1
|
Khalaf MH, Amer WM, Shaye NAA, Hassan MO, Gomaa NH. Taxonomic Revision of Genus Ephedra Tourn. ex L. in Egypt with Intra-Gender Diversity in Morphometric Traits and Fatty Acid Composition. PLANTS (BASEL, SWITZERLAND) 2024; 13:2442. [PMID: 39273925 PMCID: PMC11397020 DOI: 10.3390/plants13172442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
The genus Ephedra Tourn. ex L. (Ephedraceae) still exhibits taxonomic complexity that has not yet been resolved. This study aimed to determine the taxonomic identity of the Ephedra species in Egypt and identify the fatty acid profile and its diversity at the gender level as a taxonomic tool for specimens lacking reproductive cones. The current study provides a pioneering approach that distinguishes Ephedra species at the gender level. A total of 120 fresh individuals were collected from 20 locations representing different habitats where Ephedra plants grow in Egypt. In addition, herbarium specimens were deposited in Egyptian herbaria. The studied morphological traits included 30 vegetative characteristics and 72 traits of the reproductive organs of both genders. The fatty acid content was measured using gas-mass chromatography (GC-Mass). The taxonomic revision revealed that the Genus Ephedra was represented in the Egyptian flora by five species, Ephedra alata in section Alatae and E. aphylla, E. ciliata, E. foemina, and E. pachyclada in section Ephedra. South Sinai hosts these five species and represents the center of diversity for this genus in Egypt. The vegetative characteristics were subjected to principal component analysis (PCA), which revealed a distinct separation of the five studied species. Similarly, the cone traits treated by hierarchical clustering revealed intra-gender variations. The taxonomic key was developed based on the morphological traits to distinguish the studied species at the gender level. In total, 51 fatty acids were identified from the studied species and grouped as 18 saturated, 16 monounsaturated, and 17 polyunsaturated fatty acids. In the absence of reproductive cones, the lipid content and fatty acid composition of the vegetative parts displayed significant interspecific and intra-gender variations. Therefore, fatty acids can be used to efficiently identify the studied species when they lack reproductive cones. This study proved the efficacy of a multidisciplinary approach to identify Ephedra species at the gender level and recommends this trend for future studies of this genus.
Collapse
Affiliation(s)
- Maha H Khalaf
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Wafaa M Amer
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Najla A Al Shaye
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mahmoud O Hassan
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Nasr H Gomaa
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
2
|
Li Y, Wang Y, Zhao C, Du X, He P, Meng F. Predicting the spatial distribution of three Ephedra species under climate change using the MaxEnt model. Heliyon 2024; 10:e32696. [PMID: 39183892 PMCID: PMC11341288 DOI: 10.1016/j.heliyon.2024.e32696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/23/2024] [Accepted: 06/06/2024] [Indexed: 08/27/2024] Open
Abstract
In the context of global warming, the habitats of Ephedra, including Ephedra sinica Stapf, Ephedra intermedia Schrenk ex Mey, and Ephedra equisetina Bunge, have been substantially threatened and deteriorated in recent years. Little is known about the potential geographic dynamics of economically renowned species, including those used in sand fixation and traditional Chinese medicine, under climate change. Therefore, evaluating their potential habitat and determining the crucial environmental variables affecting E. sinica, E. intermedia and E. equisetina under the driving force of global warming are extremely important. In this study, an optimized MaxEnt model in the kuenm package on the basis of occurrence records (a total of 103, 101 and 97 points for E. sinica, E. intermedia and E. equisetina, respectively) and 37 environmental factors were utilized to simulate the distribution of the three species. Two representative concentration pathways (SSP2.6 and SSP8.5) at 2041-2060 and 2061-2080, respectively, were used to establish a future distribution model of the three species. The results indicated that approximately 6.92 × 105 km2, 2.95 × 105 km2, and 11.5 × 105 km2 of suitable regions for E. sinica, E. intermedia and E. equisetina were obtained, which were mostly distributed in central and eastern Inner Mongolia, eastern and southern Gansu, and northern Xinjiang, respectively. Critical environmental variables, such as land cover and annual precipitation, were regarded as critical parameters for the three species. Future assessment revealed that over 60 % of the potential distribution area was affected, and the stability of E. sinica under the SSP8.5 scenario was the greatest. The spatial dynamic changes in suitable areas for E. intermedia were smaller than those for E. equisetina and E. sinica in the future. The comprehensive analysis revealed that the fluctuations in the distributions of the three Ephedra species under climate change are small and provide useful information for future conservation. Therefore, target conservation and management measures should be implemented in combination with the suitability thresholds of different environmental parameters. Our results provide useful recommendations for the current and future protection of Ephedra populations.
Collapse
Affiliation(s)
- Yunfeng Li
- Chengde Medical University, Hebei Province Key Laboratory of Research and Development of Traditional Chinese Medicine, Chengde, Hebei, 067000, China
- Beijing Normal University, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Beijing, 100875, China
| | - Yan Wang
- Chengde Medical University, Hebei Province Key Laboratory of Research and Development of Traditional Chinese Medicine, Chengde, Hebei, 067000, China
| | - Chunying Zhao
- Chengde Medical University, Hebei Province Key Laboratory of Research and Development of Traditional Chinese Medicine, Chengde, Hebei, 067000, China
| | - Xiaojuan Du
- Chengde Medical University, Hebei Province Key Laboratory of Research and Development of Traditional Chinese Medicine, Chengde, Hebei, 067000, China
| | - Ping He
- Beijing Normal University, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Beijing, 100875, China
| | - Fanyun Meng
- Beijing Normal University, Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Beijing, 100875, China
| |
Collapse
|
3
|
Yu Q, Yang FS, Chen YX, Wu H, Ickert-Bond SM, Wang XQ. Diploid species phylogeny and evolutionary reticulation indicate early radiation of Ephedra in the Tethys coast. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2619-2630. [PMID: 37837251 DOI: 10.1111/jipb.13573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
Reconstructing a robust species phylogeny and disentangling the evolutionary and biogeographic history of the gymnosperm genus Ephedra, which has a large genome and rich polyploids, remain a big challenge. Here we reconstructed a transcriptome-based phylogeny of 19 diploid Ephedra species, and explored evolutionary reticulations in this genus represented by 50 diploid and polyploid species, using four low-copy nuclear and nine plastid genes. The diploid species phylogeny indicates that the Mediterranean species diverged first, and the remaining species split into three clades, including the American species (Clade A), E. rhytidosperma, and all other Asian species (Clade B). The single-gene trees placed E. rhytidosperma sister to Clade A, Clade B, or Clades A + B in similar proportions, suggesting that radiation and gene flow likely occurred in the early evolution of Ephedra. In addition, reticulate evolution occurred not only among the deep nodes, but also in the recently evolved South American species, which further caused difficulty in phylogenetic reconstruction. Moreover, we found that allopolyploid speciation was pervasive in Ephedra. Our study also suggests that Ephedra very likely originated in the Tethys coast during the late Cretaceous, and the South American Ephedra species have a single origin by dispersal from Mexico or North America.
Collapse
Affiliation(s)
- Qiong Yu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fu-Sheng Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Xing Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Hui Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Stefanie M Ickert-Bond
- Department of Biology and Wildlife & UA Museum of the North, University of Alaska Fairbanks (UAF), Fairbanks, AK, 99775, USA
| | - Xiao-Quan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Yang Y, Yang Z, Lin L, Wang Y, Ferguson DK. A New Gnetalean Macrofossil from the Mid-Jurassic Daohugou Formation. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091749. [PMID: 37176807 PMCID: PMC10181303 DOI: 10.3390/plants12091749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Macrofossil evidence has demonstrated a first radiation of gnetophytes in the Early Cretaceous. However, the origin of the diversity of gnetophytes remains ambiguous because gnetalean macrofossils have rarely been reported from pre-Cretaceous strata. Here, we report a new putative gnetalean macrofossil reproductive shoot which possesses opposite phyllotaxy, long linear leaves more or less decurrent and having a prominent midvein and pedicled ovoid-ellipsoid and longitudinally striated chlamydosperms. Our new fossil is different from other known gnetalean macrofossils in the linear-lanceolate leaves with a midvein and pedicled chlamydosperms. As a result, we describe this new macrofossil reproductive shoot as new to science, i.e., Daohugoucladus sinensis gen. et sp. nov. Our new macrofossil displays additional morphological characters distinct from other known Mesozoic and modern gnetalean species and provides additional evidence of the origin and early evolution of female reproductive organs of gnetophytes.
Collapse
Affiliation(s)
- Yong Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Zhi Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Longbiao Lin
- Independent Researcher, 69 Fuxing Road, Beijing 100039, China
| | - Yingwei Wang
- National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
| | | |
Collapse
|
5
|
Zumajo-Cardona C, Pabón-Mora N, Ambrose BA. The Evolution of euAPETALA2 Genes in Vascular Plants: From Plesiomorphic Roles in Sporangia to Acquired Functions in Ovules and Fruits. Mol Biol Evol 2021; 38:2319-2336. [PMID: 33528546 PMCID: PMC8136505 DOI: 10.1093/molbev/msab027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The field of evolutionary developmental biology can help address how morphological novelties evolve, a key question in evolutionary biology. In Arabidopsis thaliana, APETALA2 (AP2) plays a role in the development of key plant innovations including seeds, flowers, and fruits. AP2 belongs to the AP2/ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR family which has members in all viridiplantae, making it one of the oldest and most diverse gene lineages. One key subclade, present across vascular plants is the euAPETALA2 (euAP2) clade, whose founding member is AP2. We reconstructed the evolution of the euAP2 gene lineage in vascular plants to better understand its impact on the morphological evolution of plants, identifying seven major duplication events. We also performed spatiotemporal expression analyses of euAP2/TOE3 genes focusing on less explored vascular plant lineages, including ferns, gymnosperms, early diverging angiosperms and early diverging eudicots. Altogether, our data suggest that euAP2 genes originally contributed to spore and sporangium development, and were subsequently recruited to ovule, fruit and floral organ development. Finally, euAP2 protein sequences are highly conserved; therefore, changes in the role of euAP2 homologs during development are most likely due to changes in regulatory regions.
Collapse
Affiliation(s)
- Cecilia Zumajo-Cardona
- New York Botanical Garden, Bronx, NY 10458, United States.,The Graduate Center, City University of New York, New York, NY 10016, United States
| | - Natalia Pabón-Mora
- Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia
| | | |
Collapse
|
6
|
Zumajo-Cardona C, Ambrose BA. Deciphering the evolution of the ovule genetic network through expression analyses in Gnetum gnemon. ANNALS OF BOTANY 2021; 128:217-230. [PMID: 33959756 PMCID: PMC8324035 DOI: 10.1093/aob/mcab059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/30/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS The ovule is a synapomorphy of all seed plants (gymnosperms and angiosperms); however, there are some striking differences in ovules among the major seed plant lineages, such as the number of integuments or the orientation of the ovule. The genetics involved in ovule development have been well studied in the model species Arabidopsis thaliana, which has two integuments and anatropous orientation. This study is approached from what is known in arabidopsis, focusing on the expression patterns of homologues of four genes known to be key for the proper development of the integuments in arabidopsis: AINTEGUMENTA (ANT), BELL1, (BEL1), KANADIs (KANs) and UNICORN (UCN). METHODS We used histology to describe the morphoanatomical development from ovules to seeds in Gnetum gnemon. We carried out spatiotemporal expression analyses in G. gnemon, a gymnosperm, which has a unique ovule morphology with an integument covering the nucellus, two additional envelopes where the outermost becomes fleshy as the seed matures, and an orthotropous orientation. KEY RESULTS Our anatomical and developmental descriptions provide a framework for expression analyses in the ovule of G. gnemon. Our expression results show that although ANT, KAN and UCN homologues are expressed in the inner integument, their spatiotemporal patterns differ from those found in angiosperms. Furthermore, all homologues studied here are expressed in the nucellus, revealing major differences in seed plants. Finally, no expression of the studied homologues was detected in the outer envelopes. CONCLUSIONS Altogether, these analyses provide significant comparative data that allows us to better understand the functional evolution of these gene lineages, providing a compelling framework for evolutionary and developmental studies of seeds. Our findings suggest that these genes were most likely recruited from the sporangium development network and became restricted to the integuments of angiosperm ovules.
Collapse
Affiliation(s)
- Cecilia Zumajo-Cardona
- New York Botanical Garden, Bronx, NY, USA
- The Graduate Center, City University of New York, New York, NY, USA
| | - Barbara A Ambrose
- The Graduate Center, City University of New York, New York, NY, USA
- For correspondence. E-mail
| |
Collapse
|
7
|
Isolation and Characterization of Fungal Endophytes Isolated from Medicinal Plant Ephedra pachyclada as Plant Growth-Promoting. Biomolecules 2021; 11:biom11020140. [PMID: 33499067 PMCID: PMC7911138 DOI: 10.3390/biom11020140] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022] Open
Abstract
Endophytic fungi are widely present in internal plant tissues and provide different benefits to their host. Medicinal plants have unexplored diversity of functional fungal association; therefore, this study aimed to isolate endophytic fungi associated with leaves of medicinal plants Ephedra pachyclada and evaluate their plant growth-promoting properties. Fifteen isolated fungal endophytes belonging to Ascomycota, with three different genera, Penicillium, Alternaria, and Aspergillus, were obtained from healthy leaves of E. pachyclada. These fungal endophytes have varied antimicrobial activity against human pathogenic microbes and produce ammonia and indole acetic acid (IAA), in addition to their enzymatic activity. The results showed that Penicillium commune EP-5 had a maximum IAA productivity of 192.1 ± 4.04 µg mL−1 in the presence of 5 µg mL−1 tryptophan. The fungal isolates of Penicillium crustosum EP-2, Penicillium chrysogenum EP-3, and Aspergillus flavus EP-14 exhibited variable efficiency for solubilizing phosphate salts. Five representative fungal endophytes of Penicillium crustosum EP-2, Penicillium commune EP-5, Penicillium caseifulvum EP-11, Alternaria tenuissima EP-13, and Aspergillus flavus EP-14 and their consortium were selected and applied as bioinoculant to maize plants. The results showed that Penicillium commune EP-5 increased root lengths from 15.8 ± 0.8 to 22.1 ± 0.6. Moreover, the vegetative growth features of inoculated maize plants improved more than the uninoculated ones.
Collapse
|
8
|
A Review on Worldwide Ephedra History and Story: From Fossils to Natural Products Mass Spectroscopy Characterization and Biopharmacotherapy Potential. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1540638. [PMID: 32419789 PMCID: PMC7210547 DOI: 10.1155/2020/1540638] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
Growing worldwide, the genus Ephedra (family Ephedraceae) had a medicinal, ecological, and economic value. The extraordinary morphological diversity suggests that Ephedra was survivor of an ancient group, and its antiquity is also supported by fossil data. It has recently been suggested that Ephedra appeared 8–32 million years ago, and a few megafossils document its presence in the Early Cretaceous. Recently, the high analytical power provided by the new mass spectrometry (MS) instruments is making the characterization of Ephedra metabolites more feasible, such as ephedrine series. In this regard, the chemical compounds isolated from crude extracts, fractions, and few isolated compounds of Ephedra species were characterized by MS-based techniques (LC-MS, LC-ESI-MS, HPLC-PDA-ESI/MS, LC-DAD-ESI/MSn, LC/Orbitrap MS, etc.). Moreover, we carry out an exhaustive review of the scientific literature on biomedicine and pharmacotherapy (anticancer, antiproliferative, anti-inflammatory, antidiabetic, antihyperlipidemic, antiarthritic, and anti-influenza activities; proapoptotic and cytotoxic potential; and so on). Equally, antimicrobial and antioxidant activities were discussed. This review is focused on all these topics, along with current studies published in the last 5 years (2015–2019) providing in-depth information for readers.
Collapse
|
9
|
Grímsson F, Bouchal JM, Xafis A, Zetter R. Combined LM and SEM study of the middle Miocene (Sarmatian) palynoflora from the Lavanttal Basin, Austria: Part V. Magnoliophyta 3 - Myrtales to Ericales. GRANA 2020; 59:127-193. [PMID: 32406427 DOI: 10.1080/00173134.2011.585804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/09/2019] [Indexed: 05/26/2023]
Abstract
The continued investigation of the middle Miocene palynoflora from the Lavanttal Basin reveals numerous additional angiosperm taxa. The Myrtales to Ericales pollen record documented here comprises 46 different taxa belonging to Onagraceae (Ludwigia), Ericaceae (Craigia, Reevesia, Tilia), Anacardiaceae (Pistacia), Rutaceae (Zanthoxylum), Sapindaceae (Acer), Santalaceae (Arceuthobium), Amaranthaceae, Caryophyllaceae, Polygonaceae (Persicaria, Rumex), Cornaceae (Alangium, Cornus, Nyssa), Ebenaceae (Diospyros), Ericaceae (Andromeda, Arbutus, Empetrum, Erica), Sapotaceae (Pouteria, Sideroxylon), Styracaceae (Rehderodendron) and Symplocaceae (Symplocos). Köppen signatures of potential modern analogues of the additional fossil woody elements confirm the hypothesis of a subtropical (Cfa, Cwa) climate at lower elevations and subsequent transition into a temperate climate with altitudinal succession (Cfa → Cfb/Dfa → Dfb; Cwa → Cwb → Dwb-climate). The fossil plants represent different vegetation units, from wetland lowlands to well-drained montane forests. Many of the fossil taxa have potential modern analogues that can be classified as nemoral and/or meridio-nemoral and/or semihumid-meridional vegetation elements. New is the recognition of oreotropical elements, which are direct indicators for a substantial altitudinal gradient.
Collapse
Affiliation(s)
- Friđgeir Grímsson
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Johannes M Bouchal
- Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Alexandros Xafis
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | - Reinhard Zetter
- Department of Palaeontology, University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Yang Y, Wang Y, Ferguson DK. A new macrofossil ephedroid plant with unusual bract morphology from the Lower Cretaceous Jiufotang Formation of northeastern China. BMC Evol Biol 2020; 20:19. [PMID: 32019502 PMCID: PMC7001366 DOI: 10.1186/s12862-019-1569-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 12/19/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The evolution of the Jehol Biota of western Liaoning in China includes three phases, initiation in the Dabeigou phase, radiation in the Yixian phase, and decline in the Jiufotang phase. Numerous ephedroid macrofossils were reported from the Lower Cretaceous Yixian Formation. However, so far none has been found in the younger Jiufotang Formation (ca. 120.3 Ma) of western Liaoning. RESULTS Here we report a new species Jianchangia verticillata gen. et sp. nov. with unusual morphology from the Lower Cretaceous of the Jiufotang Formation, Lamadong Village, Jianchang County, Liaoning. This species is the first record of gnetophytes from the Jiufotang Formation. It is similar to other ephedroid species from the Yixian Formation in possessing linear leaves with parallel veins, jointed shoots with swollen nodes and longitudinally furrowed internodes, and ovulate cones possessing two whorls of bracts enclosing two chlamydosperms, but differs from all known species by the ovulate cone having multiple fine linear verticillate bracts. CONCLUSIONS This study expands our knowledge about the diversity of early gnetophytes in the Lower Cretaceous, and demonstrates the lineage continuity of gnetophytes from the Yixian Formation to the younger Jiufotang Formation.
Collapse
Affiliation(s)
- Yong Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Yingwei Wang
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | | |
Collapse
|
11
|
Danciu C, Muntean D, Alexa E, Farcas C, Oprean C, Zupko I, Bor A, Minda D, Proks M, Buda V, Hancianu M, Cioanca O, Soica C, Popescu S, Dehelean CA. Phytochemical Characterization and Evaluation of the Antimicrobial, Antiproliferative and Pro-Apoptotic Potential of Ephedra alata Decne. Hydroalcoholic Extract against the MCF-7 Breast Cancer Cell Line. Molecules 2018; 24:E13. [PMID: 30577537 PMCID: PMC6337526 DOI: 10.3390/molecules24010013] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 11/17/2022] Open
Abstract
Ephedra alata Decne. belongs to the Ephedraceae family. It is a species of Ephedra that grows mostly in the desert. Today, the main importance of Ephedra species in the medical field is due to the presence of the alkaloids derived from phenyl-alanine, which act on the sympathetic nervous system as a sympathomimetic. The aim of this study was to conduct a phytochemical characterization of the hydroalcoholic extract of the aerial part of Ephedra alata Decne., which is indigenous to Tunis, that involves the total phenolic content, individual phenolic content, and antioxidant activity as well as a biological screening for the evaluation of the antimicrobial, antifungal, antiproliferative, pro-apoptotic, and cytotoxic potential against the MCF-7 breast cancer cell line. The results show that the hydroalcoholic extract contains polyphenolic phytocompounds (156.226 ± 0.5 mgGAE/g extract) and elicits antioxidant activity (7453.18 ± 2.5 μmol Trolox/g extract). The extract acted as a bacteriostatic agent against all tested bacterial strains, but was bactericidal only against the Gram-positive cocci and Candida spp. In the set experimental parameters, the extract presents antiproliferative, pro-apoptotic, and cytotoxic potential against the MCF-7 human breast cancer cell line.
Collapse
Affiliation(s)
- Corina Danciu
- Department of Pharmacognosy, University of Medicine and Pharmacy "Victor Babeş", Eftimie Murgu Square, No. 2, 300041 Timişoara, România.
| | - Delia Muntean
- Department of Microbiology, University of Medicine and Pharmacy "Victor Babeş", Eftimie Murgu Square, No. 2, 300041 Timişoara, România.
| | - Ersilia Alexa
- Department of Food Control, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Calea Aradului No. 119, 300641 Timisoara, Romania.
| | - Claudia Farcas
- Department of Pharmaceutical Physics, University of Medicine and Pharmacy "Victor Babeş", Eftimie Murgu Square, No. 2, 300041 Timişoara, România.
| | - Camelia Oprean
- Department of Drug analysis; chemistry of the environment and food, University of Medicine and Pharmacy "Victor Babeş", Eftimie Murgu Square, No. 2, 300041 Timişoara, România.
- OncoGen Centre, County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300736, Timisoara, Romania.
| | - Istvan Zupko
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6., Szeged H-6720, Hungary.
| | - Andrea Bor
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6., Szeged H-6720, Hungary.
| | - Daliana Minda
- Department of Pharmacognosy, University of Medicine and Pharmacy "Victor Babeş", Eftimie Murgu Square, No. 2, 300041 Timişoara, România.
| | - Maria Proks
- Department of Pharmacology and Clinical Pharmacy, University of Medicine and Pharmacy "Victor Babeş", Eftimie Murgu Square, No. 2, 300041 Timişoara, România.
| | - Valentina Buda
- Department of Pharmacology and Clinical Pharmacy, University of Medicine and Pharmacy "Victor Babeş", Eftimie Murgu Square, No. 2, 300041 Timişoara, România.
| | - Monica Hancianu
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T.Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania.
| | - Oana Cioanca
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T.Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania.
| | - Codruta Soica
- Department of Pharmaceutical chemistry, University of Medicine and Pharmacy "Victor Babeş", Eftimie Murgu Square, No. 2, 300041 Timişoara, România.
| | - Sofia Popescu
- Department of Food Control, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Calea Aradului No. 119, 300641 Timisoara, Romania.
| | - Cristina Adriana Dehelean
- Department of Toxicology, University of Medicine and Pharmacy "Victor Babeş", Eftimie Murgu Square, No. 2, 300041 Timişoara, România.
| |
Collapse
|
12
|
Yang Y, Lin L, Ferguson DK, Wang Y. Macrofossil evidence unveiling evolution of male cones in Ephedraceae (Gnetidae). BMC Evol Biol 2018; 18:125. [PMID: 30157769 PMCID: PMC6116489 DOI: 10.1186/s12862-018-1243-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/15/2018] [Indexed: 11/23/2022] Open
Abstract
Background Male cones of modern Ephedraceae are compound and compact. No fossil evidence has so far been found to support an origin of the compact compound male cone from a hypothetical loosely-arranged shoot system. Results Here we describe a new macrofossil taxon, Eamesia chinensis Yang, Lin, Ferguson et Wang, gen. et sp. nov., from the Early Cretaceous of western Liaoning, northeastern China. It was an ephedroid shrub bearing male spikes terminal to twigs, but differs from modern Ephedraceae by its loosely-arranged male cones, the axillary male shoot consisting of an elongated synangiophore on which leaf-like foliar organs were inserted, and four sessile synangia terminal to the apex. Conclusions The morphology of this fossil suggests that the modern compact male cone of Ephedra was indeed derived from a once loosely-arranged shoot system, and the male reproductive unit originated from a once elongated axillary male shoot. This new fossil species thus provides a transitional link from the hypothetical ancestral shoot system to the modern compact morphology. Changes of habitat from closed humid forests to open dry deserts and shifts of the pollination syndrome may have acted as the driving forces behind this morphological evolution.
Collapse
Affiliation(s)
- Yong Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China.
| | - Longbiao Lin
- China Railway Group Limited, 69 Fuxing Road, Beijing, 100039, China
| | - David K Ferguson
- Department of Paleontology, University of Vienna, 1090, Vienna, Austria
| | - Yingwei Wang
- Beijing Botanical Garden, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
| |
Collapse
|
13
|
Puebla GG, Iglesias A, Gómez MA, Prámparo MB. Fossil record of Ephedra in the Lower Cretaceous (Aptian), Argentina. JOURNAL OF PLANT RESEARCH 2017; 130:975-988. [PMID: 28528483 DOI: 10.1007/s10265-017-0953-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
Fossil plants from the Lower Cretaceous (upper Aptian) of the La Cantera Formation, Argentina, are described. The fossils studied represent a leafy shooting system with several orders of articulated and striated axes and attached leaves with unequivocal ephedroid affinity. We also found associated remains of ovulate cones with four whorls of sterile bracts, which contain two female reproductive units (FRU). Ovulate cone characters fit well within the genus Ephedra. Special characters in the ovulate cones including an outer seed envelope with two types of trichomes, allowed us to consider our remains as a new Ephedra species. Abundant dispersed ephedroid pollen obtained from the macrofossil-bearing strata also confirms the abundance of Ephedraceae in the basin. The co-occurrence of abundant fossil of Ephedra (adapted to dry habitats) associated with thermophilic cheirolepideacean conifer pollen (Classopollis) in the unit would suggest marked seasonality at the locality during the Early Cretaceous. Furthermore, the floristic association is linked to dry sensitive rocks in the entire section. The macro- and microflora from San Luis Basin are similar in composition to several Early Cretaceous floras from the Northern Gondwana floristic province, but it may represent one of the southernmost records of an arid biome in South America.
Collapse
Affiliation(s)
- Gabriela G Puebla
- Unidad de Paleopalinología, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales Centro Científico Tecnológico, UNCuyo-CONICET, Av. Adrián Ruiz Leal s/n-C.C.131, 5500, Mendoza, Argentina.
| | - Ari Iglesias
- Instituto de Investigaciones en Biodiversidad y Medioambiente UNCO-CONICET, Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina
| | - María A Gómez
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis CONICET, Chacabuco 913, 5700, San Luis, Argentina
| | - Mercedes B Prámparo
- Unidad de Paleopalinología, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales Centro Científico Tecnológico, UNCuyo-CONICET, Av. Adrián Ruiz Leal s/n-C.C.131, 5500, Mendoza, Argentina
| |
Collapse
|
14
|
|
15
|
Yang Y, Lin L, Wang Q. Chengia laxispicata gen. et sp. nov., a new ephedroid plant from the Early Cretaceous Yixian Formation of western Liaoning, Northeast China: evolutionary, taxonomic, and biogeographic implications. BMC Evol Biol 2013; 13:72. [PMID: 23530702 PMCID: PMC3626868 DOI: 10.1186/1471-2148-13-72] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/20/2013] [Indexed: 11/10/2022] Open
Abstract
Background The extant Gnetales include three monotypic families, namely, Ephedraceae (Ephedra), Gnetaceae (Gnetum), and Welwitschiaceae (Welwitschia), all of which possess compound female cones that comprise a main axis and 1 to multiple pairs/whorls of bracts subtending a female reproductive unit or having lower pairs/whorls of bracts sterile. However, the evolutionary origin of such a reproductive architecture in Gnetales is controversial in the light of the competing anthophyte versus gnetifer hypotheses of seed plant relationships. Hence, macrofossils demonstrating the structure of compound female cones of the Gnetales should be important to decipher the early evolution of the order. Results A new ephedroid plant Chengia laxispicata gen. et sp. nov. is described from the Early Cretaceous Yixian Formation of western Liaoning, Northeast China. The fossil represents a part of a leafy shooting system with reproductive organs attached. The main shoot bears internodes and swollen nodes, from which lateral branches arise oppositely. Reproductive organs consist of female spikes terminal to twigs or axillary to linear leaves. Spikes are loosely arranged, having prominent nodes and internodes. Bracts of the spikes are decussately opposite and comprise 4—8 pairs of bracts. Each bract subtends an ellipsoid seed. Seeds are sessile, with a thin outer envelope and a distal micropylar tube. Conclusions Chengia laxispicata gen. et sp. nov. provides a missing link between archetypal fertile organs in the crown lineage of the Gnetales and compound female cones of the extant Ephedraceae. Combined with a wealth of Ephedra and ephedroid macrofossils from the Early Cretaceous, we propose a reduction and sterilization hypothesis that the female cone of the extant Ephedraceae may have stemmed from archetypal fertile organs in the crown lineage of the Gnetales. These have undergone sequentially intermediate links similar to female cones of Cretaceous Siphonospermum, Chengia, and Liaoxia by reduction and sterilization of the lower fertile bracts, shortenings of internodes and peduncles as well as loss of reproductive units in all inferior bracts. The basal family Ephedraceae including Ephedra of the extant Gnetales was demonstrated to have considerable diversity by the Early Cretaceous, so an emended familial diagnosis is given here. The Jehol Biota in Northeast China and adjacent areas contains a plethora of well-preserved macrofossils of Ephedra and ephedroids that show different evolutionary stages including primitive and derived characters of Ephedraceae, so Northeast China and adjacent areas may represent either the centre of origination or one of the centres for early diversification of the family.
Collapse
Affiliation(s)
- Yong Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
| | | | | |
Collapse
|
16
|
Yang Y, Wang Q. The earliest fleshy cone of Ephedra from the early cretaceous Yixian Formation of northeast China. PLoS One 2013; 8:e53652. [PMID: 23341964 PMCID: PMC3544918 DOI: 10.1371/journal.pone.0053652] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 12/03/2012] [Indexed: 12/02/2022] Open
Abstract
Bracts of female cones of extant gymnosperm Ephedra (Joint fir) are either colorful and fleshy (section Ephedra), or dry-winged and membranous (section Alatae), or dry and coriaceous (section Asarca), which have played a crucial role in long-distance seed dispersal that is responsible for a wide distribution of the genus in semiarid and arid areas of Eurasia, North Africa, North America, and South America. Recent molecular systematic studies on Ephedra have suggested that the fleshy bracts in character evolution may be plesiomorphic relative to the dry, membranous and coriaceous bracts. However, little is known about when the fleshy bracts of Ephedra have made their debut in the geological past. Herein, we describe a novel, fleshy bract-bearing female cone macrofossil from the Early Cretaceous (ca. 120—125 Ma) Yixian Formation in Liaoning, northeastern China. This cone bears three ellipsoid seeds subtended by only one whorl of fleshy bracts. Each seed has a thin outer envelope and an inner integument that extends upward and passes through the opening of the outer envelope, forming a thin and straight micropylar tube. Such a syndrome shows the closest similarity to an extant triovulate species Ephedra intermedia in the section Ephedra, but the latter bears a whorl of terminal fertile bracts and more than one whorl of inferior sterile bracts, and a thick outer envelope. Hence, we establish a new fossil species Ephedra carnosa. Our discovery provides the first direct macrofossil evidence for the previous molecular systematics of Ephedra, implying that the origin of fleshy bracts in Ephedra should not have been later than that of the membranous and coriaceous bracts by at least the Early Cretaceous.
Collapse
Affiliation(s)
- Yong Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, P. R. China
| | - Qi Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, P. R. China
- * E-mail:
| |
Collapse
|
17
|
Loera I, Sosa V, Ickert-Bond SM. Diversification in North American arid lands: niche conservatism, divergence and expansion of habitat explain speciation in the genus Ephedra. Mol Phylogenet Evol 2012; 65:437-50. [PMID: 22776548 DOI: 10.1016/j.ympev.2012.06.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 10/28/2022]
Abstract
A lineage of 12 arid land shrubby species in the gymnosperm genus Ephedra (Gnetales) from North America is used to evaluate the influence of climate on speciation. With a long evolutionary history, and a well documented fossil record this lineage is an ideal model for understanding the process of speciation under a niche conservatism scenario. Using seven DNA molecular markers, Bayesian inference is carried out to uncover sister species and to estimate time of divergence of the lineages. Ecological niche models are generated for four parapatric and sympatric sister species and two analyses of niche evolution are performed, one based on ecological niche models and another using raw data and multivariate analysis. As previous analyses suggest, the diversification of North America Ephedra species may be the result of a recent secondary radiation. Both parapatric and sympatric species diverged mostly in a scenario of climatic niche conservatism. However, we also found strong evidence for niche divergence for one of the sister species pairs (E. californica-E. trifurca). Moreover, the multivariate analysis found environmental differences for some variables between sister species. The estimated divergence time of three pairs of sister species distributed in southwestern North America (E. cutleri-E. aspera, E. californica-E. trifurca and E. torreyana-E. viridis) is inferred to have occurred in the Late Miocene to Pliocene and for the sister species pair E. antisyphilitica-E. coryi distributed in the southern United States and northeastern Mexico, it was inferred from the Pliocene to Pleistocene. The orogenetic and climatic changes documented for these regions related to expansion of arid lands, may have contributed to the diversification in North American Ephedra, rather than adaptations to new climatic conditions.
Collapse
Affiliation(s)
- Israel Loera
- Biología Evolutiva, Instituto de Ecología A.C., Apartado Postal 63, 91000 Xalapa, Veracruz, Mexico
| | | | | |
Collapse
|
18
|
Weber RW. On the cover. Ann Allergy Asthma Immunol 2011; 106:A6. [PMID: 21457871 DOI: 10.1016/j.anai.2011.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
|
20
|
Rydin C, Friis EM. A new early Cretaceous relative of Gnetales: Siphonospermum simplex gen. et sp. nov. from the Yixian formation of northeast China. BMC Evol Biol 2010; 10:183. [PMID: 20565755 PMCID: PMC2900273 DOI: 10.1186/1471-2148-10-183] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 06/17/2010] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Knowledge on fossil and evolutionary history of the Gnetales has expanded rapidly; Ephedra and ephedroids as well as the Gnetum-Welwitschia clade are now well documented in the Early Cretaceous. However, hypotheses on evolutionary relationships among living and fossil species are hampered by restricted knowledge of morphological variation in living groups and recent studies indicate that gnetalean diversity and character evolution may be more complex than previously assumed and involve additional extinct groups (Bennettitales, Erdtmanithecales and unassigned fossil taxa). RESULTS Here we describe a new fossil related to Gnetales, Siphonospermum simplex from the Early Cretaceous Yixian Formation, an impression/compression of a reproductive shoot. The slender main axis bears one pair of opposite and linear leaves with primary parallel venation. The reproductive units are ovoid, without supporting bracts and borne on one median and two lateral branches. The most conspicuous feature of the fossil is the long, thread-like micropylar tube formed by the integument. Each ovule is surrounded by two different layers representing one or two seed envelopes; an inner sclerenchymatous layer and an outer probably parenchymatous layer. CONCLUSIONS The vegetative and reproductive features of Siphonospermum simplex exclude a relationship to any other group than the Gnetales. A combination of opposite phyllotaxis, linear leaves and ovules surrounded by seed envelope(s) and with a long exposed micropylar tube are known only for extant and extinct Gnetales. Siphonospermum simplex constitutes a new lineage within the Gnetales. Its morphology cannot be directly linked to any previously known plant, but the organization of the reproductive units indicates that it belongs to the Gnetum-Welwitschia clade. Based on the absence of cone bracts and the inferred histology of the seed envelope(s) it could be related to Gnetum, however, there are also affinities with the ephedran lineage, some of which are likely plesiomorphic features, others perhaps not. Phylogeny and character evolution in the Bennettitales, Erdtmanithecales and Gnetales are currently only partly understood and under debate; the exact systematic position of Siphonospermum simplex, i.e., its position within the Gnetales, cannot be resolved with certainty.
Collapse
Affiliation(s)
- Catarina Rydin
- University of Zürich, Institute of Systematic Botany, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | - Else Marie Friis
- Swedish Museum of Natural History, Department of Palaeobotany, Box 50007, SE-104 05 Stockholm, Sweden
| |
Collapse
|
21
|
Whole fossil plants of Ephedra and their implications on the morphology, ecology and evolution of Ephedraceae (Gnetales). ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11434-010-3069-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Rydin C, Khodabandeh A, Endress PK. The female reproductive unit of ephedra (Gnetales): comparative morphology and evolutionary perspectives. BOTANICAL JOURNAL OF THE LINNEAN SOCIETY. LINNEAN SOCIETY OF LONDON 2010; 163:387-430. [PMID: 20799438 DOI: 10.1111/j.1095-8339.2010.01066.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Morphological variation in Ephedra (Gnetales) is limited and confusing from an evolutionary perspective, with parallelisms and intraspecific variation. However, recent analyses of molecular data provide a phylogenetic framework for investigations of morphological traits, albeit with few informative characters in the investigated gene regions. We document morphological, anatomical and histological variation patterns in the female reproductive unit and test the hypothesis that some Early Cretaceous fossils, which share synapomorphies with Ephedra, are members of the extant clade. Results indicate that some morphological features are evolutionarily informative although intraspecific variation is evident. Histology and anatomy of cone bracts and seed envelopes show clade-specific variation patterns. There is little evidence for an inclusion of the Cretaceous fossils in the extant clade. Rather, a hypothesized general pattern of reduction of the vasculature in the ephedran seed envelope, probably from four vascular bundles in the fossils, to ancestrally three in the living clade, and later to two, is consistent with phylogenetic and temporal analyses, which indicate that extant diversity evolved after the Cretaceous-Tertiary boundary. Notwithstanding striking similarities between living and Cretaceous Ephedra, available data indicate that the Mesozoic diversity went almost entirely extinct in the late Cretaceous causing a bottleneck effect in Ephedra, still reflected today by an extraordinarily low level of genetic and structural diversity.
Collapse
Affiliation(s)
- Catarina Rydin
- Institute of Systematic Botany, University of Zurich, Switzerland
| | | | | |
Collapse
|
23
|
Friis EM, Pedersen KR, Crane PR. Early Cretaceous mesofossils from Portugal and eastern North America related to the Bennettitales-Erdtmanithecales-Gnetales group. AMERICAN JOURNAL OF BOTANY 2009; 96:252-83. [PMID: 21628188 DOI: 10.3732/ajb.0800113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Four new genera and six new species of fossil seed (Buarcospermum tetragonium, Lignierispermum maroneae, Lobospermum glabrum, L. rugosum, L. stampanonii, Rugonella trigonospermum) are described from five Early Cretaceous mesofossil floras from Portugal and eastern North America. The four genera are distinguished by differences in size, shape, and details of seed anatomy, but all are unusual in having an outer seed envelope with a distinctive anatomical structure that surrounds the nucellus and the integument. The integument is extended apically into a long, narrow micropylar tube. The four new genera are part of a diverse, but previously unrecognized, complex of extinct plants that was widespread in Early Cretaceous vegetation and that coexisted in similar habitats with early angiosperms. The distinctive structure of these seeds, and the strong similarities to other fossil seeds (Ephedra, Ephedripites, Erdtmanispermum, Raunsgaardispermum, and some Bennettitales) already known from the Early Cretaceous, suggests that this newly recognized complex of extinct plants, together with Bennettitales, Erdtmanithecales, and Gnetales (the BEG group), is phylogenetically closely related.
Collapse
Affiliation(s)
- Else Marie Friis
- Department of Palaeobotany, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden
| | | | | |
Collapse
|
24
|
Crane PR, Herendeen PS. Bennettitales from the Grisethorpe Bed (Middle Jurassic) at Cayton Bay, Yorkshire, UK. AMERICAN JOURNAL OF BOTANY 2009; 96:284-95. [PMID: 21628189 DOI: 10.3732/ajb.0800193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Middle Jurassic fossil plants from the Grisethorpe Bed at Cayton Bay and Grisethorpe Bay, Yorkshire, UK, are preserved in a soft claystone, and plant mesofossils recovered by sieving reveal excellent details of external structure. Studies of these mesofossils complement previous work on macrofossils from the Grisethorpe Bed and allow the plant fossils in this classic flora to be studied in a similar way to those preserved in Cretaceous mesofloras. Bennettitales, a key group in discussions of how angiosperms may be related to other seed plants, are especially well represented among mesofossils from the Grisethorpe Bed. Abundant bennettitalean leaves, scale leaves, and fragments of pollen and ovulate organs provide new information on these extinct plants. In particular, a specimen of Williamsoniella coronata (presumed aborted) shows only weak differentiation between interseminal scales and ovules and provides further evidence of homology between these structures.
Collapse
Affiliation(s)
- Peter R Crane
- Department of the Geophysical Sciences, The University of Chicago, 5734 S. Ellis Avenue, Chicago, Illinois 60637 USA
| | | |
Collapse
|
25
|
Rothwell GW, Crepet WL, Stockey RA. Is the anthophyte hypothesis alive and well? New evidence from the reproductive structures of Bennettitales. AMERICAN JOURNAL OF BOTANY 2009; 96:296-322. [PMID: 21628190 DOI: 10.3732/ajb.0800209] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Bennettitales is an extinct group of seed plants with reproductive structures that are similar in some respects to both Gnetales and angiosperms, but systematic relationships among the three clades remain controversial. This study summarizes characters of bennettitalean plants and presents new evidence for the structure of cones and seeds that help clarify relationships of Bennettitales to flowering plants, Gnetales, and other potential angiosperm sister groups. Bennettitales have simple mono- or bisporangiate cones. Seeds are borne terminally on sporophylls. They have a unique structure that includes a nucellus with a solid apex, no pollen chamber, and a single integument, and they are clearly not enclosed by a cupule or other specialized structures. Such features differ substantially from Gnetales, flowering plants, and the seed fern Caytonia, providing no compelling evidence for the origin of the angiospermous carpel. Cladistic tests were performed to assess the strength of the "anthophyte hypothesis" and possible relationships of Bennettitales, Gnetales, and Caytonia to flowering plants. Our results do not support the anthophyte hypothesis for the origin of angiosperms by a transformation of fertile organs that were already aggregated into a cone or flower-like structure. However, the anthophyte topology of the seed plant tree continues to be supported by morphological analyses of living and extinct taxa.
Collapse
Affiliation(s)
- Gar W Rothwell
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio 45701 USA
| | | | | |
Collapse
|
26
|
Frohlich MW, Chase MW. After a dozen years of progress the origin of angiosperms is still a great mystery. Nature 2008; 450:1184-9. [PMID: 18097399 DOI: 10.1038/nature06393] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 10/18/2007] [Indexed: 11/09/2022]
Abstract
Here we discuss recent advances surrounding the origin of angiosperms. Putatively primitive characters are now much better understood because of a vastly improved understanding of angiosperm phylogenetics, and recent discoveries of fossil flowers have provided an increasingly detailed picture of early diversity in the angiosperms. The 'anthophyte theory', the dominant concept of the 1980s and 1990s, has been eclipsed; Gnetales, previously thought to be closest to the angiosperms, are related instead to other extant gymnosperms, probably most closely to conifers. Finally, new theories of flower origins have been proposed based on gene function, duplication and loss, as well as on morphology. Further studies of genetic mechanisms that control reproductive development in seed plants provide a most promising avenue for further research, including tests of these recent theories. Identification of fossils with morphologies that convincingly place them close to angiosperms could still revolutionize understanding of angiosperm origins.
Collapse
|
27
|
Friis EM, Crane PR, Pedersen KR, Bengtson S, Donoghue PCJ, Grimm GW, Stampanoni M. Phase-contrast X-ray microtomography links Cretaceous seeds with Gnetales and Bennettitales. Nature 2007; 450:549-52. [DOI: 10.1038/nature06278] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Accepted: 09/19/2007] [Indexed: 11/09/2022]
|
28
|
|
29
|
Won H, Renner SS. Dating dispersal and radiation in the gymnosperm Gnetum (Gnetales)--clock calibration when outgroup relationships are uncertain. Syst Biol 2006; 55:610-22. [PMID: 16969937 DOI: 10.1080/10635150600812619] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Most implementations of molecular clocks require resolved topologies. However, one of the Bayesian relaxed clock approaches accepts input topologies that include polytomies. We explored the effects of resolved and polytomous input topologies in a rate-heterogeneous sequence data set for Gnetum, a member of the seed plant lineage Gnetales. Gnetum has 10 species in South America, 1 in tropical West Africa, and 20 to 25 in tropical Asia, and explanations for the ages of these disjunctions involve long-distance dispersal and/or the breakup of Gondwana. To resolve relationships within Gnetum, we sequenced most of its species for six loci from the chloroplast (rbcL, matK, and the trnT-trnF region), the nucleus (rITS/5.8S and the LEAFY gene second intron), and the mitochondrion (nad1 gene second intron). Because Gnetum has no fossil record, we relied on fossils from other Gnetales and from the seed plant lineages conifers, Ginkgo, cycads, and angiosperms to constrain a molecular clock and obtain absolute times for within-Gnetum divergence events. Relationships among Gnetales and the other seed plant lineages are still unresolved, and we therefore used differently resolved topologies, including one that contained a basal polytomy among gymnosperms. For a small set of Gnetales exemplars (n = 13) in which rbcL and matK satisfied the clock assumption, we also obtained time estimates from a strict clock, calibrated with one outgroup fossil. The changing hierarchical relationships among seed plants (and accordingly changing placements of distant fossils) resulted in small changes of within-Gnetum estimates because topologically closest constraints overrode more distant constraints. Regardless of the seed plant topology assumed, relaxed clock estimates suggest that the extant clades of Gnetum began diverging from each other during the Upper Oligocene. Strict clock estimates imply a mid-Miocene divergence. These estimates, together with the phylogeny for Gnetum from the six combined data sets, imply that the single African species of Gnetum is not a remnant of a once Gondwanan distribution. Miocene and Pliocene range expansions are inferred for the Asian subclades of Gnetum, which stem from an ancestor that arrived from Africa. These findings fit with seed dispersal by water in several species of Gnetum, morphological similarities among apparently young species, and incomplete concerted evolution in the nuclear ITS region.
Collapse
Affiliation(s)
- Hyosig Won
- Department of Biology, University of Missouri-St. Louis, 8001 Natural Bridge Road, St. Louis, Missouri 63121, USA.
| | | |
Collapse
|