1
|
Balakrishnan D, Bateman N, Kariyat RR. Rice physical defenses and their role against insect herbivores. PLANTA 2024; 259:110. [PMID: 38565704 PMCID: PMC10987372 DOI: 10.1007/s00425-024-04381-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
MAIN CONCLUSION Understanding surface defenses, a relatively unexplored area in rice can provide valuable insight into constitutive and induced defenses against herbivores. Plants have evolved a multi-layered defense system against the wide range of pests that constantly attack them. Physical defenses comprised of trichomes, wax, silica, callose, and lignin, and are considered as the first line of defense against herbivory that can directly affect herbivores by restricting or deterring them. Most studies on physical defenses against insect herbivores have been focused on dicots compared to monocots, although monocots include one of the most important crops, rice, which half of the global population is dependent on as their staple food. In rice, Silica is an important element stimulating plant growth, although Silica has also been found to impart resistance against herbivores. However, other physical defenses in rice including wax, trichomes, callose, and lignin are less explored. A detailed exploration of the morphological structures and functional consequences of physical defense structures in rice can assist in incorporating these resistance traits in plant breeding and genetic improvement programs, and thereby potentially reduce the use of chemicals in the field. This mini review addresses these points with a closer look at current literature and prospects on rice physical defenses.
Collapse
Affiliation(s)
- Devi Balakrishnan
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Nick Bateman
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Rupesh R Kariyat
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
2
|
Anest A, Bouchenak-Khelladi Y, Charles-Dominique T, Forest F, Caraglio Y, Hempson GP, Maurin O, Tomlinson KW. Blocking then stinging as a case of two-step evolution of defensive cage architectures in herbivore-driven ecosystems. NATURE PLANTS 2024; 10:587-597. [PMID: 38438539 DOI: 10.1038/s41477-024-01649-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/23/2024] [Indexed: 03/06/2024]
Abstract
Dense branching and spines are common features of plant species in ecosystems with high mammalian herbivory pressure. While dense branching and spines can inhibit herbivory independently, when combined, they form a powerful defensive cage architecture. However, how cage architecture evolved under mammalian pressure has remained unexplored. Here we show how dense branching and spines emerged during the age of mammalian radiation in the Combretaceae family and diversified in herbivore-driven ecosystems in the tropics. Phylogenetic comparative methods revealed that modern plant architectural strategies defending against large mammals evolved via a stepwise process. First, dense branching emerged under intermediate herbivory pressure, followed by the acquisition of spines that supported higher speciation rates under high herbivory pressure. Our study highlights the adaptive value of dense branching as part of a herbivore defence strategy and identifies large mammal herbivory as a major selective force shaping the whole plant architecture of woody plants.
Collapse
Affiliation(s)
- Artémis Anest
- Center for Integrative Conservation and Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, China.
- University of Chinese Academy of Sciences, Beijing, China.
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France.
| | - Yanis Bouchenak-Khelladi
- Agroécologie, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, INRAE, Institut Agro, Dijon, France
| | - Tristan Charles-Dominique
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
- Centre National de la Recherche Scientifique (CNRS), Sorbonne University, Paris, France
| | | | - Yves Caraglio
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Gareth P Hempson
- Ecology and Environmental Change, School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | | | - Kyle W Tomlinson
- Center for Integrative Conservation and Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, China.
| |
Collapse
|
3
|
Wurdack KJ. A new, disjunct species of Bahiana (Euphorbiaceae, Acalyphoideae): Phytogeographic connections between the seasonally dry tropical forests of Peru and Brazil, and a review of spinescence in the family. PHYTOKEYS 2023; 219:121-144. [PMID: 37252447 PMCID: PMC10209711 DOI: 10.3897/phytokeys.219.95872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/19/2023] [Indexed: 05/31/2023]
Abstract
Bahiana is expanded from 1 to 2 species with the description of B.occidentalis K. Wurdack, sp. nov. as a new endemic of the seasonally dry tropical forests (SDTFs) of Peru. The disjunct distribution of Bahiana with populations of B.occidentalis on opposite sides of the Andes in northwestern Peru (Tumbes, San Martín) and B.pyriformis in eastern Brazil (Bahia) adds to the phytogeographic links among the widely scattered New World SDTFs. Although B.occidentalis remains imperfectly known due to the lack of flowering collections, molecular phylogenetic results from four loci (plastid matK, rbcL, and trnL-F; and nuclear ITS) unite the two species as does gross vegetative morphology, notably their spinose stipules, and androecial structure. Spinescence in Euphorbiaceae was surveyed and found on vegetative organs in 25 genera, which mostly have modified sharp branch tips. Among New World taxa, spines that originate from stipule modifications only occur in Bahiana and Acidocroton, while the intrastipular spines of Philyra are of uncertain homologies.
Collapse
Affiliation(s)
- Kenneth J. Wurdack
- Department of Botany, MRC-166, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington DC 20013-7012, USANational Museum of Natural HistoryWashington DCUnited States of America
| |
Collapse
|