1
|
Phukela B, Leonard H, Sapir Y. In silico analysis of R2R3-MYB transcription factors in the basal eudicot model, Aquilegia coerulea. 3 Biotech 2024; 14:284. [PMID: 39479299 PMCID: PMC11522220 DOI: 10.1007/s13205-024-04119-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/06/2024] [Indexed: 11/02/2024] Open
Abstract
R2R3-MYBs are an important group of transcription factors that regulate crucial developmental processes across the plant kingdom; yet no comprehensive analysis of the R2R3-MYBs in the early-diverging eudicot clade of Ranunculaceae has been conducted so far. In the present study, Aquilegia coerulea is chosen to understand the extent of conservation and divergence of R2R3-MYBs as a representative of the family by analysing the genomic distribution, organization, gene structure, physiochemical properties, protein architecture, evolution and possible mode of expansion. Genome-wide analysis showed the presence of 82 putative homologues classified into 21 subgroups, based on phylogenetic analysis of full-length protein sequences. The domain has remained largely conserved across all homologues with few differences from the characterized Arabidopsis thaliana R2R3-MYBs. The topology of the phylogenetic tree remains the same when full-length protein sequences are used, indicating that the evolution of R2R3-MYBs is driven by the domain region only. This is supported by the presence of similar structures of exon-intron and conserved motifs within the same subgroup. Furthermore, comparisons of the AqcoeR2R3-MYB members with monocots and core-eudicots revealed the evolutionary expansion of a few functional clades, such as A. thaliana R2R3-MYB subgroup 6 (SG6), the upstream regulatory factors of floral pigment biosynthesis and floral color. The reconstructed evolutionary history of SG6-like genes across angiosperms highlights the occurrence of independent duplication events in the genus Aquilegia. AqcoeR2R3-MYB genes are present in all seven chromosomes of A. coerulea, most of which result from local and segmental duplications. Selection analysis of these duplicated gene pairs indicates purifying selection except one, and the physiochemical analyses of R2R3-MYBs reveal differences among the MYBs signifying their functional diversification. This study paves the way for further investigation of paralogous copies and their probable role in the evolution of different floral traits in A. coerulea. It lays the foundation for functional genomic studies of R2R3-MYBs in the basal eudicots and facilitates comparative studies among angiosperms. The work also provides a framework for deciphering novel genetic regulatory pathways that govern the diversity of floral morphology. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04119-y.
Collapse
Affiliation(s)
- Banisha Phukela
- The Botanical Garden, School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hanna Leonard
- Department of Botany, Miami University, Oxford, OH 45056 USA
| | - Yuval Sapir
- The Botanical Garden, School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Appleton AD, Kramer EM. Diversifying floral organ identity. CURRENT OPINION IN PLANT BIOLOGY 2024; 80:102550. [PMID: 38762927 DOI: 10.1016/j.pbi.2024.102550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
A fascinating component of floral morphological diversity is the evolution of novel floral organ identities. Perhaps the best-understood example of this is the evolutionary sterilization of stamens to yield staminodes, which have evolved independently numerous times across angiosperms and display a considerable range of morphologies. We are only beginning to understand how modifications of the ancestral stamen developmental program have produced staminodes, but investigating this phenomenon has the potential to help us understand both the origin of floral novelty and the evolution of genetic networks more broadly.
Collapse
Affiliation(s)
- Andrea D Appleton
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138-2097, USA
| | - Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138-2097, USA.
| |
Collapse
|
3
|
Johns JW, Min Y, Ballerini ES, Kramer EM, Hodges SA. Loss of staminodes in Aquilegia jonesii reveals a fading stamen-staminode boundary. EvoDevo 2024; 15:6. [PMID: 38796457 PMCID: PMC11127400 DOI: 10.1186/s13227-024-00225-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/09/2024] [Indexed: 05/28/2024] Open
Abstract
The modification of fertile stamens into sterile staminodes has occurred independently many times in the flowering plant lineage. In the genus Aquilegia (columbine) and its closest relatives, the two stamen whorls closest to the carpels have been converted to staminodes. In Aquilegia, the only genetic analyses of staminode development have been reverse genetic approaches revealing that B-class floral identity genes are involved. A. jonesii, the only species of columbine where staminodes have reverted to fertile stamens, allows us to explore the genetic architecture of staminode development using a forward genetic approach. We performed QTL analysis using an outcrossed F2 population between A. jonesii and a horticultural variety that makes fully developed staminodes, A. coerulea 'Origami'. Our results reveal a polygenic basis for staminode loss where the two staminode whorls are under some level of independent control. We also discovered that staminode loss in A. jonesii is not complete, in which staminode-like traits sometimes occur in the inner fertile stamens, potentially representing a fading boundary of gene expression. The QTLs identified in this study provide a map to guide future reverse genetic and functional studies examining the genetic basis and evolutionary significance of this trait.
Collapse
Affiliation(s)
- Jason W Johns
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Ya Min
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd., Unit 3043, Storrs, CT, 06269, USA
| | - Evangeline S Ballerini
- Department of Biological Sciences, California State University Sacramento, 6000 J. St., Sacramento, 95819, CA, USA
| | - Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, 02138, MA, USA
| | - Scott A Hodges
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
4
|
Cota-Sánchez JH, Falconer DJ, de Almeida OJG, Stobbs JA, Vera-Vélez R, Rice RS, Belliveau NA. Synchrotron micro-computed tomography unveils the three-dimensional structure and origin of staminodes in the Plains Prickly Pear Cactus Opuntia polyacantha Haw. (Cactaceae). PROTOPLASMA 2023; 260:1303-1312. [PMID: 36890289 PMCID: PMC9995257 DOI: 10.1007/s00709-023-01846-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Floral appendages display an array of shapes and sizes. Among these organs, staminodes are morphologically diverse structures that have lost the ability to produce pollen, but in some instances, they produce fertile pollen grains. In the family Cactaceae staminodes are uncommon and range from simple linear to flat to spatulate structures, but studies describing their structural attributes are scanty. This study highlights the advantages of synchrotron radiation for sample preparation and as a research tool for plant biology. It describes the internal morphology of floral parts, particularly stamen, tepal, and staminode in the Plains Prickly Pear Cactus, Opuntia polyacantha, using synchrotron radiation micro-computed tomography (SR-μCT). It also shows the different anatomical features in reconstructed three-dimensional imaging of reproductive parts and discuss the advantages of the segmentation method to detect and characterize the configuration and intricate patterns of vascular networks and associated structures of tepal and androecial parts applying SR-μCT. This powerful technology led to substantial improvements in terms of resolution allowing a more comprehensive understanding of the anatomical organization underlying the vasculature of floral parts and inception of staminodes in O. polyacantha. Tepal and androecial parts have uniseriate epidermis enclosing loose mesophyll with mucilage secretory ducts, lumen, and scattered vascular bundles. Cryptic underlying structural attributes provide evidence of a vascularized pseudo-anther conjoint with tepals. The undefined contours of staminodial appendages (pseudo-anther) amalgamated to the tepals' blurred boundaries suggest that staminodes originate from tepals, a developmental pattern supporting the fading border model of floral organ identity for angiosperms.
Collapse
Affiliation(s)
- J Hugo Cota-Sánchez
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada.
| | - Denver J Falconer
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - Odair J G de Almeida
- Universidade Estadual Paulista, Campos do Litoral Paulista, São Vicente, SP, 11380-972, Brazil
| | - Jarvis A Stobbs
- Canadian Light Source Inc, 44 Innovation Boulevard, Saskatoon, SK, S7N 2V3, Canada
| | - Roy Vera-Vélez
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Ryan S Rice
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - Nicholas A Belliveau
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| |
Collapse
|
5
|
Becker A, Yamada Y, Sato F. California poppy ( Eschscholzia californica), the Papaveraceae golden girl model organism for evodevo and specialized metabolism. FRONTIERS IN PLANT SCIENCE 2023; 14:1084358. [PMID: 36938015 PMCID: PMC10017456 DOI: 10.3389/fpls.2023.1084358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
California poppy or golden poppy (Eschscholzia californica) is the iconic state flower of California, with native ranges from Northern California to Southwestern Mexico. It grows well as an ornamental plant in Mediterranean climates, but it might be invasive in many parts of the world. California poppy was also highly prized by Native Americans for its medicinal value, mainly due to its various specialized metabolites, especially benzylisoquinoline alkaloids (BIAs). As a member of the Ranunculales, the sister lineage of core eudicots it occupies an interesting phylogenetic position. California poppy has a short-lived life cycle but can be maintained as a perennial. It has a comparatively simple floral and vegetative morphology. Several genetic resources, including options for genetic manipulation and a draft genome sequence have been established already with many more to come. Efficient cell and tissue culture protocols are established to study secondary metabolite biosynthesis and its regulation. Here, we review the use of California poppy as a model organism for plant genetics, with particular emphasis on the evolution of development and BIA biosynthesis. In the future, California poppy may serve as a model organism to combine two formerly separated lines of research: the regulation of morphogenesis and the regulation of secondary metabolism. This can provide insights into how these two integral aspects of plant biology interact with each other.
Collapse
Affiliation(s)
- Annette Becker
- Plant Development Lab, Institute of Botany, Hustus-Liebig-University, Giessen, Germany
| | - Yasuyuki Yamada
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Kobe, Japan
| | - Fumihiko Sato
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Bioorganic Research Institute, Suntory Foundation for Life Science, Kyoto, Japan
- Graduate School of Science, Osaka Metropolitan University, Sakai, Japan
| |
Collapse
|
6
|
Basso-Alves JP, Goldenberg R, Teixeira SP. Connective modifications and origin of stamen diversity in Melastomataceae. JOURNAL OF PLANT RESEARCH 2022; 135:659-680. [PMID: 35802292 DOI: 10.1007/s10265-022-01405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
The androecium of Melastomataceae presents notable modifications in its merosity, morphology between whorls and in prolonged connectives and appendages. We carried out a comparative study of six Melastomataceae species to shed light on the developmental processes that originate such stamen diversity. The development of stamens was studied using scanning electron microscopy and histological observations. The stamens of all species studied have a curved shape because they emerge on a plane displaced by the perigynous hypanthium. They are the last flower organs to initiate and therefore their growth is inwards and towards the floral center. Despite the temporal inversion between carpels and stamens in Melastomataceae, the androecium maintains the centripetal pattern of development, the antepetalous stamens emerging after antesepalous stamens. The isomerous androecium can be the result of abortion of the antepetalous stamens, whereas heterostemony seems to be caused by differences in position and the stamen development time. Pedoconnectives and ventral appendages originate from the basal expansion of the anther late in floral development. The delay in stamen development may be a consequence of their dependence on the formation of a previous space so that they can grow. Most of the stamen diversity is explained by the formation of the connectives and their appendages. The formation of a basal-ventral anther prolongation, which culminates in the development of the pedoconnective, does not differ from other types of sectorial growth of the connective, which form shorter structures.
Collapse
Affiliation(s)
- João Paulo Basso-Alves
- Instituto de Biologia, Programa de Pós-Graduação em Biologia Vegetal, Universidade Estadual de Campinas (UNICAMP), R. Monteiro Lobato 255, Campinas, SP, 13083-862, Brazil
- Diretoria de Pesquisa Científica, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro (JBRJ), Rio de Janeiro, RJ, 22460-030, Brazil
| | - Renato Goldenberg
- Departamento de Botânica, Centro Politécnico, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Caixa Postal 19031, Curitiba, PR, 81531-970, Brazil
| | - Simone Pádua Teixeira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Ciências Farmacêuticas, Universidade de São Paulo (USP), Av. do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
7
|
Min Y, Conway SJ, Kramer EM. Quantitative live imaging of floral organ initiation and floral meristem termination in Aquilegia. Development 2022; 149:274399. [DOI: 10.1242/dev.200256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/31/2021] [Indexed: 11/20/2022]
Abstract
ABSTRACT
In-depth investigation of any developmental process in plants requires knowledge of both the underpinning molecular networks and how they directly determine patterns of cell division and expansion over time. Floral meristems (FMs) produce floral organs, after which they undergo floral meristem termination (FMT); precise control of organ initiation and FMT is crucial to the reproductive success of any flowering plant. Using live confocal imaging, we characterized developmental dynamics during floral organ primordia initiation and FMT in Aquilegia coerulea (Ranunculaceae). Our results uncover distinct patterns of primordium initiation between stamens and staminodes compared with carpels, and provide insight into the process of FMT, which is discernable based on cell division dynamics that precede carpel initiation. To our knowledge, this is the first quantitative live imaging of meristem development in a system with numerous whorls of floral organs, as well as an apocarpous gynoecium. This study provides crucial information for our understanding of how the spatial-temporal regulation of floral meristem behavior is achieved in both evolutionary and developmental contexts.
This article has an associated ‘The people behind the papers’ interview.
Collapse
Affiliation(s)
- Ya Min
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Stephanie J. Conway
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Elena M. Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
8
|
Delpeuch P, Jabbour F, Damerval C, Schönenberger J, Pamperl S, Rome M, Nadot S. A flat petal as ancestral state for Ranunculaceae. FRONTIERS IN PLANT SCIENCE 2022; 13:961906. [PMID: 36212342 PMCID: PMC9532948 DOI: 10.3389/fpls.2022.961906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/23/2022] [Indexed: 05/19/2023]
Abstract
Ranunculaceae comprise ca. 2,500 species (ca. 55 genera) that display a broad range of floral diversity, particularly at the level of the perianth. Petals, when present, are often referred to as "elaborate" because they have a complex morphology. In addition, the petals usually produce and store nectar, which gives them a crucial functional role in the interaction with pollinators. Its morphological diversity and species richness make this family a particularly suitable model group for studying the evolution of complex morphologies. Our aims are (1) to reconstruct the ancestral form of the petal and evolutionary stages at the scale of Ranunculaceae, (2) to test the hypothesis that there are morphogenetic regions on the petal that are common to all species and that interspecific morphological diversity may be due to differences in the relative proportions of these regions during development. We scored and analyzed traits (descriptors) that characterize in detail the complexity of mature petal morphology in 32 genera. Furthermore, we described petal development using high resolution X-Ray computed tomography (HRX-CT) in six species with contrasting petal forms (Ficaria verna, Helleborus orientalis, Staphisagria picta, Aconitum napellus, Nigella damascena, Aquilegia vulgaris). Ancestral state reconstruction was performed using a robust and dated phylogeny of the family, allowing us to produce new hypotheses for petal evolution in Ranunculaceae. Our results suggest a flat ancestral petal with a short claw for the entire family and for the ancestors of all tribes except Adonideae. The elaborate petals that are present in different lineages have evolved independently, and similar morphologies are the result of convergent evolution.
Collapse
Affiliation(s)
- Pauline Delpeuch
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Orsay, France
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
- *Correspondence: Pauline Delpeuch,
| | - Florian Jabbour
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Catherine Damerval
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, Gif-sur-Yvette, France
| | - Jürg Schönenberger
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Susanne Pamperl
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Maxime Rome
- Jardin du Lautaret, CNRS, Université Grenoble Alpes, Grenoble, France
| | - Sophie Nadot
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Orsay, France
- Sophie Nadot,
| |
Collapse
|
9
|
Min Y, Kramer EM. Transcriptome profiling and weighted gene co-expression network analysis of early floral development in Aquilegia coerulea. Sci Rep 2020; 10:19637. [PMID: 33184405 PMCID: PMC7665038 DOI: 10.1038/s41598-020-76750-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/29/2020] [Indexed: 11/08/2022] Open
Abstract
The earliest phases of floral development include a number of crucial processes that lay the foundation for the subsequent morphogenesis of floral organs and success in reproduction. Currently, key transcriptional changes during this developmental window have been characterized in the model species Arabidopsis thaliana, but little is known about how transcriptional dynamics change over the course of these developmental processes in other plant systems. Here, we have conducted the first in-depth transcriptome profiling of early floral development in Aquilegia at four finely dissected developmental stages, with eight biological replicates per stage. Using differential gene expression analysis and weighted gene co-expression network analysis, we identified both crucial genes whose expression changes mark the transitions between developmental stages and hub genes in co-expression modules. Our results support the potential functional conservation of key genes in early floral development that have been identified in other systems, but also reveal a number of previously unknown or overlooked loci that are worthy of further investigation. In addition, our results highlight not only the dynamics of transcriptional regulation during early floral development, but also the potential involvement of the complex, essential networks of small RNA and post-translational regulation to these developmental stages.
Collapse
Affiliation(s)
- Ya Min
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA, USA
| | - Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA, USA.
| |
Collapse
|