemicals, Explosives and Safety Auditing Directorate) SafeWork New South Wales, Parramatta 2150, Australia
| | - Dennis Clemence
- Hygiene and Toxicology; (Chemicals, Explosives and Safety Auditing Directorate) SafeWork New South Wales, Parramatta 2150, Australia
| | - Abe Lau
- Hygiene and Toxicology; (Chemicals, Explosives and Safety Auditing Directorate) SafeWork New South Wales, Parramatta 2150, Australia
| | - Mark Rawlings
- Hygiene and Toxicology; (Chemicals, Explosives and Safety Auditing Directorate) SafeWork New South Wales, Parramatta 2150, Australia
| | - Amy Robertson
- Hygiene and Toxicology; (Chemicals, Explosives and Safety Auditing Directorate) SafeWork New South Wales, Parramatta 2150, Australia
| | - Bhoopathy Sankaran
- Hygiene and Toxicology; (Chemicals, Explosives and Safety Auditing Directorate) SafeWork New South Wales, Parramatta 2150, Australia
| |
Collapse
|
3
|
Hoy RF, Dimitriadis C, Abramson M, Glass DC, Gwini S, Hore-Lacy F, Jimenez-Martin J, Walker-Bone K, Sim MR. Prevalence and risk factors for silicosis among a large cohort of stone benchtop industry workers. Occup Environ Med 2023; 80:439-446. [PMID: 37328266 PMCID: PMC10423513 DOI: 10.1136/oemed-2023-108892] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVES High silica content artificial stone has been found to be associated with silicosis among stone benchtop industry (SBI) workers. The objectives of this study were to determine the prevalence of and risk factors for silicosis among a large cohort of screened SBI workers, and determine the reliability of respiratory function testing (RFT) and chest x-ray (CXR) as screening tests in this industry. METHODS Subjects were recruited from a health screening programme available to all SBI workers in Victoria, Australia. Workers undertook primary screening, including an International Labour Office (ILO) classified CXR, and subject to prespecified criteria, also underwent secondary screening including high-resolution CT (HRCT) chest and respiratory physician assessment. RESULTS Among 544 SBI workers screened, 95% worked with artificial stone and 86.2% were exposed to dry processing of stone. Seventy-six per cent (414) required secondary screening, among whom 117 (28.2%) were diagnosed with silicosis (median age at diagnosis 42.1 years (IQR 34.8-49.7)), and all were male. In secondary screening, silicosis was associated with longer SBI career duration (12 vs 8 years), older age, lower body mass index and smoking. In those with silicosis, forced vital capacity was below the lower limit of normal in only 14% and diffusion capacity for carbon monoxide in 13%. Thirty-six (39.6%) of those with simple silicosis on chest HRCT had an ILO category 0 CXR. CONCLUSION Screening this large cohort of SBI workers identified exposure to dry processing of stone was common and the prevalence of silicosis was high. Compared with HRCT chest, CXR and RFTs had limited value in screening this high-risk population.
Collapse
Affiliation(s)
- Ryan F Hoy
- Monash Centre for Occupational and Environmental Health, School of Public Health & Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
- Department of Respiratory Medicine, Alfred Health, Melbourne, Victoria, Australia
| | - Christina Dimitriadis
- Monash Centre for Occupational and Environmental Health, School of Public Health & Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Michael Abramson
- School of Public Health & Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Deborah C Glass
- Monash Centre for Occupational and Environmental Health, School of Public Health & Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - StellaMay Gwini
- Monash Centre for Occupational and Environmental Health, School of Public Health & Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Fiona Hore-Lacy
- Monash Centre for Occupational and Environmental Health, School of Public Health & Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
- Department of Respiratory Medicine, Alfred Health, Melbourne, Victoria, Australia
| | - Javier Jimenez-Martin
- Monash Centre for Occupational and Environmental Health, School of Public Health & Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Karen Walker-Bone
- Monash Centre for Occupational and Environmental Health, School of Public Health & Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Malcolm R Sim
- Monash Centre for Occupational and Environmental Health, School of Public Health & Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|