1
|
Liu H, Zhang JQ, Chen C, Wang YH, Xu ZS, Zhao QZ, Zhang J, Xue JY, Xiong AS. The parsley genome assembly and DNA methylome shed light on apigenin biosynthesis in the Apiaceae. PLANT PHYSIOLOGY 2025; 197:kiaf077. [PMID: 39977123 DOI: 10.1093/plphys/kiaf077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/18/2024] [Accepted: 01/17/2025] [Indexed: 02/22/2025]
Abstract
Parsley [Petroselinum crispum (Mill.)] is a medicinal and edible vegetable of the Apiaceae family that is rich in apigenin. The Apiaceae family is well known for its diverse secondary metabolites. As a high-quality reference genome is lacking for parsley, the evolution and apigenin biosynthesis in Apiaceae have remained unexplored. Here, we report the chromosome-level genome sequence of parsley, consisting of 1.85 Gb that mainly arose from the expansion of long terminal repeats. Whole-genome bisulfite sequencing revealed a significantly higher number of hypermethylated differentially expressed genes in leaf blades and petioles than in root tissues. Moreover, we identified and characterized chalcone isomerase (CHI) genes, encoding key enzymes involved in apigenin biosynthesis in parsley. We also established that the APETALA2 family transcription factor Pcrispum_6.2855 (PcAP2) binds to the (Pcrispum_11.4764) PcCHI promoter and promotes apigenin accumulation. In conclusion, our work presents a multiomics data resource for understanding apigenin biosynthesis and its transcriptional regulation in parsley, in addition to shedding light on the evolution of parsley within the Apiaceae.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jia-Qi Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chen Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qin-Zheng Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jian Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
- Department of Biology, University of British Columbia, Okanagan, Canada V1V1V7
| | - Jia-Yu Xue
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
2
|
Han J, Munakata R, Takahashi H, Koeduka T, Kubota M, Moriyoshi E, Hehn A, Sugiyama A, Yazaki K. Catalytic mechanism underlying the regiospecificity of coumarin-substrate transmembrane prenyltransferases in Apiaceae. PLANT & CELL PHYSIOLOGY 2025; 66:1-14. [PMID: 39575581 PMCID: PMC11775389 DOI: 10.1093/pcp/pcae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 01/30/2025]
Abstract
Plant membrane-bound prenyltransferases (PTs) catalyze the transfer of prenyl groups to acceptor substrates, phenols, using prenyl diphosphates as the donor substrate. The presence of prenyl residues in the reaction products, prenylated phenols, is key to the expression of a variety of physiological activities. Plant PTs generally exhibit high specificities for both substrate recognition and prenylation sites, while the molecular mechanism involved in these enzymatic properties is largely unknown. In this study, we performed a systematic biochemical analysis to elucidate the catalytic mechanism responsible for the reaction specificity of plant PTs. Using two representative PTs, PsPT1 and PsPT2, from parsnip (Pastinaca sativa, Apiaceae), which differ only in the regiospecificity of the prenylation site, we performed domain swapping and site-directed mutagenesis of these PTs, followed by detailed enzymatic analysis combined with 3D modeling. As a result, we discovered the domains that control prenylation site specificity and further defined key amino acid residues responsible for the catalytic mechanism. In addition, we showed that the control mechanism of prenylation specificity revealed here is also highly conserved among coumarin-substrate PTs. These data suggest that the regulatory domain revealed here is commonly involved in prenylation regiospecificity in Apiaceae PTs.
Collapse
Affiliation(s)
- Junwen Han
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Ryosuke Munakata
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Hironobu Takahashi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Takao Koeduka
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1, Yoshida, Yamaguchi City, Yamaguchi 753-8511, Japan
| | - Mayumi Kubota
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1, Yoshida, Yamaguchi City, Yamaguchi 753-8511, Japan
| | - Eiko Moriyoshi
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Alain Hehn
- Université de Lorraine, INRAE, LAE, Nancy F54000, France
| | - Akifumi Sugiyama
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kazufumi Yazaki
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
3
|
Song BN, Liu CK, Deng JJ, Tan WY, Zhou SD, He XJ. Genome skimming provides evidence to accept two new genera (Apiaceae) separated from the Peucedanum s.l. FRONTIERS IN PLANT SCIENCE 2025; 15:1518418. [PMID: 39902214 PMCID: PMC11788392 DOI: 10.3389/fpls.2024.1518418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/19/2024] [Indexed: 02/05/2025]
Abstract
Background The Peucedanum s.l. genus, the backbone member of subfamily Apioideae, includes many medically and economically important plants. Although previous studies have proved that the genus was not a natural taxonomic unit and taxonomists also conducted several taxonomic revisions for taxa of this genus, classifications of numerous taxa of the genus still have not been satisfactorily resolved, especially for those endemic to China. Therefore, we conducted a comprehensive taxonomic revision of taxa within the polyphyletic Peucedanum s.l. genus in this study. Methods We used two molecular datasets (103 plastomes and 43 nrDNA sequences) generated by genome skimming to reconstructed a reliable phylogenetic framework with high support and resolution. In addition, we also investigated the divergence time of core clade of endemic taxa. Results and Discussion Both analyses failed to recover Peucedanum s.l. as a monophyletic group and robustly supported that P. morisonii, the representative of Peucedanum s.s., was distantly related to other Peucedanum s.l. members, which implied that these Peucedanum s.l. taxa were not "truly Peucedanum plants". Among these Peucedanum s.l. members, plastid-based phylogenies recognized two monophyletic clades, clade A (four species) and clade B (10 taxa). Meanwhile, obvious recognized features for morphology, plastome, and chromosome number for each clade were detected: dorsally compressed and glabrous mericarps with filiform dorsal ribs, winged lateral ribs, numerous vittae in commissure and each furrow, IRa/LSC border falling into rpl23 gene, an overall plastome size of 152,288-154,686 bp, and chromosome numbers of 2n=20 were found in clade A; whereas dorsally compressed and pubescent mericarps with filiform dorsal ribs, winged lateral ribs, numerous vittae in commissure and each furrow, IRa/LSC border falling into the ycf2 gene, an overall plastome size of 146,718-147,592 bp, and chromosome numbers of 2n=22 were discovered in clade B. Therefore, we established two new genera (Shanopeucedanum gen. nov. and Sinopeucedanum gen. nov.) to respectively accommodate the taxa of clades A and B. Furthermore, molecular dating analysis showed that the diversification of clades A and B occurred in the early Pleistocene and late Pliocene, respectively, which may have been driven by the complex geological and climate shifts of these periods. In summary, our study impelled a revision of Peucedanum s.l. members and improved the taxonomic system of the Apiaceae family.
Collapse
Affiliation(s)
- Bo-Ni Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chang-Kun Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- College of Resources Environment and Chemistry, Chuxiong Normal University, Chuxiong, China
| | - Jiao-Jiao Deng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wei-Yan Tan
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Ji J, Zang L, Lu T, Li C, Han X, Lee SR, Wang L. Widely targeted metabolomics analysis reveals differences in volatile metabolites among four Angelica species. NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:2. [PMID: 39743660 DOI: 10.1007/s13659-024-00485-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/23/2024] [Indexed: 01/04/2025]
Abstract
Angelica L. has attracted global interest for its traditional medicinal uses and commercial values. However, few studies have focused on the metabolomic differences among the Angelica species. In this study, widely targeted metabolomics based on gas chromatography-tandem mass spectrometry was employed to analyze the metabolomes of four Angelica species (Angelica sinensis (Oliv.) Diels (A. sinensis), Angelica biserrata (R.H.Shan & Yuan) C.Q.Yuan & R.H.Shan (A. biserrata), Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav. (A. dahurica) and Angelica keiskei Koidz. (A. keiskei)). A total of 698 volatile metabolites were identified and classified into fifteen different categories. The metabolomic analysis indicated that 7-hydroxycoumarin and Z-ligustilide accumulated at significantly higher levels in A. sinensis, whereas bornyl acetate showed the opposite pattern. Furthermore, a high correspondence between the dendrogram of metabolite contents and phylogenetic positions of the four species. This study provides a comprehensive biochemical map for the exploitation, application and development of the Angelica species as medicinal plants or health-related dietary supplements.
Collapse
Affiliation(s)
- Jiaojiao Ji
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No 7, Peangfei Road, Dapeng District, Shenzhen, 518120, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lanlan Zang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No 7, Peangfei Road, Dapeng District, Shenzhen, 518120, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Tingting Lu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No 7, Peangfei Road, Dapeng District, Shenzhen, 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen, 518000, China
| | - Cheng Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No 7, Peangfei Road, Dapeng District, Shenzhen, 518120, China
| | - Xiaoxu Han
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No 7, Peangfei Road, Dapeng District, Shenzhen, 518120, China
| | - Soo-Rang Lee
- Department of Biology Education, College of Education, Chosun University, Gwangju, 61452, South Korea
| | - Li Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No 7, Peangfei Road, Dapeng District, Shenzhen, 518120, China.
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, 528200, China.
| |
Collapse
|
5
|
Joh HJ, Park YS, Kang JS, Kim JT, Lado JP, Han SI, Chin YW, Park HS, Park JY, Yang TJ. A recent large-scale intraspecific IR expansion and evolutionary dynamics of the plastome of Peucedanum japonicum. Sci Rep 2025; 15:104. [PMID: 39748098 PMCID: PMC11696177 DOI: 10.1038/s41598-024-84540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
Peucedanum japonicum (PJ), a member of the Apiaceae family, is widely distributed and cultivated in East Asian countries for edible and functional foods. In this study, we compared the plastid genomes (plastomes) and 45S nuclear ribosomal DNA (45S nrDNA) simultaneously from 10 PJ collections. Plastome-based phylogenetic analysis showed that the PJ accessions were monophyletic within the genus Peucedanum. However, ten plastomes were classified into two different groups according to their length of inverted repeat (IR) block, the short-type (S-type) plastome group containing the 18.6 kbp of the original IR and the long-type (L-type) plastome group containing the 35.7 kbp of expanded IR by duplication of the 17.1 kbp of the large single copy region. A total of nine single nucleotide polymorphisms and eight insertions or deletions were identified among the five L-type plastomes, whereas large variations were identified among the five S-type plastomes. Calculation of synonymous substitution rates and divergence time estimation suggested that the 17 kbp IR expansion occurred recently. Molecular markers were developed and validated to classify the 55 PJ germplasm according to their plastome types. Our study would be useful for unraveling the dynamic evolution of plastomes in the Apiaceae family and for the molecular breeding of PJ.
Collapse
Affiliation(s)
- Ho Jun Joh
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Department of Forest Bioresources, National Institute Forest Science, Suwon, 16631, Republic of Korea
| | - Young Sang Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jong-Soo Kang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jin Tae Kim
- Interdisciplinary Program in Agricultural Genomics, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jickerson P Lado
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Genetics and Molecular Biology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, 4031, Laguna, Philippines
| | - Sang Il Han
- Medicinal Plant Garden, College of Pharmacy, Seoul National University, Koyang, 10257, Republic of Korea
| | - Young-Won Chin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyun-Seung Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Department of Integrative Biological Sciences and Industry, Convergence Research Center for Natural Products, Sejong University, Seoul, 05006, Republic of Korea
| | - Jee Young Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program in Agricultural Genomics, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
- Institute of Seed Biotechnology, Institutes of Green Bioscience and Technology, Seoul National University, Gangwon-do, 25354, Republic of Korea.
| |
Collapse
|
6
|
Wen J, Zhu JW, Ma XD, Li HM, Wu BC, Zhou W, Yang JX, Song CF. Phylogenomics and adaptive evolution of hydrophytic umbellifers (tribe Oenantheae, Apioideae) revealed from chloroplast genomes. BMC PLANT BIOLOGY 2024; 24:1140. [PMID: 39609760 PMCID: PMC11603818 DOI: 10.1186/s12870-024-05863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Tribe Oenantheae consists mainly of aquatic species within the Apioideae. The unique morphology and habitat distinguish this group from other Apioideae groups. However, the genomic information of these group species has not been widely developed, and the molecular mechanisms of adaptive evolution remain unclear. RESULTS We provide comparative analyses on 30 chloroplast genomes of this tribe representing five genera to explore the molecular variation response to plant adaptations. The Oenantheae chloroplast genomes presented typical quadripartite structures, with sizes ranging from 153,024 bp to 155,006 bp. Gene content and order were highly conserved with no significant expansion or contraction observed. Seven regions (rps16 intron-trnK, rpoB-trnC, trnE-trnT-psbD, petA-psbJ, ndhF-rpl32-trnL, ycf1a-rps15, and ycf1a gene) were identified as remarkable candidate DNA markers for future studies on species identification, biogeography, and phylogeny of tribe Oenantheae. Our study elucidated the relationships among the genera of tribe Oenantheae and subdivided the genera of Sium and Oenanthe. However, relationships among the Oenanthe I clade remain to be further clarified. Eight positively selected genes (accD, rbcL, rps8, ycf1a, ycf1b, ycf2, ndhF, and ndhK) were persuasively detected under site models tests, and these genes might have played roles in Oenantheae species adaptation to the aquatic environments. CONCLUSIONS Our results provide sufficient molecular markers for the subsequent molecular studies of the tribe Oenantheae, and promote the understanding of the adaptation of the Oenantheae species to aquatic environments.
Collapse
Affiliation(s)
- Jun Wen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Jun-Wen Zhu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Xu-Dong Ma
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Hui-Min Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Bao-Cheng Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Wei Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Jia-Xin Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223000, China
| | - Chun-Feng Song
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China.
| |
Collapse
|
7
|
Kasianova AM, Penin AA, Schelkunov MI, Kasianov AS, Logacheva MD, Klepikova AV. Trans2express - de novo transcriptome assembly pipeline optimized for gene expression analysis. PLANT METHODS 2024; 20:128. [PMID: 39152473 PMCID: PMC11330051 DOI: 10.1186/s13007-024-01255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND As genomes of many eukaryotic species, especially plants, are large and complex, their de novo sequencing and assembly is still a difficult task despite progress in sequencing technologies. An alternative to genome assembly is the assembly of transcriptome, the set of RNA products of the expressed genes. While a bunch of de novo transcriptome assemblers exists, the challenges of transcriptomes (the existence of isoforms, the uneven expression levels across genes) complicates the generation of high-quality assemblies suitable for downstream analyses. RESULTS We developed Trans2express - a web-based tool and a pipeline of de novo hybrid transcriptome assembly and postprocessing based on rnaSPAdes with a set of subsequent filtrations. The pipeline was tested on Arabidopsis thaliana cDNA sequencing data obtained using Illumina and Oxford Nanopore Technologies platforms and three non-model plant species. The comparison of structural characteristics of the transcriptome assembly with reference Arabidopsis genome revealed the high quality of assembled transcriptome with 86.1% of Arabidopsis expressed genes assembled as a single contig. We tested the applicability of the transcriptome assembly for gene expression analysis. For both Arabidopsis and non-model species the results showed high congruence of gene expression levels and sets of differentially expressed genes between analyses based on genome and based on the transcriptome assembly. CONCLUSIONS We present Trans2express - a protocol for de novo hybrid transcriptome assembly aimed at recovering of a single transcript per gene. We expect this protocol to promote the characterization of transcriptomes and gene expression analysis in non-model plants and web-based tool to be of use to a wide range of plant biologists.
Collapse
Affiliation(s)
- Aleksandra M Kasianova
- Institute for Information Transmission, Russian Academy of Sciences, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Aleksey A Penin
- Institute for Information Transmission, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail I Schelkunov
- Institute for Information Transmission, Russian Academy of Sciences, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Artem S Kasianov
- Institute for Information Transmission, Russian Academy of Sciences, Moscow, Russia
| | - Maria D Logacheva
- Institute for Information Transmission, Russian Academy of Sciences, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Anna V Klepikova
- Institute for Information Transmission, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
8
|
Huang XC, Tang H, Wei X, He Y, Hu S, Wu JY, Xu D, Qiao F, Xue JY, Zhao Y. The gradual establishment of complex coumarin biosynthetic pathway in Apiaceae. Nat Commun 2024; 15:6864. [PMID: 39127760 PMCID: PMC11316762 DOI: 10.1038/s41467-024-51285-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Complex coumarins (CCs) represent characteristic metabolites found in Apiaceae plants, possessing significant medical value. Their essential functional role is likely as protectants against pathogens and regulators responding to environmental stimuli. Utilizing genomes and transcriptomes from 34 Apiaceae plants, including our recently sequenced Peucedanum praeruptorum, we conduct comprehensive phylogenetic analyses to reconstruct the detailed evolutionary process of the CC biosynthetic pathway in Apiaceae. Our results show that three key enzymes - p-coumaroyl CoA 2'-hydroxylase (C2'H), C-prenyltransferase (C-PT), and cyclase - originated successively at different evolutionary nodes within Apiaceae through various means of gene duplications: ectopic and tandem duplications. Neofunctionalization endows these enzymes with novel functions necessary for CC biosynthesis, thus completing the pathway. Candidate genes are cloned for heterologous expression and subjected to in vitro enzymatic assays to test our hypothesis regarding the origins of the key enzymes, and the results precisely validate our evolutionary inferences. Among the three enzymes, C-PTs are likely the primary determinant of the structural diversity of CCs (linear/angular), due to divergent activities evolved to target different positions (C-6 or C-8) of umbelliferone. A key amino acid variation (Ala161/Thr161) is identified and proven to play a crucial role in the alteration of enzymatic activity, possibly resulting in distinct binding forms between enzymes and substrates, thereby leading to different products. In conclusion, this study provides a detailed trajectory for the establishment and evolution of the CC biosynthetic pathway in Apiaceae. It explains why only a portion, not all, of Apiaceae plants can produce CCs and reveals the mechanisms of CC structural diversity among different Apiaceae plants.
Collapse
Affiliation(s)
- Xin-Cheng Huang
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Huanying Tang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Xuefen Wei
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yuedong He
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Shuaiya Hu
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jia-Yi Wu
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Dingqiao Xu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, China
| | - Fei Qiao
- National Key Laboratory for Tropical Crop Breeding, Sanya, 572024, Hainan, China.
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| | - Jia-Yu Xue
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Yucheng Zhao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
- Medical Botanical Garden, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
9
|
Sidharthan VK, Reddy V, Kiran G, Rajeswari V, Baranwal VK, Kumar MK, Kumar KS. Probing of plant transcriptomes reveals the hidden genetic diversity of the family Secoviridae. Arch Virol 2024; 169:150. [PMID: 38898334 DOI: 10.1007/s00705-024-06076-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/07/2024] [Indexed: 06/21/2024]
Abstract
Secoviruses are single-stranded RNA viruses that infect plants. In the present study, we identified 61 putative novel secoviral genomes in various plant species by mining publicly available plant transcriptome data. These viral sequences represent the genomes of 13 monopartite and 48 bipartite secovirids. The genome sequences of 52 secovirids were coding-complete, and nine were partial. Except for small open reading frames (ORFs) determined in waikaviral genomes and RNA2 of torradoviruses, all of the recovered genomes/genome segments contained a large ORF encoding a polyprotein. Based on genome organization and phylogeny, all but three of the novel secoviruses were assigned to different genera. The genome organization of two identified waika-like viruses resembled that of the recently identified waika-like virus Triticum aestivum secovirus. Phylogenetic analysis revealed a pattern of host-virus co-evolution in a few waika- and waika-like viruses and increased phylogenetic diversity of nepoviruses. The study provides a basis for further investigation of the biological properties of these novel secoviruses.
Collapse
Affiliation(s)
- V Kavi Sidharthan
- Division of Genetics and Tree Improvement, ICFRE-Institute of Forest Biodiversity, Hyderabad, India.
| | - Vijayprakash Reddy
- Division of Genetics and Tree Improvement, ICFRE-Institute of Forest Biodiversity, Hyderabad, India
| | - G Kiran
- Division of Genetics and Tree Improvement, ICFRE-Institute of Forest Biodiversity, Hyderabad, India
| | - V Rajeswari
- School of Agricultural Sciences, Malla Reddy University, Hyderabad, India
| | - V K Baranwal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - M Kiran Kumar
- Division of Genetics and Tree Improvement, ICFRE-Institute of Forest Biodiversity, Hyderabad, India
| | - K Sudheer Kumar
- Division of Genetics and Tree Improvement, ICFRE-Institute of Forest Biodiversity, Hyderabad, India
| |
Collapse
|
10
|
Xie P, Guo Y, Teng Y, Zhou W, Yu Y. GeneMiner: A tool for extracting phylogenetic markers from next-generation sequencing data. Mol Ecol Resour 2024; 24:e13924. [PMID: 38197287 DOI: 10.1111/1755-0998.13924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024]
Abstract
The advancement of next-generation sequencing (NGS) technologies has been revolutionary for the field of evolutionary biology. This technology has led to an abundance of available genomes and transcriptomes for researchers to mine. Specifically, researchers can mine for various types of molecular markers that are vital for phylogenetic, evolutionary and ecological studies. Numerous tools have been developed to extract these molecular markers from NGS data. However, due to an insufficient number of well-annotated reference genomes for non-model organisms, it remains challenging to obtain these markers accurately and efficiently. Here, we present GeneMiner, an improved and expanded version of our previous tool, Easy353. GeneMiner combines the reference-guided de Bruijn graph assembly with seed self-discovery and greedy extension. Additionally, it includes a verification step using a parameter-bootstrap method to reduce the pitfalls associated with using a relatively distant reference. Our results, using both experimental and simulation data, showed GeneMiner can accurately acquire phylogenetic molecular markers for plants using transcriptomic, genomic and other NGS data. GeneMiner is designed to be user-friendly, fast and memory-efficient. Further, it is compatible with Linux, Windows and macOS. All source codes are publicly available on GitHub (https://github.com/sculab/GeneMiner) and Gitee (https://gitee.com/sculab/GeneMiner) for easy accessibility and transparency.
Collapse
Affiliation(s)
- Pulin Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yongling Guo
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yue Teng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wenbin Zhou
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yan Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Jiang QP, Guo XL, Zhao AQ, Fan X, Li Q, Zhou SD, He XJ. Phylogeny and Taxonomic Revision of the Genus Melanosciadium (Apiaceae), Based on Plastid Genomes and Morphological Evidence. PLANTS (BASEL, SWITZERLAND) 2024; 13:907. [PMID: 38592923 PMCID: PMC10974901 DOI: 10.3390/plants13060907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
Melanosciadium is considered a monotypic genus and is also endemic to the southwest of China. No detailed phylogenetic studies or plastid genomes have been identified in Melanosciadium. In this study, the plastid genome sequence and nrDNA sequence were used for the phylogenetic analysis of Melanosciadium and its related groups. Angelica tsinlingensis was previously considered a synonym of Hansenia forbesii. Similarly, Ligusticum angelicifolium was previously thought to be the genus Angelica or Ligusticopsis. Through field observations and morphological evidence, we believe that the two species are more similar to M. pimpinelloideum in leaves, umbel rays, and fruits. Meanwhile, we found a new species from Anhui Province (eastern China) that is similar to M. pimpinelloideum and have named it M. Jinzhaiensis. We sequenced and assembled the complete plastid genomes of these species and another three Angelica species. The genome comparison results show that M. pimpinelloideum, A. tsinlingensis, Ligusticum angelicifolium, and M. jinzhaiensis have similarities to each other in the plastid genome size, gene number, and length of the LSC and IR regions; the plastid genomes of these species are distinct from those of the Angelica species. In addition, we reconstruct the phylogenetic relationships using both plastid genome sequences and nrDNA sequences. The phylogenetic analysis revealed that A. tsinlingensis, M. pimpinelloideum, L. angelicifolium, and M. jinzhaiensis are closely related to each other and form a monophyletic group with strong support within the Selineae clade. Consequently, A. tsinlingensis and L. angelicifolium should be classified as members of the genus Melanosciadium, and suitable taxonomical treatments have been proposed. Meanwhile, a comprehensive description of the new species, M. jinzhaiensis, is presented, encompassing its habitat environment and detailed morphological traits.
Collapse
Affiliation(s)
- Qiu-Ping Jiang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (Q.-P.J.); (A.-Q.Z.); (S.-D.Z.)
| | - Xian-Lin Guo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610093, China;
| | - An-Qi Zhao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (Q.-P.J.); (A.-Q.Z.); (S.-D.Z.)
| | - Xing Fan
- Chengdu Branch of Giant Panda National Park, Chengdu 610083, China; (X.F.); (Q.L.)
| | - Qing Li
- Chengdu Branch of Giant Panda National Park, Chengdu 610083, China; (X.F.); (Q.L.)
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (Q.-P.J.); (A.-Q.Z.); (S.-D.Z.)
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (Q.-P.J.); (A.-Q.Z.); (S.-D.Z.)
| |
Collapse
|
12
|
Zhang G, Ma H. Nuclear phylogenomics of angiosperms and insights into their relationships and evolution. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:546-578. [PMID: 38289011 DOI: 10.1111/jipb.13609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024]
Abstract
Angiosperms (flowering plants) are by far the most diverse land plant group with over 300,000 species. The sudden appearance of diverse angiosperms in the fossil record was referred to by Darwin as the "abominable mystery," hence contributing to the heightened interest in angiosperm evolution. Angiosperms display wide ranges of morphological, physiological, and ecological characters, some of which have probably influenced their species richness. The evolutionary analyses of these characteristics help to address questions of angiosperm diversification and require well resolved phylogeny. Following the great successes of phylogenetic analyses using plastid sequences, dozens to thousands of nuclear genes from next-generation sequencing have been used in angiosperm phylogenomic analyses, providing well resolved phylogenies and new insights into the evolution of angiosperms. In this review we focus on recent nuclear phylogenomic analyses of large angiosperm clades, orders, families, and subdivisions of some families and provide a summarized Nuclear Phylogenetic Tree of Angiosperm Families. The newly established nuclear phylogenetic relationships are highlighted and compared with previous phylogenetic results. The sequenced genomes of Amborella, Nymphaea, Chloranthus, Ceratophyllum, and species of monocots, Magnoliids, and basal eudicots, have facilitated the phylogenomics of relationships among five major angiosperms clades. All but one of the 64 angiosperm orders were included in nuclear phylogenomics with well resolved relationships except the placements of several orders. Most families have been included with robust and highly supported placements, especially for relationships within several large and important orders and families. Additionally, we examine the divergence time estimation and biogeographic analyses of angiosperm on the basis of the nuclear phylogenomic frameworks and discuss the differences compared with previous analyses. Furthermore, we discuss the implications of nuclear phylogenomic analyses on ancestral reconstruction of morphological, physiological, and ecological characters of angiosperm groups, limitations of current nuclear phylogenomic studies, and the taxa that require future attention.
Collapse
Affiliation(s)
- Guojin Zhang
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hong Ma
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
13
|
Liu LJ, Liu CK, Cai J, Deng JJ, He XJ, Zhou SD. The complete plastomes of thirteen Libanotis (Apiaceae, Apioideae) plants: comparative and phylogenetic analyses provide insights into the plastome evolution and taxonomy of Libanotis. BMC PLANT BIOLOGY 2024; 24:106. [PMID: 38342898 PMCID: PMC10860227 DOI: 10.1186/s12870-024-04784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/30/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND The genus Libanotis Haller ex Zinn, nom. cons., a contentious member of Apiaceae, encompasses numerous economically and medicinally significant plants, comprising approximately 30 species distributed across Eurasia. Despite many previous taxonomic insights into it, phylogenetic studies of the genus are still lacking. And the establishment of a robust phylogenetic framework remains elusive, impeding advancements and revisions in the taxonomic system for this genus. Plastomes with greater variability in their genetic characteristics hold promise for building a more robust Libanotis phylogeny. RESULTS During our research, we sequenced, assembled, and annotated complete plastomes for twelve Libanotis species belong to three sections and two closely related taxa. We conducted a comprehensive comparative analysis through totally thirteen Libanotis plastomes for the genus, including an additional plastome that had been published. Our results suggested that Libanotis plastome was highly conserved between different subclades, while the coding regions were more conserved than the non-coding regions, and the IR regions were more conserved than the single copy regions. Nevertheless, eight mutation hotspot regions were identified among plastomes, which can be considered as candidate DNA barcodes for accurate species identification in Libanotis. The phylogenetic analyses generated a robustly framework for Libanotis and revealed that Libanotis was not a monophyletic group and their all three sections were polygenetic. Libanotis schrenkiana was sister to L. sibirica, type species of this genus, but the remainders scattered within Selineae. CONCLUSION The plastomes of Libanotis exhibited a high degree of conservation and was effective in enhancing the support and resolution of phylogenetic analyses within this genus. Based on evidence from both phylogeny and morphology, we propose the recognition of "Libanotis sensu stricto" and provide taxonomic recommendations for other taxa that previously belonged to Libanotis. In conclusion, our study not only revealed the phylogenetic position and plastid evolution of Libanotis, but also provided new insights into the phylogeny of the family Apiaceae and phylogenetic relationships within the tribe Selineae.
Collapse
Affiliation(s)
- Li-Jia Liu
- Key Laboratory of Bio‑Resources and Eco‑Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chang-Kun Liu
- Key Laboratory of Bio‑Resources and Eco‑Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
- College of Resources Environment and Chemistry, Chuxiong Normal University, Chuxiong, 675000, China
| | - Jing Cai
- Key Laboratory of Bio‑Resources and Eco‑Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jiao-Jiao Deng
- Key Laboratory of Bio‑Resources and Eco‑Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xing-Jin He
- Key Laboratory of Bio‑Resources and Eco‑Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Song-Dong Zhou
- Key Laboratory of Bio‑Resources and Eco‑Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
14
|
Song BN, Liu CK, Zhao AQ, Tian RM, Xie DF, Xiao YL, Chen H, Zhou SD, He XJ. Phylogeny and diversification of genus Sanicula L. (Apiaceae): novel insights from plastid phylogenomic analyses. BMC PLANT BIOLOGY 2024; 24:70. [PMID: 38263006 PMCID: PMC10807117 DOI: 10.1186/s12870-024-04750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND The genus Sanicula L. is a unique perennial herb that holds important medicinal values. Although the previous studies on Sanicula provided us with a good research basis, its taxonomic system and interspecific relationships have not been satisfactorily resolved, especially for those endemic to China. Moreover, the evolutionary history of this genus also remains inadequately understood. The plastid genomes possessing highly conserved structure and limited evolutionary rate have proved to be an effective tool for studying plant phylogeny and evolution. RESULTS In the current study, we newly sequenced and assembled fifteen Sanicula complete plastomes. Combined with two previously reported plastomes, we performed comprehensively plastid phylogenomics analyses to gain novel insights into the evolutionary history of this genus. The comparative results indicated that the seventeen plastomes exhibited a high degree of conservation and similarity in terms of their structure, size, GC content, gene order, IR borders, codon bias patterns and SSRs profiles. Such as all of them displayed a typical quadripartite structure, including a large single copy region (LSC: 85,074-86,197 bp), a small single copy region (SSC: 17,047-17,132 bp) separated by a pair of inverted repeat regions (IRs: 26,176-26,334 bp). And the seventeen plastomes had similar IR boundaries and the adjacent genes were identical. The rps19 gene was located at the junction of the LSC/IRa, the IRa/SSC junction region was located between the trnN gene and ndhF gene, the ycf1 gene appeared in the SSC/IRb junction and the IRb/LSC boundary was located between rpl12 gene and trnH gene. Twelve specific mutation hotspots (atpF, cemA, accD, rpl22, rbcL, matK, ycf1, trnH-psbA, ycf4-cemA, rbcL-accD, trnE-trnT and trnG-trnR) were identified that can serve as potential DNA barcodes for species identification within the genus Sanicula. Furthermore, the plastomes data and Internal Transcribed Spacer (ITS) sequences were performed to reconstruct the phylogeny of Sanicula. Although the tree topologies of them were incongruent, both provided strong evidence supporting the monophyly of Saniculoideae and Apioideae. In addition, the sister groups between Saniculoideae and Apioideae were strongly suggested. The Sanicula species involved in this study were clustered into a clade, and the Eryngium species were also clustered together. However, it was clearly observed that the sections of Sanicula involved in the current study were not respectively recovered as monophyletic group. Molecular dating analysis explored that the origin of this genus was occurred during the late Eocene period, approximately 37.84 Ma (95% HPD: 20.33-52.21 Ma) years ago and the diversification of the genus was occurred in early Miocene 18.38 Ma (95% HPD: 10.68-25.28 Ma). CONCLUSION The plastome-based tree and ITS-based tree generated incongruences, which may be attributed to the event of hybridization/introgression, incomplete lineage sorting (ILS) and chloroplast capture. Our study highlighted the power of plastome data to significantly improve the phylogenetic supports and resolutions, and to efficiently explore the evolutionary history of this genus. Molecular dating analysis explored that the diversification of the genus occurred in the early Miocene, which was largely influenced by the prevalence of the East Asian monsoon and the uplift of the Hengduan Mountains (HDM). In summary, our study provides novel insights into the plastome evolution, phylogenetic relationships, taxonomic framework and evolution of genus Sanicula.
Collapse
Affiliation(s)
- Bo-Ni Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chang-Kun Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - An-Qi Zhao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Rong-Ming Tian
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yu-Lin Xiao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Huai Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
15
|
Park S, Park S. Intrageneric structural variation in organelle genomes from the genus Dystaenia (Apiaceae): genome rearrangement and mitochondrion-to-plastid DNA transfer. FRONTIERS IN PLANT SCIENCE 2023; 14:1283292. [PMID: 38116150 PMCID: PMC10728875 DOI: 10.3389/fpls.2023.1283292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
Introduction During plant evolution, intracellular DNA transfer (IDT) occurs not only from organelles to the nucleus but also between organelles. To further comprehend these events, both organelle genomes and transcriptomes are needed. Methods In this study, we constructed organelle genomes and transcriptomes for two Dystaenia species and described their dynamic IDTs between their nuclear and mitochondrial genomes, or plastid and mitochondrial genomes (plastome and mitogenome). Results and Discussion We identified the putative functional transfers of the mitochondrial genes 5' rpl2, rps10, rps14, rps19, and sdh3 to the nucleus in both Dystaenia species and detected two transcripts for the rpl2 and sdh3 genes. Additional transcriptomes from the Apicaceae species also provided evidence for the transfers and duplications of these mitochondrial genes, showing lineage-specific patterns. Intrageneric variations of the IDT were found between the Dystaenia organelle genomes. Recurrent plastid-to-mitochondrion DNA transfer events were only identified in the D. takeshimana mitogenome, and a pair of mitochondrial DNAs of plastid origin (MIPTs) may generate minor alternative isoforms. We only found a mitochondrion-to-plastid DNA transfer event in the D. ibukiensis plastome. This event may be linked to inverted repeat boundary shifts in its plastome. We inferred that the insertion region involved an MIPT that had already acquired a plastid sequence in its mitogenome via IDT. We propose that the MIPT acts as a homologous region pairing between the donor and recipient sequences. Our results provide insight into the evolution of organelle genomes across the family Apiaceae.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Republic of Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
16
|
Wang C, Luo S, Yao N, Wang X, Song Y, Chen S. A Comprehensive Analysis of Triplophysa labiata (Kessler, 1874) Mitogenome and Its Phylogenetic Implications within the Triplophysa Genus. Genes (Basel) 2023; 14:1356. [PMID: 37510261 PMCID: PMC10378854 DOI: 10.3390/genes14071356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
In order to resolve the long-standing controversy surrounding the relationships within the Triplophysa genus, we conducted an extensive analysis of the complete mitogenome of Triplophysa labiata using DNBSEQ short reads. Additionally, we reconstructed the phylogeny of the Nemacheilidae family using mitogenome data. By comparing all available mitogenomes within the Triplophysa genus, we gained valuable insights into its evolutionary history. Our findings revealed that the mitogenome sequence of T. labiata is circular, spanning a length of 16,573 bp. It encompasses 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), 2 ribosomal RNAs (rRNAs), and a control region (D-loop). Among the PCGs, the start codon ATG was commonly observed, except in cox1, while the stop codons TAA/TAG/T were found in all PCGs. Furthermore, purifying selection was evident across all PCGs. Utilizing maximum likelihood (ML) methods, we employed the 13 PCGs and the concatenated nucleotide sequences of 30 Triplophysa mitogenomes to infer the phylogeny. Our results strongly supported the division of the Triplophysa genus into four primary clades. Notably, our study provides the first evidence of the close relationship between T. labiata and T. dorsalis. These findings serve as a significant foundation for future investigations into the mitogenomics and phylogeny of Nemacheilidae fishes, paving the way for further advancements in this field of research.
Collapse
Affiliation(s)
- Chengxin Wang
- College of Life Science and Technology, Tarim Research Center of Rare Fishes, Tarim University, CN-0997, Alar 843300, China
| | - Site Luo
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Na Yao
- College of Life Science and Technology, Tarim Research Center of Rare Fishes, Tarim University, CN-0997, Alar 843300, China
| | - Xinyue Wang
- College of Life Science and Technology, Tarim Research Center of Rare Fishes, Tarim University, CN-0997, Alar 843300, China
| | - Yong Song
- College of Life Science and Technology, Tarim Research Center of Rare Fishes, Tarim University, CN-0997, Alar 843300, China
| | - Shengao Chen
- College of Life Science and Technology, Tarim Research Center of Rare Fishes, Tarim University, CN-0997, Alar 843300, China
| |
Collapse
|
17
|
Peng C, Guo XL, Zhou SD, He XJ. Backbone phylogeny and adaptive evolution of Pleurospermum s. l.: New insights from phylogenomic analyses of complete plastome data. FRONTIERS IN PLANT SCIENCE 2023; 14:1148303. [PMID: 37063181 PMCID: PMC10101341 DOI: 10.3389/fpls.2023.1148303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Pleurospermum is a taxonomically challenging taxon of Apiaceae, as its circumscription and composition remain controversial for morphological similarities with several related genera, leading to a dispute between Pleurospermum in the broad sense and strict sense. While evidence from previous molecular studies recognized plural branching lineages within the Pleurospermum s. l., it did not support the latest delimitation of Pleurospermum s. str. by only two closely related northern species. So far, no proper delimitation for Pleurospermum has come up, and many of the plural taxa in Pleurospermum s. l. remain unresolved, which may be due to poor phylogenetic resolution yielded barely from ITS sequences. Herein, we newly assembled 40 complete plastomes from 36 species of Pleurospermum s. l. and related genera, 34 of which were first reported and generated a well-resolved backbone phylogeny in a framework of the subfamily Apioideae. From the phylogeny with greatly improved resolution, a total of six well-supported monophyletic lineages within Pleurospermum s. l. were recognized falling in different major clades of Apioideae. Combining morphological characteristics with phylogenetic inference, we suggested to re-delimit the Pleurospermum s. str. by introducing nine species mainly from the Himalayan regions and proposed its boundary features; the remaining species were suggested to be excluded from Pleurospermum to incorporate into their more related taxa being revealed. On this basis, the plastome comparison revealed not only the high conservatism but also the mild differences among lineages in plastome structure and gene evolution. Overall, our study provided a backbone phylogeny essential for further studies of the taxonomically difficult taxa within Pleurospermum s. l.
Collapse
Affiliation(s)
| | | | | | - Xing-Jin He
- *Correspondence: Xing-Jin He, ; Song-Dong Zhou,
| |
Collapse
|
18
|
Habib S, Gong Y, Dong S, Lindstrom A, Stevenson DW, Wu H, Zhang S. Phylotranscriptomics Shed Light on Intrageneric Relationships and Historical Biogeography of Ceratozamia (Cycadales). PLANTS (BASEL, SWITZERLAND) 2023; 12:478. [PMID: 36771563 PMCID: PMC9921377 DOI: 10.3390/plants12030478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Ceratozamia Brongn. is one of the species-rich genera of Cycadales comprising 38 species that are mainly distributed in Mexico, with a few species reported from neighboring regions. Phylogenetic relationships within the genus need detailed investigation based on extensive datasets and reliable systematic approaches. Therefore, we used 30 of the known 38 species to reconstruct the phylogeny based on transcriptome data of 3954 single-copy nuclear genes (SCGs) via coalescent and concatenated approaches and three comparative datasets (nt/nt12/aa). Based on all these methods, Ceratozamia is divided into six phylogenetic subclades within three major clades. There were a few discrepancies regarding phylogenetic position of some species within these subclades. Using these phylogenetic trees, biogeographic history and morphological diversity of the genus are explored. Ceratozamia originated from ancestors in southern Mexico since the mid-Miocene. There is a distinct distribution pattern of species through the Trans-Mexican Volcanic Belt (TMVB), that act as a barrier for the species dispersal at TMVB and its southern and northern part. Limited dispersal events occurred during the late Miocene, and maximum diversification happened during the Pliocene epoch. Our study provides a new insight into phylogenetic relationships, the origin and dispersal routes, and morphological diversity of the genus Ceratozamia. We also explain how past climatic changes affected the diversification of this Mesoamerica-native genus.
Collapse
Affiliation(s)
- Sadaf Habib
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzhen 518004, China
| | - Yiqing Gong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzhen 518004, China
| | - Shanshan Dong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzhen 518004, China
| | - Anders Lindstrom
- Global Biodiversity Conservancy 144/124 Moo 3, Soi Bua Thong, Bangsalae, Sattahip, Chonburi 20250, Thailand
| | | | - Hong Wu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shouzhou Zhang
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzhen 518004, China
| |
Collapse
|
19
|
Zhang Z, Xie P, Guo Y, Zhou W, Liu E, Yu Y. Easy353: A Tool to Get Angiosperms353 Genes for Phylogenomic Research. Mol Biol Evol 2022; 39:6862883. [PMID: 36458838 PMCID: PMC9757696 DOI: 10.1093/molbev/msac261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/28/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
The Angiosperms353 gene set (AGS) consists of a set of 353 universal low-copy nuclear genes that were selected by examining more than 600 angiosperm species. These genes can be used for phylogenetic studies and population genetics at multiple taxonomic scales. However, current pipelines are not able to recover Angiosperms353 genes efficiently and accurately from high-throughput sequences. Here, we developed Easy353, a reference-guided assembly tool to recover the AGS from high-throughput sequencing (HTS) data (including genome skimming, RNA-seq, and target enrichment). Easy353 is an open-source user-friendly assembler for diverse types of high-throughput data. It has a graphical user interface and a command-line interface that is compatible with all widely-used computer systems. Evaluations, based on both simulated and empirical data, suggest that Easy353 yields low rates of assembly errors.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Pulin Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Yongling Guo
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Wenbin Zhou
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Enyan Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Yan Yu
- Corresponding author: E-mail:
| |
Collapse
|
20
|
Han X, Li C, Sun S, Ji J, Nie B, Maker G, Ren Y, Wang L. The chromosome-level genome of female ginseng (Angelica sinensis) provides insights into molecular mechanisms and evolution of coumarin biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1224-1237. [PMID: 36259135 DOI: 10.1111/tpj.16007] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Coumarins are natural products with important medicinal values, and include simple coumarins, furanocoumarins and pyranocoumarins. Female ginseng (Angelica sinensis) is a renowned herb with abundant coumarins, originated in China and known for the treatment of female ailments for thousands of years. The molecular basis of simple coumarin biosynthesis in A. sinensis and the evolutionary history of the genes involved in furanocoumarin biosynthesis are largely unknown. Here, we generated the first chromosome-scale genome of A. sinensis. It has a genome size of 2.37 Gb, which was generated by combining PacBio and Hi-C sequencing technologies. The genome was predicted to contain 43 202 protein-coding genes dispersed mainly on 11 pseudochromosomes. We not only provided evidence for whole-genome duplication (WGD) specifically occurring in the Apioideae subfamily, but also demonstrated the vital role of tandem duplication for phenylpropanoid biosynthesis in A. sinensis. Combined analyses of transcriptomic and metabolomic data revealed key genes and candidate transcription factors regulating simple coumarin biosynthesis. Furthermore, phylogenomic synteny network analyses suggested prenyltransferase genes involved in furanocoumarin biosynthesis evolved independently in the Moraceae, Fabaceae, Rutaceae and Apiaceae after ζ and ε WGD. Our work sheds light on coumarin biosynthesis, and provides a benchmark for accelerating genetic research and molecular breeding in A. sinensis.
Collapse
Affiliation(s)
- Xiaoxu Han
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
- College of Science, Health, Engineering and Education, Murdoch University, 6150, Western Australia, Murdoch, 90 South Street, Australia
| | - Cheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Shichao Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Jiaojiao Ji
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Bao Nie
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Garth Maker
- College of Science, Health, Engineering and Education, Murdoch University, 6150, Western Australia, Murdoch, 90 South Street, Australia
| | - Yonglin Ren
- College of Science, Health, Engineering and Education, Murdoch University, 6150, Western Australia, Murdoch, 90 South Street, Australia
| | - Li Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, 528200, Foshan, China
| |
Collapse
|
21
|
Habib S, Gong Y, Dong S, Lindstrom A, William Stevenson D, Liu Y, Wu H, Zhang S. Phylotranscriptomics reveal the spatio-temporal distribution and morphological evolution of Macrozamia, an Australian endemic genus of Cycadales. ANNALS OF BOTANY 2022; 130:671-685. [PMID: 36111957 PMCID: PMC9670756 DOI: 10.1093/aob/mcac117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/14/2022] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS Cycads are regarded as an ancient lineage of living seed plants, and hold important clues to understand the early evolutionary trends of seed plants. The molecular phylogeny and spatio-temporal diversification of one of the species-rich genera of cycads, Macrozamia, have not been well reconstructed. METHODS We analysed a transcriptome dataset of 4740 single-copy nuclear genes (SCGs) of 39 Macrozamia species and two outgroup taxa. Based on concatenated (maximum parsimony, maximum likelihood) and multispecies coalescent analyses, we first establish a well-resolved phylogenetic tree of Macrozamia. To identify cyto-nuclear incongruence, the plastid protein coding genes (PCGs) from transcriptome data are extracted using the software HybPiper. Furthermore, we explore the biogeographical history of the genus and shed light on the pattern of floristic exchange between three distinct areas of Australia. Six key diagnostic characters are traced on the phylogenetic framework using two comparative methods, and infra-generic classification is investigated. KEY RESULTS The tree topologies of concatenated and multi-species coalescent analyses of SCGs are mostly congruent with a few conflicting nodes, while those from plastid PCGs show poorly supported relationships. The genus contains three major clades that correspond to their distinct distributional areas in Australia. The crown group of Macrozamia is estimated to around 11.80 Ma, with a major expansion in the last 5-6 Myr. Six morphological characters show homoplasy, and the traditional phenetic sectional division of the genus is inconsistent with this current phylogeny. CONCLUSIONS This first detailed phylogenetic investigation of Macrozamia demonstrates promising prospects of SCGs in resolving phylogenetic relationships within cycads. Our study suggests that Macrozamia, once widely distributed in Australia, underwent major extinctions because of fluctuating climatic conditions such as cooling and mesic biome disappearance in the past. The current close placement of morphologically distinct species in the phylogenetic tree may be related to neotenic events that occurred in the genus.
Collapse
Affiliation(s)
- Sadaf Habib
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yiqing Gong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Shanshan Dong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Anders Lindstrom
- Global Biodiversity Conservancy 144/124 Moo 3, Soi Bua Thong, Bangsalae, Sattahip, Chonburi 20250, Thailand
| | | | - Yang Liu
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Hong Wu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shouzhou Zhang
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| |
Collapse
|
22
|
Cai J, Qin HH, Lei JQ, Liu CK, He XJ, Zhou SD. The phylogeny of Seseli (Apiaceae, Apioideae): insights from molecular and morphological data. BMC PLANT BIOLOGY 2022; 22:534. [PMID: 36380268 PMCID: PMC9667662 DOI: 10.1186/s12870-022-03919-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The genus Seseli L., which consists of 125-140 species distributed in the Old World from western Europe and northwestern Africa to China and Japan, is one of the largest and most taxonomically difficult genera of Apiaceae Lindl. Although several previous studies have been conducted on Seseli based on limited morphological characteristics and molecular fragments, a robust and comprehensive phylogeny of Seseli remains elusive. Plastomes provide abundant genetic information and have been widely used in studying plant phylogeny and evolution. Consequently, we newly generated the complete plastomes of eleven Seseli taxa. We combined plastome data and morphological characteristics to investigate the phylogeny of Seseli. RESULTS In our study, we observed that the genome length, gene numbers, IR/SC borders, and repeat composition of the eleven Seseli plastomes were variable. Several appropriate mutation hotspot regions may be developed as candidate DNA barcodes for evolution, phylogeny, and species identification of Seseli. The phylogenetic results identified that Seseli was not a monophyletic group. Moreover, the eleven newly sequenced Seseli taxa did not cluster with S. tortuosum (the type species of Seseli, belonging to the tribe Selineae), where S. delavayi clustered with Eriocycla belonging to the tribe Echinophoreae and the other ten belonged to Selineae. The comparative plastome and morphological characteristics analyses confirmed the reliability of the phylogenetic analyses and implied the complex evolution of Seseli. CONCLUSION Combining molecular and morphological data is efficient and useful for studying the phylogeny of Seseli. We suggest that "a narrow sense" of Seseli will be meaningful for further study and the current taxonomic system of Seseli needs to be revised. In summary, our study can provide new insights into the phylogenetic relationships and taxonomic framework of Seseli.
Collapse
Affiliation(s)
- Jing Cai
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Huan-Huan Qin
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jia-Qing Lei
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chang-Kun Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
23
|
Xie DF, Xie C, Ren T, Song BN, Zhou SD, He XJ. Plastid phylogenomic insights into relationships, divergence, and evolution of Apiales. PLANTA 2022; 256:117. [PMID: 36376499 DOI: 10.1007/s00425-022-04031-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Members of Apiales are monophyletic and radiated in the Late Cretaceous. Fruit morphologies are critical for Apiales evolution and negative selection and mutation pressure play important roles in environmental adaptation. Apiales include many foods, spices, medicinal, and ornamental plants, but the phylogenetic relationships, origin and divergence, and adaptive evolution remain poorly understood. Here, we reconstructed Apiales phylogeny based on 72 plastid genes from 280 species plastid genomes representing six of seven families of this order. Highly supported phylogenetic relationships were detected, which revealed that each family of Apiales is monophyletic and confirmed that Pennanticeae is a member of Apiales. Genera Centella and Dickinsia are members of Apiaceae, and the genus Hydrocotyle previously classified into Apiaceae is confirmed to belong to Araliaceae. Besides, coalescent phylogenetic analysis and gene trees cluster revealed ten genes that can be used for distinguishing species among families of Apiales. Molecular dating suggested that the Apiales originated during the mid-Cretaceous (109.51 Ma), with the families' radiation occurring in the Late Cretaceous. Apiaceae species exhibit higher differentiation compared to other families. Ancestral trait reconstruction suggested that fruit morphological evolution may be related to shifts in plant types (herbaceous or woody), which in turn is related to the distribution areas and species numbers. Codon bias and positive selection analyses suggest that negative selection and mutation pressure may play important roles in environmental adaptation of Apiales members. Our results improve the phylogenetic framework of Apiales and provide insights into the origin, divergence, and adaptive evolution of this order and its members.
Collapse
Affiliation(s)
- Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Chuan Xie
- Sichuan Academy of Forestry, Chengdu, 610081, Sichuan, People's Republic of China
| | - Ting Ren
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Bo-Ni Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
| |
Collapse
|
24
|
Wei XP, Zhang XY, Dong YQ, Cheng JL, Bai YJ, Liu JS, Qi YD, Zhang BG, Liu HT. Molecular Structure and Phylogenetic Analyses of the Complete Chloroplast Genomes of Three Medicinal Plants Conioselinum vaginatum, Ligusticum sinense, and Ligusticum jeholense. FRONTIERS IN PLANT SCIENCE 2022; 13:878263. [PMID: 35734262 PMCID: PMC9207526 DOI: 10.3389/fpls.2022.878263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Most plants of Ligusticum have an important medicinal and economic value with a long history, Ligusticum sinense and L. jeholense ("Gaoben") has long been used in traditional Chinese medicine for the treatment of carminative, dispelling cold, dehumidification, and analgesia. While in the market Conioselinum vaginatum (Xinjiang Gaoben) is substitution for Gaoben, and occupies a higher market share. These three Gaoben-related medicinal materials are similar in morphology, and are difficult to distinguish from each other by the commonly used DNA barcodes. The chloroplast genome has been widely used for molecular markers, evolutionary biology, and barcoding identification. In this study, the complete chloroplast genome sequences of C. vaginatum, L. sinense, and L. jeholense were reported. The results showed that the complete chloroplast genomes of these three species have typical quadripartite structures, which were comprised of 148,664, 148,539, and 148,497 bp. A total of 114 genes were identified, including 81 protein-coding genes (PCGs), 29 tRNA genes, and four rRNA genes. Our study indicated that highly variable region ycf2-trnL and accD-ycf4 that can be used as specific DNA barcodes to distinguish and identify C. vaginatum, L. sinense, and L. jeholense. In addition, phylogenetic study showed that C. vaginatum nested in Ligusticum and as a sister group of L. sinense and L. jeholense, which suggested these two genera are both in need of revision. This study offer valuable information for future research in the identification of Gaoben-related medicinal materials and will benefit for further phylogenetic study of Apiaceae.
Collapse
Affiliation(s)
- Xue-Ping Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiao-Yi Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yu-Qing Dong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ji-Long Cheng
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yun-Jun Bai
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiu-Shi Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yao-Dong Qi
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ben-Gang Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hai-Tao Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Complete Chloroplast Genome of Cnidium monnieri (Apiaceae) and Comparisons with Other Tribe Selineae Species. DIVERSITY 2022. [DOI: 10.3390/d14050323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cnidium monnieri is an economically important traditional Chinese medicinal plant. In this study, the complete chloroplast (cp) genome of C. monnieri was determined using the Illumina paired-end sequencing, the GetOrganelle de novo assembly strategy, as well as the GeSeq annotation method. Our results showed that the cp genome was 147,371 bp in length with 37.4% GC content and included a large single-copy region (94,361 bp) and a small single-copy region (17,552 bp) separated by a pair of inverted repeat regions (17,729 bp). A total of 129 genes were contained in the cp genome, including 85 protein-coding genes, 36 tRNA genes, and eight rRNA genes. We also investigated codon usage, RNA editing, repeat sequences, simple sequence repeats (SSRs), IR boundaries, and pairwise Ka/Ks ratios. Four hypervariable regions (trnD-trnY-trnE-trnT, ycf2, ndhF-rpl32-trnL, and ycf1) were identified as candidate molecular markers for species authentication. The phylogenetic analyses supported non-monophyly of Cnidium and C. monnieri located in tribe Selineae based on the cp genome sequences and internal transcribed spacer (ITS) sequences. The incongruence of the phylogenetic position of C. monnieri between ITS and cpDNA phylogenies suggested that C. monnieri might have experienced complex evolutions with hybrid and incomplete lineage sorting. All in all, the results presented herein will provide plentiful chloroplast genomic resources for studies of the taxonomy, phylogeny, and species authentication of C. monnieri. Our study is also conducive to elucidating the phylogenetic relationships and taxonomic position of Cnidium.
Collapse
|
26
|
Li ZX, Guo XL, Price M, Zhou SD, He XJ. Phylogenetic position of Ligusticopsis (Apiaceae, Apioideae): evidence from molecular data and carpological characters. AOB PLANTS 2022; 14:plac008. [PMID: 35475242 PMCID: PMC9035215 DOI: 10.1093/aobpla/plac008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 03/02/2022] [Indexed: 05/13/2023]
Abstract
Ligusticopsis (Apiaceae, Apioideae) is now considered to have an East-Asia and Sino-Himalaya distribution. The genus was not recognized as a natural and separate genus and was treated as a synonym of Ligusticum both in Flora Reipublicae Popularis Sinicae and Flora of China since first established, though Pimenov et al. have made many taxonomic revisions to Ligusticopsis, phylogenetic relationships between Ligusticopsis and Ligusticum have been in dispute. Thirty-four plastomes and 35 nrITS from Apioideae were analysed by RAxML and MrBayes to reconstruct the phylogenetic relationships, along with carpology of 10 species and comparative analyses of 17 plastomes to investigate the evidence supporting the independence of Ligusticopsis. As a result, nine species suggested to be Ligusticopsis formed a highly supported monophyletic branch (Subclade A) inside Selineae both in maximum likelihood and Bayesian inference; the results of the comparative analyses further supported the monophyly of Subclade A, mainly in the location of genes at the IRa/LSC boundary, the sequence diversity exhibited by various genes (e.g. trnH-GUG-psbA and ycf2) and same codon biases in terminator TAA (relative synonymous codon usage = 1.75). Species in Subclade A also had shared characters in mericarps, combined with other characters of the plant, 'base clothed in fibrous remnant sheaths, pinnate bracts, pinnate bracteoles longer than rays of umbellule, mericarps strongly compressed dorsally, median and lateral ribs filiform or keeled, marginal ribs winged, and numerous vittae in commissure and each furrow' should be the most important and diagnostic characters of Ligusticopsis. Our phylogenetic trees and other analyses supported the previous taxonomic treatments of Pimenov et al. that Ligusticopsis should be a natural and separate genus rather than a synonym of Ligusticum.
Collapse
Affiliation(s)
- Zi-Xuan Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| | - Xian-Lin Guo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| | - Megan Price
- Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
- Corresponding authors’ e-mail addresses: ;
| | - Xing-Jin He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
- Corresponding authors’ e-mail addresses: ;
| |
Collapse
|
27
|
Samigullin T, Logacheva M, Terentieva E, Degtjareva G, Pimenov M, Valiejo-Roman C. Plastid Phylogenomic Analysis of Tordylieae Tribe (Apiaceae, Apioideae). PLANTS (BASEL, SWITZERLAND) 2022; 11:709. [PMID: 35270181 PMCID: PMC8912408 DOI: 10.3390/plants11050709] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022]
Abstract
Based on the nrDNA ITS sequence data, the Tordylieae tribe is recognized as monophyletic with three major lineages: the subtribe Tordyliinae, the Cymbocarpum clade, and the Lefebvrea clade. Recent phylogenomic investigations showed incongruence between the nuclear and plastid genome evolution in the tribe. To assess phylogenetic relations and structure evolution of plastomes in Tordylieae, we generated eleven complete plastome sequences using the genome skimming approach and compared them with the available data from this tribe and close relatives. Newly assembled plastomes had lengths ranging from 141,148 to 150,103 base pairs and contained 122-127 genes, including 79-82 protein-coding genes, 35-37 tRNAs, and 8 rRNAs. We observed substantial differences in the inverted repeat length and gene content, accompanied by a complex picture of multiple JLA and JLB shifts. In concatenated phylogenetic analyses, Tordylieae plastomes formed at least three not closely related lineages with plastomes of the Lefebvrea clade as a sister group to plastomes from the Selineae tribe. The newly obtained data have increased our knowledge on the range of plastome variability in Apiaceae.
Collapse
Affiliation(s)
- Tahir Samigullin
- Department of Evolutionary Biochemistry, A. N. Belozersky Research Institute of Physicochemical Biology, Lomonosov Moscow State University, Leninskie Gory 1–40, 119992 Moscow, Russia; (M.L.); (C.V.-R.)
| | - Maria Logacheva
- Department of Evolutionary Biochemistry, A. N. Belozersky Research Institute of Physicochemical Biology, Lomonosov Moscow State University, Leninskie Gory 1–40, 119992 Moscow, Russia; (M.L.); (C.V.-R.)
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, 121205 Moscow, Russia
| | - Elena Terentieva
- Botanical Garden, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119992 Moscow, Russia; (E.T.); (G.D.); (M.P.)
| | - Galina Degtjareva
- Botanical Garden, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119992 Moscow, Russia; (E.T.); (G.D.); (M.P.)
| | - Michael Pimenov
- Botanical Garden, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119992 Moscow, Russia; (E.T.); (G.D.); (M.P.)
| | - Carmen Valiejo-Roman
- Department of Evolutionary Biochemistry, A. N. Belozersky Research Institute of Physicochemical Biology, Lomonosov Moscow State University, Leninskie Gory 1–40, 119992 Moscow, Russia; (M.L.); (C.V.-R.)
| |
Collapse
|
28
|
Baczyński J, Sauquet H, Spalik K. Exceptional evolutionary lability of flower-like inflorescences (pseudanthia) in Apiaceae subfamily Apioideae. AMERICAN JOURNAL OF BOTANY 2022; 109:437-455. [PMID: 35112711 PMCID: PMC9310750 DOI: 10.1002/ajb2.1819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
PREMISE Pseudanthia are widespread and have long been postulated to be a key innovation responsible for some of the angiosperm radiations. The aim of our study was to analyze macroevolutionary patterns of these flower-like inflorescences and their potential correlation with diversification rates in Apiaceae subfamily Apioideae. In particular, we were interested to investigate evolvability of pseudanthia and evaluate their potential association with changes in the size of floral display. METHODS The framework for our analyses consisted of a time-calibrated phylogeny of 1734 representatives of Apioideae and a morphological matrix of inflorescence traits encoded for 847 species. Macroevolutionary patterns in pseudanthia were inferred using Markov models of discrete character evolution and stochastic character mapping, and a principal component analysis was used to visualize correlations in inflorescence architecture. The interdependence between net diversification rates and the occurrence of pseudocorollas was analyzed with trait-independent and trait-dependent approaches. RESULTS Pseudanthia evolved in 10 major clades of Apioideae with at least 36 independent origins and 46 reversals. The morphospace analysis recovered differences in color and compactness between floral and hyperfloral pseudanthia. A correlation between pseudocorollas and size of inflorescence was also strongly supported. Contrary to our predictions, pseudanthia are not responsible for variation in diversification rates identified in this subfamily. CONCLUSIONS Our results suggest that pseudocorollas evolve as an answer to the trade-off between enlargement of floral display and costs associated with production of additional flowers. The high evolvability and architectural differences in apioid pseudanthia may be explained on the basis of adaptive wandering and evolutionary developmental biology.
Collapse
Affiliation(s)
- Jakub Baczyński
- Institute of Evolutionary Biology, Faculty of BiologyUniversity of Warsaw Biological and Chemical Research CentreWarsawPoland
| | - Hervé Sauquet
- National Herbarium of New South Wales (NSW)Royal Botanic Gardens and Domain TrustSydneyNSW2000Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyAustralia
| | - Krzysztof Spalik
- Institute of Evolutionary Biology, Faculty of BiologyUniversity of Warsaw Biological and Chemical Research CentreWarsawPoland
| |
Collapse
|
29
|
Birjees M, Ahmad M, Zafar M, Khan AS, Ullah I. Palyno-anatomical characters and their systematic significance in the family Apiaceae from Chitral, eastern Hindu Kush, Pakistan. Microsc Res Tech 2021; 85:980-995. [PMID: 34726301 DOI: 10.1002/jemt.23967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/15/2021] [Accepted: 10/06/2021] [Indexed: 11/12/2022]
Abstract
The present study was performed to provide a detailed explanation of leaf epidermal anatomy and pollen micromorphological features of selected species of family Apiaceae from Chitral, eastern Hindu Kush region as the basis of forthcoming studies. In the present article pollen morphology of eight species and foliar epidermal of seven species of family Apiaceae have been examined through microscopic techniques. In results two types of pollen prolate (five species) and perprolate (three species) with three colpi have been recorded. The exine ornamentation was found to be regulate, striate, and cerebroid. Largest pollen was found in Heracleum leucocarpum with the polar diameter of 43.25 μm and equatorial diameter of 21.6 μm. Smallest pollen was observed in Elaeosticta chitralica with the polar diameter of 18.4 μm. The P/E ratio varied from 1.59 to 2.16. Regarding to foliar epidermal anatomy, three types of epidermal cells including rectangular, irregular, and polygonal with variation in anticlinal wall pattern were determined. In the selected species three kinds of stomata comprising anisocytic, anomocytic, and paracytic type were reported in the current research. The size of epidermal cells ranged from 106 × 42.50 μm in Bupleurum falcatum subsp. cernuum and 77.25 × 26.35 μm in Prangos pabularia in adaxial surface. Largest stomatal complex was found in Prangos pabularia both in adaxial 33.55 × 20.05 μm and abaxial 50.25 × 39.40 μm. All the observed quantitative and qualitative features of the species were proved to be useful in the delimitation of species at generic and species level.
Collapse
Affiliation(s)
- Maimoona Birjees
- Department of Plant Sciences, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Mushtaq Ahmad
- Department of Plant Sciences, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Muhammad Zafar
- Department of Plant Sciences, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Aamir Shehzad Khan
- Department of Plant Sciences, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Izhar Ullah
- Department of Plant Sciences, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| |
Collapse
|
30
|
Walker M, Pérez M, Steinbrecher T, Gawthrop F, Pavlović I, Novák O, Tarkowská D, Strnad M, Marone F, Nakabayashi K, Leubner-Metzger G. Molecular mechanisms and hormonal regulation underpinning morphological dormancy: a case study using Apium graveolens (Apiaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1020-1036. [PMID: 34510583 DOI: 10.1111/tpj.15489] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Underdeveloped (small) embryos embedded in abundant endosperm tissue, and thus having morphological dormancy (MD) or morphophysiological dormancy (MPD), are considered to be the ancestral state in seed dormancy evolution. This trait is retained in the Apiaceae family, which provides excellent model systems for investigating the underpinning mechanisms. We investigated Apium graveolens (celery) MD by combined innovative imaging and embryo growth assays with the quantification of hormone metabolism, as well as the analysis of hormone and cell-wall related gene expression. The integrated experimental results demonstrated that embryo growth occurred inside imbibed celery fruits in association with endosperm degradation, and that a critical embryo size was required for radicle emergence. The regulation of these processes depends on gene expression leading to gibberellin and indole-3-acetic acid (IAA) production by the embryo and on crosstalk between the fruit compartments. ABA degradation associated with distinct spatiotemporal patterns in ABA sensitivity control embryo growth, endosperm breakdown and radicle emergence. This complex interaction between gibberellins, IAA and ABA metabolism, and changes in the tissue-specific sensitivities to these hormones is distinct from non-MD seeds. We conclude that the embryo growth to reach the critical size and the associated endosperm breakdown inside MD fruits constitute a unique germination programme.
Collapse
Affiliation(s)
- Matthew Walker
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
- Tozer Seeds, Tozer Seeds Ltd, Cobham, KT11 3EH, UK
| | - Marta Pérez
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Tina Steinbrecher
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | | | - Iva Pavlović
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371, Czech Republic
| | - Federica Marone
- Swiss Light Source, Paul Scherrer Institute, Villigen, CH-5232, Switzerland
| | - Kazumi Nakabayashi
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Gerhard Leubner-Metzger
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371, Czech Republic
| |
Collapse
|
31
|
Huang R, Xie X, Chen A, Li F, Tian E, Chao Z. The chloroplast genomes of four Bupleurum (Apiaceae) species endemic to Southwestern China, a diversity center of the genus, as well as their evolutionary implications and phylogenetic inferences. BMC Genomics 2021; 22:714. [PMID: 34600494 PMCID: PMC8487540 DOI: 10.1186/s12864-021-08008-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 09/13/2021] [Indexed: 11/28/2022] Open
Abstract
Background As one of the largest genera in Apiaceae, Bupleurum L. is well known for its high medicinal value. The genus has frequently attracted the attention of evolutionary biologist and taxonomist for its distinctive characteristics in the Apiaceae family. Although some chloroplast genomes data have been now available, the changes in the structure of chloroplast genomes and selective pressure in the genus have not been fully understood. In addition, few of the species are endemic to Southwest China, a distribution and diversity center of Chinese Bupleurum. Endemic species are key components of biodiversity and ecosystems, and investigation of the chloroplast genomes features of endemic species in Bupleurum will be helpful to develop a better understanding of evolutionary process and phylogeny of the genus. In this study, we analyzed the sequences of whole chloroplast genomes of 4 Southwest China endemic Bupleurum species in comparison with the published data of 17 Bupleurum species to determine the evolutionary characteristics of the genus and the phylogenetic relationships of Asian Bupleurum. Results The complete chloroplast genome sequences of the 4 endemic Bupleurum species are 155,025 bp to 155,323 bp in length including a SSC and a LSC region separated by a pair of IRs. Comparative analysis revealed an identical chloroplast gene content across the 21 Bupleurum species, including a total of 114 unique genes (30 tRNA genes, 4 rRNA genes and 80 protein-coding genes). Chloroplast genomes of the 21 Bupleurum species showed no rearrangements and a high sequence identity (96.4–99.2%). They also shared a similar tendency of SDRs and SSRs, but differed in number (59–83). In spite of their high conservation, they contained some mutational hotspots, which can be potentially exploited as high-resolution DNA barcodes for species discrimination. Selective pressure analysis showed that four genes were under positive selection. Phylogenetic analysis revealed that the 21 Bupleurum formed two major clades, which are likely to correspond to their geographical distribution. Conclusions The chloroplast genome data of the four endemic Bupleurum species provide important insights into the characteristics and evolution of chloroplast genomes of this genu, and the phylogeny of Bupleurum. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08008-z.
Collapse
Affiliation(s)
- Rong Huang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Xuena Xie
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Aimin Chen
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Fang Li
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Enwei Tian
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zhi Chao
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China. .,Faculty of Medicinal Plants and Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China.
| |
Collapse
|
32
|
Transcriptome repository of North-Western Himalayan endangered medicinal herbs: a paramount approach illuminating molecular perspective of phytoactive molecules and secondary metabolism. Mol Genet Genomics 2021; 296:1177-1202. [PMID: 34557965 DOI: 10.1007/s00438-021-01821-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/12/2021] [Indexed: 01/23/2023]
Abstract
Medicinal plants of the North-Western Himalayan region are known for their unprecedented biodiversity and valuable secondary metabolites that are unique to this dynamic geo-climatic region. From ancient times these medicinal herbs have been used traditionally for their therapeutic potentials. But from the last 2 decades increasing pharmaceutical demand, illegal and unorganized trade of these medicinal plants have accelerated the rate of over-exploitation in a non-scientific manner. In addition, climate change and anthropogenic activities also affected their natural habitat and driving most of these endemic plant species to critically endangered that foresee peril of mass extinction from this eco-region. Hence there is an urgent need for developing alternative sustainable approaches and policies to utilize this natural bioresource ensuring simultaneous conservation. Hither, arise the advent of sequencing-based transcriptomic studies significantly contributes to better understand the background of important metabolic pathways and related genes/enzymes of high-value medicinal herbs, in the absence of genomic information. The use of comparative transcriptomics in conjunction with biochemical techniques in North-Western Himalayan medicinal plants has resulted in significant advances in the identification of the molecular players involved in the production of secondary metabolic pathways over the last decade. This information could be used to further engineer metabolic pathways and breeding programs, ultimately leading to the development of in vitro systems dedicated to the production of pharmaceutically important secondary metabolites at the industrial level. Collectively, successful adoption of these approaches can certainly ensure the sustainable utilization of Himalayan bioresource by reducing the pressure on the wild population of these critically endangered medicinal herbs. This review provides novel insight as a transcriptome-based bioresource repository for the understanding of important secondary metabolic pathways genes/enzymes and metabolism of endangered high-value North-Western Himalayan medicinal herbs, so that researchers across the globe can effectively utilize this information for devising effective strategies for the production of pharmaceutically important compounds and their scale-up for sustainable usage and take a step forward in omics-based conservation genetics.
Collapse
|
33
|
Clarkson JJ, Zuntini AR, Maurin O, Downie SR, Plunkett GM, Nicolas AN, Smith JF, Feist MAE, Gutierrez K, Malakasi P, Bailey P, Brewer GE, Epitawalage N, Zmarzty S, Forest F, Baker WJ. A higher-level nuclear phylogenomic study of the carrot family (Apiaceae). AMERICAN JOURNAL OF BOTANY 2021; 108:1252-1269. [PMID: 34287829 DOI: 10.1002/ajb2.1701] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
PREMISE The carrot family (Apiaceae) comprises 466 genera, which include many well-known crops (e.g., aniseed, caraway, carrots, celery, coriander, cumin, dill, fennel, parsley, and parsnips). Higher-level phylogenetic relationships among subfamilies, tribes, and other major clades of Apiaceae are not fully resolved. This study aims to address this important knowledge gap. METHODS Target sequence capture with the universal Angiosperms353 probe set was used to examine phylogenetic relationships in 234 genera of Apiaceae, representing all four currently recognized subfamilies (Apioideae, Azorelloideae, Mackinlayoideae, and Saniculoideae). Recovered nuclear genes were analyzed using both multispecies coalescent and concatenation approaches. RESULTS We recovered hundreds of nuclear genes even from old and poor-quality herbarium specimens. Of particular note, we placed with strong support three incertae sedis genera (Platysace, Klotzchia, and Hermas); all three occupy isolated positions, with Platysace resolved as sister to all remaining Apiaceae. We placed nine genera (Apodicarpum, Bonannia, Grafia, Haplosciadium, Microsciadium, Physotrichia, Ptychotis, Tricholaser, Xatardia) that have never previously been included in any molecular phylogenetic study. CONCLUSIONS We provide support for the maintenance of the four existing subfamilies of Apiaceae, while recognizing that Hermas, Klotzschia, and the Platysace clade may each need to be accommodated in additional subfamilies (pending improved sampling). The placement of the currently apioid genus Phlyctidocarpa can be accommodated by the expansion of subfamily Saniculoideae, although adequate morphological synapomorphies for this grouping are yet to be defined. This is the first phylogenetic study of the Apiaceae using high-throughput sequencing methods and represents an unprecedented evolutionary framework for the group.
Collapse
Affiliation(s)
| | | | - Olivier Maurin
- Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AE, UK
| | - Stephen R Downie
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Gregory M Plunkett
- Cullman Program for Molecular Systematics, New York Botanical Garden, 2900 Southern Boulevard, Bronx, NY, 10458, USA
| | | | - James F Smith
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, ID, 83725-1515, USA
| | - Mary Ann E Feist
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Karime Gutierrez
- Department of Biology, Smith College, Burton Hall 115, Northampton, MA, 01063, USA
| | | | - Paul Bailey
- Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AE, UK
| | - Grace E Brewer
- Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AE, UK
| | | | - Sue Zmarzty
- Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AE, UK
| | - Félix Forest
- Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AE, UK
| | | |
Collapse
|
34
|
A Global Landscape of Miniature Inverted-Repeat Transposable Elements in the Carrot Genome. Genes (Basel) 2021; 12:genes12060859. [PMID: 34205210 PMCID: PMC8227079 DOI: 10.3390/genes12060859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/26/2022] Open
Abstract
Miniature inverted-repeat transposable elements (MITEs) are the most abundant group of Class II mobile elements in plant genomes. Their presence in genic regions may alter gene structure and expression, providing a new source of functional diversity. Owing to their small size and lack of coding capacity, the identification of MITEs has been demanding. However, the increasing availability of reference genomes and bioinformatic tools provides better means for the genome-wide identification and analysis of MITEs and for the elucidation of their contribution to the evolution of plant genomes. We mined MITEs in the carrot reference genome DH1 using MITE-hunter and developed a curated carrot MITE repository comprising 428 families. Of the 31,025 MITE copies spanning 10.34 Mbp of the carrot genome, 54% were positioned in genic regions. Stowaways and Tourists were frequently present in the vicinity of genes, while Mutator-like MITEs were relatively more enriched in introns. hAT-like MITEs were relatively more frequently associated with transcribed regions, including untranslated regions (UTRs). Some carrot MITE families were shared with other Apiaceae species. We showed that hAT-like MITEs were involved in the formation of new splice variants of insertion-harboring genes. Thus, carrot MITEs contributed to the accretion of new diversity by altering transcripts and possibly affecting the regulation of many genes.
Collapse
|
35
|
Zheng HY, Guo XL, Price M, He XJ, Zhou SD. Effects of Mountain Uplift and Climatic Oscillations on Phylogeography and Species Divergence of Chamaesium (Apiaceae). FRONTIERS IN PLANT SCIENCE 2021; 12:673200. [PMID: 34108984 PMCID: PMC8183463 DOI: 10.3389/fpls.2021.673200] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/07/2021] [Indexed: 05/13/2023]
Abstract
Exploring the effects of orographic events and climatic shifts on the geographic distribution of organisms in the Himalayas-Hengduan Mountains (HHM) region and Qinghai-Tibetan Plateau (QTP) is crucial to understand the impact of environmental changes on organism evolution. To gain further insight into these processes, we reconstructed the evolutionary history of nine Chamaesium species distributed across the HHM and QTP regions. In total, 525 individuals from 56 populations of the nine species were analyzed based on three maternally inherited chloroplast fragments (rpl16, trnT-trnL, and trnQ-rps16) and one nuclear DNA region (internal transcribed spacer, ITS). Fifty-two chloroplast DNA (cpDNA) and 47 ITS haplotypes were identified in nine species. All of the cpDNA and ITS haplotypes were species-specific. Phylogenetic analysis suggested that all nine species form a monophyletic clade with high support. Dating analysis and ancestral area reconstruction revealed that the ancestral group of Chamaesium originated in the southern Himalayan region at the beginning of the Paleogene (60.85 Ma). The nine species of Chamaesium then separated well during the last 25 million years started in Miocene. Our maxent modeling indicated the broad-scale distributions of all nine species remained fairly stable from LIG to the present and predicted that it will remain stable into the future. The initial split of Chamaesium was triggered by climate changes following the collision of the Indian plate with the Eurasia plate during the Eocene. Subsequently, divergences within Chamaesium may have been induced by the intense uplift of the QTP, the onset of the monsoon system, and Central Asian aridification. Long evolutionary history, sexual reproduction, and habitat fragmentation could contribute to the high level of genetic diversity of Chamaesium. The higher genetic differentiation among Chamaesium populations may be related to the drastic changes of the external environment in this region and limited seed/pollen dispersal capacity.
Collapse
Affiliation(s)
- Hong-Yi Zheng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xian-Lin Guo
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Megan Price
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Wen J, Xie DF, Price M, Ren T, Deng YQ, Gui LJ, Guo XL, He XJ. Backbone phylogeny and evolution of Apioideae (Apiaceae): New insights from phylogenomic analyses of plastome data. Mol Phylogenet Evol 2021; 161:107183. [PMID: 33892097 DOI: 10.1016/j.ympev.2021.107183] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 02/05/2023]
Abstract
Traditional phylogenies inferred from chloroplast DNA fragments have not obtained a well-resolved evolutionary history for the backbone of Apioideae, the largest subfamily of Apiaceae. In this study, we applied the genome skimming approach of next-generation sequencing to address whether the lack of resolution at the tip of the Apioideae phylogenetic tree is due to limited information loci or the footprint of ancient radiation. A total of 90 complete chloroplast genomes (including 23 newly sequenced genomes and covering 20 major clades of Apioideae) were analyzed (RAxML and MrBayes) to provide a phylogenomic reconstruction of Apioideae. Dating analysis was also implemented using BEAST to estimate the origin and divergence time of the major clades. As a result, the early divergences of Apioideae have been clarified but the relationship among its distally branching clades (Group A) was only partially resolved, with short internal branches pointing to an ancient radiation scenario. Four major clades, Tordyliinae I, Pimpinelleae I, Apieae and Coriandreae, were hypothesized to have originated from chloroplast capture events induced by early hybridization according to the incongruence between chloroplast-based and nrDNA-based phylogenetic trees. Furthermore, the variable and nested distribution of junction positions of LSC (Large single copy region) and IRB (inverted repeat region B) in Group A may reflect incomplete lineage sorting within this group, which possibly contributed to the unclear phylogenetic relationships among these clades inferred from plastome data. Molecular clock analysis revealed the chloroplast capture events mainly occurred during the middle to late Miocene, providing a geological and climate context for the evolution of Apioideae.
Collapse
Affiliation(s)
- Jun Wen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Deng-Feng Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Megan Price
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Ting Ren
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Yi-Qi Deng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Ling-Jian Gui
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Xian-Lin Guo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Xing-Jin He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
37
|
Huang R, Xie X, Li F, Tian E, Chao Z. Chloroplast genomes of two Mediterranean Bupleurum species and the phylogenetic relationship inferred from combined analysis with East Asian species. PLANTA 2021; 253:81. [PMID: 33765202 DOI: 10.1007/s00425-021-03602-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
The chloroplast genomes of Mediterranean Bupleurum species are reported for the first time. Phylogenetic analysis supports the species as a basal clade of Bupleurum with divergence time at 35.40 Ma. Bupleurum is one of the most species-rich genus with high medicinal value in Apiaceae. Although infrageneric classifications of Bupleurum have been the subject of numerous studies, it still remains controversial. Chloroplast genome information will prove essential in advancing our understanding on phylogenetic study. Here we report cp genomes of two woody Bupleurum species (Bupleurum gibraltaricum and B. fruticosum) endemic to Mediterranean. The complete cp genomes of the two species were 157,303 and 157,391 bp in size, respectively. They encoded 114 unique genes including 30 tRNA genes, 4 rRNA genes and 80 protein coding genes. Genome structure, distributions of SDRs and SSRs, gene content exhibited similarities among Bupleurum species. High variable hotspots were detected in eight intergenic spacers and four genes. Most of genes were under purifying selection with two exceptions: atpF and clpP. The phylogenetic analysis based on 80 coding genes revealed that the genus was divided into 2 distinct clades corresponding to the 2 subgenera (subg. Penninervia, subg. Bupleurum) with divergence time at the end of collision of India with Eurasia. Most species diversified mainly during the later period of uplift of Qinghai-Tibetan Plateau. The cp genomes of the two Bupleurum species can be significant complementary to insights into the cp genome characteristics of this genus. The comparative chloroplast genomes and phylogenetic analysis advances our understanding of the evolution of cp genomes and phylogeny in Bupleurum.
Collapse
Affiliation(s)
- Rong Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xuena Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Fang Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Enwei Tian
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhi Chao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China.
| |
Collapse
|
38
|
Ren T, Li ZX, Xie DF, Gui LJ, Peng C, Wen J, He XJ. Plastomes of eight Ligusticum species: characterization, genome evolution, and phylogenetic relationships. BMC PLANT BIOLOGY 2020; 20:519. [PMID: 33187470 PMCID: PMC7663912 DOI: 10.1186/s12870-020-02696-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/12/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND The genus Ligusticum consists of approximately 60 species distributed in the Northern Hemisphere. It is one of the most taxonomically difficult taxa within Apiaceae, largely due to the varied morphological characteristics. To investigate the plastome evolution and phylogenetic relationships of Ligusticum, we determined the complete plastome sequences of eight Ligusticum species using a de novo assembly approach. RESULTS Through a comprehensive comparative analysis, we found that the eight plastomes were similar in terms of repeat sequence, SSR, codon usage, and RNA editing site. However, compared with the other seven species, L. delavayi exhibited striking differences in genome size, gene number, IR/SC borders, and sequence identity. Most of the genes remained under the purifying selection, whereas four genes showed relaxed selection, namely ccsA, rpoA, ycf1, and ycf2. Non-monophyly of Ligusticum species was inferred from the plastomes and internal transcribed spacer (ITS) sequences phylogenetic analyses. CONCLUSION The plastome tree and ITS tree produced incongruent tree topologies, which may be attributed to the hybridization and incomplete lineage sorting. Our study highlighted the advantage of plastome with mass informative sites in resolving phylogenetic relationships. Moreover, combined with the previous studies, we considered that the current taxonomy system of Ligusticum needs to be improved and revised. In summary, our study provides new insights into the plastome evolution, phylogeny, and taxonomy of Ligusticum species.
Collapse
Affiliation(s)
- Ting Ren
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zi-Xuan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Ling-Jian Gui
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chang Peng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jun Wen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
39
|
Gou W, Jia SB, Price M, Guo XL, Zhou SD, He XJ. Complete Plastid Genome Sequencing of Eight Species from Hansenia, Haplosphaera and Sinodielsia (Apiaceae): Comparative Analyses and Phylogenetic Implications. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1523. [PMID: 33182384 PMCID: PMC7695273 DOI: 10.3390/plants9111523] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 11/17/2022]
Abstract
Hansenia Turcz., Haplosphaera Hand.-Mazz. and Sinodielsia H.Wolff are three Apiaceae genera endemic to the Hengduan Mountains and the Himalayas, which usually inhabit elevations greater than 2000 m. The phylogenetic relationships between and within the genera were uncertain, especially the placement of Hap. himalayensis and S. microloba. Therefore, we aimed to conduct comparative (simple sequence repeat (SSR) structure, codon usage bias, nucleotide diversity (Pi) and inverted repeat (IR) boundaries) and phylogenetic analyses of Hansenia, Haplosphaera and Sinodielsia (also compared with Chamaesium and Bupleurum) to reduce uncertainties in intergeneric and interspecific relationships. We newly assembled eight plastid genomes from Hansenia, Haplosphaera and Sinodielsia species, and analyzed them with two plastid genomes from GenBank of Hap. phaea,S. yunnanensis. Phylogenetic analyses used these ten genomes and another 22 plastid genome sequences of Apiaceae. We found that the newly assembled eight genomes ranged from 155,435 bp to 157,797 bp in length and all had a typical quadripartite structure. Fifty-five to 75 SSRs were found in Hansenia, Haplosphaera and Sinodielsia species, and the most abundant SSR was mononucleotide, which accounted for 58.47% of Hansenia, 60.21% of Haplosphaera and 48.01% of Sinodielsia. There was no evident divergence of codon usage frequency between the three genera, where codons ranged from 21,134 to 21,254. The Pi analysis showed that trnE(UUC)-trnT(GGU), trnH(GUG)-psbA and trnE(UUC)-trnT(GGU) spacer regions had the highest Pi values in the plastid genomes of Hansenia (0.01889), Haplosphaera (0.04333) and Sinodielsia (0.01222), respectively. The ndhG-ndhI spacer regions were found in all three genera to have higher diversity values (Pi values: 0.01028-0.2), and thus may provide potential DNA barcodes in phylogenetic analysis. IR boundary analysis showed that the length of rps19 and ycf1 genes entering IRs were usually stable in the same genus. Our phylogenetic tree demonstrated that Hap. himalayensis is sister to Han. weberbaueriana; meanwhile, Haplosphaera and Hansenia are nested together in the East Asia clade, and S. microloba is nested within individuals of S. yunnanensis in the Acronema clade. This study will enrich the complete plastid genome dataset of the Apiaceae genera and has provided a new insight into phylogeny reconstruction using complete plastid genomes of Hansenia, Haplosphaera and Sinodielsia.
Collapse
Affiliation(s)
- Wei Gou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (W.G.); (S.-B.J.); (X.-L.G.); (S.-D.Z.)
| | - Sheng-Bin Jia
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (W.G.); (S.-B.J.); (X.-L.G.); (S.-D.Z.)
| | - Megan Price
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, China;
| | - Xian-Lin Guo
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (W.G.); (S.-B.J.); (X.-L.G.); (S.-D.Z.)
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (W.G.); (S.-B.J.); (X.-L.G.); (S.-D.Z.)
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (W.G.); (S.-B.J.); (X.-L.G.); (S.-D.Z.)
| |
Collapse
|