1
|
Matallana-Puerto CA, Duarte MO, Aguilar Fachin D, Poloni Guilherme C, Oliveira PE, Cardoso JCF. First evidence of late-acting self-incompatibility in the Aristolochiaceae. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:612-620. [PMID: 38634401 DOI: 10.1111/plb.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
Most Aristolochiaceae species studied so far are from temperate regions, bearing self-compatible protogynous trap flowers. Although self-incompatibility has been suggested for tropical species, the causes of self-sterility in this family remain unknown. To fill this gap, we studied the pollination of the tropical Aristolochia esperanzae, including the physical and physiological anti-selfing mechanisms. Floral visitors trapped inside flowers were collected to determine the pollinators. Protogyny was characterized by observing the temporal expression of sexual phases and stigmatic receptivity tests. The breeding system was investigated using hand-pollination treatments. Pollen tube growth was observed using epifluorescence to identify the self-incompatibility mechanism. Flies were the most frequent visitors found inside A. esperanzae trap flowers, with individuals from the family Ulidiidae being potential pollinators since they carried pollen. The characteristic flower odour and presence of larvae indicate that A. esperanzae deceives flies through oviposition-site mimicry. Although this species showed incomplete protogyny, stigmatic receptivity decreased during the male phase, avoiding self-pollination. Fruits developed only after cross- and open pollination, indicating that the population is non-autonomous, non-apomictic, and self-sterile. This occurred through a delay in the growth of geitonogamous pollen tubes to the ovary and lower ovule penetration, indicating a late-acting self-incompatibility mechanism. Our findings expand the number of families in which late-acting self-incompatibility has been reported, demonstrating that it is more widespread than previously thought, especially when considering less-studied tropical species among the basal angiosperms.
Collapse
Affiliation(s)
- C A Matallana-Puerto
- Programa de Pós-Graduação em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - M O Duarte
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - D Aguilar Fachin
- Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus Samambaia, Goiânia, Goiás, Brazil
| | - C Poloni Guilherme
- Laboratório de Evolução e Morfologia de Diptera, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - P E Oliveira
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - J C F Cardoso
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
- Departamento de Biodiversidade, Evolução e Meio Ambiente, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
2
|
Lau JYY, Pang C, Ramsden L, Saunders RMK. Stigmatic exudate in the Annonaceae: Pollinator reward, pollen germination medium or extragynoecial compitum? JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:881-894. [PMID: 28880427 PMCID: PMC5725718 DOI: 10.1111/jipb.12598] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 05/10/2023]
Abstract
Although "dry-type" stigmas are widely regarded as ancestral in angiosperms, the early-divergent family Annonaceae has copious stigmatic exudate. We evaluate three putative functions for this exudate: as a nutritive reward for pollinators; as a pollen germination medium; and as an extragynoecial compitum that enables pollen tube growth between carpels. Stigmatic exudate is fructose dominated (72.2%), but with high levels of glucose and sucrose; the dominance of hexose sugars and the diversity of amino acids observed, including many that are essential for insects, support a nutritive role for pollinators. Sugar concentration in pre-receptive flowers is high (28.2%), falling during the peak period of stigmatic receptivity (17.4%), and then rising again toward the end of the pistillate phase (32.9%). Pollen germination was highest in sugar concentrations <20%. Sugar concentrations during the peak pistillate phase therefore provide optimal osmolarity for pollen hydration and germination; subsequent changes in sugar concentration during anthesis reinforce protogyny (in which carpels mature before stamens), enabling the retention of concentrated exudate into the staminate phase as a pollinator food reward without the possibility of pollen germination. Intercarpellary growth of pollen tubes was confirmed: the exudate therefore also functions as a suprastylar extragynoecial compitum, overcoming the limitations of apocarpy.
Collapse
Affiliation(s)
- Jenny Y. Y. Lau
- School of Biological Sciencesthe University of Hong KongPokfulam RoadHong KongChina
| | - Chun‐Chiu Pang
- School of Biological Sciencesthe University of Hong KongPokfulam RoadHong KongChina
| | - Lawrence Ramsden
- School of Biological Sciencesthe University of Hong KongPokfulam RoadHong KongChina
| | | |
Collapse
|
3
|
Gibbs PE. Late-acting self-incompatibility--the pariah breeding system in flowering plants. THE NEW PHYTOLOGIST 2014; 203:717-34. [PMID: 24902632 DOI: 10.1111/nph.12874] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/12/2014] [Indexed: 05/03/2023]
Abstract
It is estimated that around half of all species of flowering plants show self-incompatibility (SI). However, the great majority of species alleged to have SI simply comply with 'the inability of a fully fertile hermaphrodite plant to produce zygotes when self-pollinated'--a definition that is neutral as to cause. Surprisingly few species have been investigated experimentally to determine whether their SI has the type of genetic control found in one of the three established mechanisms, that is, homomorphic gametophytic, homomorphic sporophytic or heteromorphic SI. Furthermore, our knowledge of the molecular basis of homomorphic SI derives from a few species in just five families--a small sample that has nevertheless revealed the existence of three different molecular mechanisms. Importantly, a sizeable cohort of species are self-sterile despite the fact that self-pollen tubes reach the ovary and in most cases penetrate ovules, a phenomenon called late-acting self-incompatibility (LSI). This review draws attention to the confusion between species that show 'self-incompatibility' and those that possess one of the 'conventional SI mechanisms' and to argue the case for recognition of LSI as having a widespread occurrence and as a mechanism that inhibits selfing and promotes outbreeding in many plant species.
Collapse
Affiliation(s)
- Peter E Gibbs
- School of Biology, The University of St Andrews, St Andrews, KY16 9TH, UK
| |
Collapse
|
4
|
Williams JH. Pollen Tube Growth Rates and the Diversification of Flowering Plant Reproductive Cycles. INTERNATIONAL JOURNAL OF PLANT SCIENCES 2012. [PMID: 0 DOI: 10.1086/665822] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
|
5
|
Williams JH. The evolution of pollen germination timing in flowering plants: Austrobaileya scandens (Austrobaileyaceae). AOB PLANTS 2012; 2012:pls010. [PMID: 22567221 PMCID: PMC3345124 DOI: 10.1093/aobpla/pls010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/28/2012] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS The pollination to fertilization process (progamic phase) is thought to have become greatly abbreviated with the origin of flowering plants. In order to understand what developmental mechanisms enabled the speeding of fertilization, comparative data are needed from across the group, especially from early-divergent lineages. I studied the pollen germination process of Austrobaileya scandens, a perennial vine endemic to the Wet Tropics area of northeastern Queensland, Australia, and a member of the ancient angiosperm lineage, Austrobaileyales. METHODOLOGY I used in vivo and in vitro hand pollinations and timed collections to study development from late pollen maturation to just after germination. Then I compared the contribution of pollen germination timing to progamic phase duration in 131 angiosperm species (65 families). PRINCIPAL FINDINGS Mature pollen of Austrobaileya was bicellular, starchless and moderately dehydrated-water content was 31.5 % by weight and volume increased by 57.9 % upon hydration. A callose layer in the inner intine appeared only after pollination. In vivo pollen germination followed a logarithmic curve, rising from 28 % at 1 hour after pollination (hap) to 97 % at 12 hap (R(2) = 0.98). Sufficient pollen germination to fertilize all ovules was predicted to have occurred within 62 min. Across angiosperms, pollen germination ranged from 1 min to >60 h long and required 8.3 ± 9.8 % of the total duration of the progamic phase. SIGNIFICANCE Pollen of Austrobaileya has many plesiomorphic features that are thought to prolong germination. Yet its germination is quite fast for species with desiccation-tolerant pollen (range: <1 to 60 h). Austrobaileya and other early-divergent angiosperms have relatively rapid pollen germination and short progamic phases, comparable to those of many insect-pollinated monocots and eudicots. These results suggest that both the pollen germination and pollen tube growth periods were marked by acceleration of developmental processes early in angiosperm history.
Collapse
|
6
|
Luo SX, Chaw SM, Zhang D, Renner SS. Flower heating following anthesis and the evolution of gall midge pollination in Schisandraceae. AMERICAN JOURNAL OF BOTANY 2010; 97:1220-1228. [PMID: 21616873 DOI: 10.3732/ajb.1000077] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
PREMISE OF THE STUDY Flower heating is known from a few species in 11 of the c. 450 families of flowering plants. Flowers in these families produce heat metabolically and are adapted to beetles or flies as pollinators. Here, we focus on the Schisandraceae, an American/Asian plant family known to exhibit flower heating in some species, but not others, raising the question of the adaptive function of heat production. • METHODS We used field observations, experiments, and ancestral trait reconstruction on a molecular phylogeny for Schisandraceae that includes the investigated species. • KEY RESULTS At least two Chinese species of Illicium are exclusively pollinated by gall midges that use the flowers as brood sites (not for pollen feeding). Continuous monitoring of flower temperatures revealed that the highest temperatures were attained after the flowers' sexual functions were over, and experiments showed that post-anthetic warming benefited larval development, not fruit development. Midge larvae in flowers with trimmed tepals (and hence a lower temperature) died, but fruit set ratios remained unchanged. Based on the DNA phylogeny, gall midge pollination evolved from general fly/beetle pollination several times in Schisandraceae, with some species adapted to flower-breeding midges, others to pollen-feeding midges. • CONCLUSIONS Flower heating may be an ancestral trait in Schisandraceae that became co-opted in species pollinated by flower-breeding midges requiring long-persistent warm chambers for larval development.
Collapse
Affiliation(s)
- Shi-Xiao Luo
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou 510650, China
| | | | | | | |
Collapse
|
7
|
Lora J, Hormaza JI, Herrero M. The progamic phase of an early-divergent angiosperm, Annona cherimola (Annonaceae). ANNALS OF BOTANY 2010; 105:221-31. [PMID: 19939980 PMCID: PMC2814751 DOI: 10.1093/aob/mcp276] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 08/05/2009] [Accepted: 10/12/2009] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS Recent studies of reproductive biology in ancient angiosperm lineages are beginning to shed light on the early evolution of flowering plants, but comparative studies are restricted by fragmented and meagre species representation in these angiosperm clades. In the present study, the progamic phase, from pollination to fertilization, is characterized in Annona cherimola, which is a member of the Annonaceae, the largest extant family among early-divergent angiosperms. Beside interest due to its phylogenetic position, this species is also an ancient crop with a clear niche for expansion in subtropical climates. METHODS The kinetics of the reproductive process was established following controlled pollinations and sequential fixation. Gynoecium anatomy, pollen tube pathway, embryo sac and early post-fertilization events were characterized histochemically. KEY RESULTS A plesiomorphic gynoecium with a semi-open carpel shows a continuous secretory papillar surface along the carpel margins, which run from the stigma down to the obturator in the ovary. The pollen grains germinate in the stigma and compete in the stigma-style interface to reach the narrow secretory area that lines the margins of the semi-open stylar canal and is able to host just one to three pollen tubes. The embryo sac has eight nuclei and is well provisioned with large starch grains that are used during early cellular endosperm development. CONCLUSIONS A plesiomorphic simple gynoecium hosts a simple pollen-pistil interaction, based on a support-control system of pollen tube growth. Support is provided through basipetal secretory activity in the cells that line the pollen tube pathway. Spatial constraints, favouring pollen tube competition, are mediated by a dramatic reduction in the secretory surface available for pollen tube growth at the stigma-style interface. This extramural pollen tube competition contrasts with the intrastylar competition predominant in more recently derived lineages of angiosperms.
Collapse
Affiliation(s)
- J. Lora
- Department of Subtropical Pomology, Estación Experimental “La Mayora” – CSIC, 29760 Algarrobo-Costa, Málaga, Spain
| | - J. I. Hormaza
- Department of Subtropical Pomology, Estación Experimental “La Mayora” – CSIC, 29760 Algarrobo-Costa, Málaga, Spain
| | - M. Herrero
- Department of Pomology, Estación Experimental “Aula Dei” – CSIC, Apdo. 202, 50080 Zaragoza, Spain
| |
Collapse
|
8
|
Calixto CPG, Goldman GH, Goldman MHS. Analyses of sexual reproductive success in transgenic and/or mutant plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:719-26. [PMID: 19686369 DOI: 10.1111/j.1744-7909.2009.00845.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The pistil, the female reproductive organ of plants, is a key player in the success of sexual plant reproduction. Ultimately, the production of fruits and seeds depends on the proper pistil development and function. Therefore, the identification and characterization of pistil expressed genes is essential for a better understanding and manipulation of the plant reproduction process. For studying the function of pistil expressed genes, transgenic and/or mutant plants for the genes of interest are used. The present article provides a review of methods already exploited to analyze sexual reproductive success. We intend to supply useful information and to guide future experiments in the study of genes affecting pistil development and function.
Collapse
Affiliation(s)
- Cristiane P G Calixto
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Brazil
| | | | | |
Collapse
|
9
|
Sage TL, Hristova-Sarkovski K, Koehl V, Lyew J, Pontieri V, Bernhardt P, Weston P, Bagha S, Chiu G. Transmitting tissue architecture in basal-relictual angiosperms: Implications for transmitting tissue origins. AMERICAN JOURNAL OF BOTANY 2009; 96:183-206. [PMID: 21628183 DOI: 10.3732/ajb.0800254] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Carpel transmitting tissue is a major floral innovation that is essential for angiosperm success. It facilitates the rapid adhesion, hydration, and growth of the male gametophyte to the female gametophyte. As well, it functions as a molecular screen to promote male gametophytic competition and species-specific recognition and compatibility. Here, we characterize the transmitting tissue extracellular matrix (ECM) and pollen tube growth in basal-relictual angiosperms and test the hypothesis that a freely flowing ECM (wet stigma) was ancestral to a cuticle-bound ECM (dry stigma). We demonstrate that the most recent common ancestor of extant angiosperms produced an ECM that was structurally and functionally equivalent to a dry stigma. Dry stigmas are composed of a cuticle and primary wall that contains compounds that facilitate the adhesion and growth of the male gametophyte. These compounds include methyl-esterified homogalacturonans, arabinogalactan-proteins, and lipids. We propose that transmitting tissue evolved in concert with an increase in cuticle permeability that resulted from modifications in the biosynthesis and secretion of fatty acids needed for cuticle construction. Increased cuticle permeability exposed the male gametophyte to pre-existing molecules that enabled rapid male gametophyte adhesion, hydration, and growth as well as species-specific recognition and compatibility.
Collapse
Affiliation(s)
- Tammy L Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Thien LB, Bernhardt P, Devall MS, Chen ZD, Luo YB, Fan JH, Yuan LC, Williams JH. Pollination biology of basal angiosperms (ANITA grade). AMERICAN JOURNAL OF BOTANY 2009; 96:166-82. [PMID: 21628182 DOI: 10.3732/ajb.0800016] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The first three branches of the angiosperm phylogenetic tree consist of eight families with ∼201 species of plants (the ANITA grade). The oldest flower fossil for the group is dated to the Early Cretaceous (115-125 Mya) and identified to the Nymphaeales. The flowers of extant plants in the ANITA grade are small, and pollen is the edible reward (rarely nectar or starch bodies). Unlike many gymnosperms that secrete "pollination drops," ANITA-grade members examined thus far have a dry-type stigma. Copious secretions of stigmatic fluid are restricted to the Nymphaeales, but this is not nectar. Floral odors, floral thermogenesis (a resource), and colored tepals attract insects in deceit-based pollination syndromes throughout the first three branches of the phylogenetic tree. Self-incompatibility and an extragynoecial compitum occur in some species in the Austrobaileyales. Flies are primary pollinators in six families (10 genera). Beetles are pollinators in five families varying in importance as primary (exclusive) to secondary vectors of pollen. Bees are major pollinators only in the Nymphaeaceae. It is hypothesized that large flowers in Nymphaeaceae are the result of the interaction of heat, floral odors, and colored tepals to trap insects to increase fitness.
Collapse
Affiliation(s)
- Leonard B Thien
- Cell and Molecular Biology Department, Tulane University, New Orleans, Louisiana 70118 USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Williams JH. Amborella trichopoda (Amborellaceae) and the evolutionary developmental origins of the angiosperm progamic phase. AMERICAN JOURNAL OF BOTANY 2009; 96:144-65. [PMID: 21628181 DOI: 10.3732/ajb.0800070] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A remarkable number of the defining features of flowering plants are expressed during the life history stage between pollination and fertilization. Hand pollinations of Amborella trichopoda (Amborellaceae) in New Caledonia show that when the stigma is first receptive, the female gametophyte is near maturity. Pollen germinates within 2 h, and pollen tubes with callose walls and plugs grow entirely within secretions from stigma to stylar canal and ovarian cavity. Pollen tubes enter the micropyle within 14 h, and double fertilization occurs within 24 h. Hundreds of pollen tubes grow to the base of the stigma, but few enter the open stylar canal. New data from Amborella, combined with a review of fertilization biology of other early-divergent angiosperms, show that an evolutionary transition from slow reproduction to rapid reproduction occurred early in angiosperm history. I identify increased pollen tube growth rates within novel secretory carpel tissues as the primary mechanism for such a shift. The opportunity for prezygotic selection through interactions with the stigma is also an important innovation. Pollen tube wall construction and substantial modifications of the ovule and its associated structures greatly facilitated a new kind of reproductive biology.
Collapse
Affiliation(s)
- Joseph H Williams
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996 USA
| |
Collapse
|
12
|
Lyew J, Li Z, Liang-Chen Y, Yi-Bo L, Sage TL. Pollen tube growth in association with a dry-type stigmatic transmitting tissue and extragynoecial compitum in the basal angiosperm Kadsura longipedunculata (Schisandraceae). AMERICAN JOURNAL OF BOTANY 2007; 94:1170-82. [PMID: 21636484 DOI: 10.3732/ajb.94.7.1170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Spatial features of pollen tube growth and the composition of the extracellular matrix (ECM) of transmitting tissue in carpels of Kadsura longipedunculata, a member of the basal angiosperm taxon Schisandraceae, were characterized to identify features of transmitting tissue that might have been important for pollen-carpel interactions during the early history of angiosperms. In addition to growing extracellularly along epidermal cells that make up stigmatic crests of individual carpels, pollen tubes grow on abaxial carpel epidermal cells between unfused carpels along an extragynoecial compitum to subsequently enter an adjacent carpel, a feature important for enhancing seed set in apocarpous species. Histo- and immunochemical data indicated that transmitting tissue ECM is not freely flowing as previously hypothesized. Rather, the ECM is similar to that of a dry-type stigma whereby a cuticular boundary with associated esterase activity confines a matrix containing methyl-esterified homogalacturonans. The Schisandraceae joins an increasing number of basal angiosperm taxa that have a transmitting tissue ECM similar to a dry-type stigma, thereby challenging traditional views that the ancestral pollen tube pathway was similar to a wet-type stigma covered with a freely flowing exudate. Dry-type stigmas are posited to provide tighter control over pollen capture, retention, and germination than wet-type stigmas.
Collapse
Affiliation(s)
- Joelle Lyew
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | | | | | | | | |
Collapse
|