1
|
Gottlieb R, Gruntman M. Belowground plant competition: uncoupling root response strategies of peas. Proc Biol Sci 2024; 291:20240673. [PMID: 39079667 PMCID: PMC11288680 DOI: 10.1098/rspb.2024.0673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/21/2024] [Indexed: 08/03/2024] Open
Abstract
Belowground plant competition has been shown to induce varying responses, from increases to decreases in root biomass allocation or in directional root placement. Such inconsistencies could result from the fact that root allocation and directional growth were seldom studied together, even though they might represent different strategies. Moreover, variations in belowground responses might be due to different size hierarchies between plants, but this hypothesis has not been studied previously. In a greenhouse rhizobox experiment, we examined the way both root allocation and directional root placement of Pisum sativum are affected by the size and density of Festuca glauca neighbours, and by nutrient distribution. We found that root allocation of P. sativum increased with the density and size of F. glauca. By contrast, directional root placement was unaffected by neighbour size and increased either towards or away from neighbours when nutrients were patchily or uniformly distributed, respectively. These results demonstrate that directional root placement under competition is contingent on the distribution of soil resources. Interestingly, our results suggest that root allocation and directional placement might be uncoupled strategies that simultaneously provide stress tolerance and spatial responsiveness to neighbours, thus highlighting the importance of measuring both when studying belowground plant competition.
Collapse
Affiliation(s)
- Ruth Gottlieb
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Michal Gruntman
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Gu C, Han R, Liu C, Fang G, Yuan Q, Zheng Z, Yu Q, Jiang J, Liu S, Xie L, Wei H, Zhang Q, Liu G. Heritable epigenetic modification of BpPIN1 is associated with leaf shapes in Betula pendula. TREE PHYSIOLOGY 2023; 43:1811-1824. [PMID: 37406032 DOI: 10.1093/treephys/tpad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/29/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
The new variety Betula pendula 'Dalecarlica', selected from Betula pendula, shows high ornamental value owing to its lobed leaf shape. In this study, to identify the genetic components of leaf shape formation, we performed bulked segregant analysis and molecular marker-based fine mapping to identify the causal gene responsible for lobed leaves in B. pendula 'Dalecarlica'. The most significant variations associated with leaf shape were identified within the gene BpPIN1 encoding a member of the PIN-FORMED family, responsible for the auxin efflux carrier. We further confirmed the hypomethylation at the promoter region promoting the expression level of BpPIN1, which causes stronger and longer veins and lobed leaf shape in B. pendula 'Dalecarlica'. These results indicated that DNA methylation at the BpPIN1 promoter region is associated with leaf shapes in B. pendula. Our findings revealed an epigenetic mechanism of BpPIN1 in the regulation of leaf shape in Betula Linn. (birch), which could help in the molecular breeding of ornamental traits.
Collapse
Affiliation(s)
- Chenrui Gu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51, Hexing Road, Harbin, Heilongjiang 150040, China
| | - Rui Han
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51, Hexing Road, Harbin, Heilongjiang 150040, China
| | - Chaoyi Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51, Hexing Road, Harbin, Heilongjiang 150040, China
| | - Gonggui Fang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51, Hexing Road, Harbin, Heilongjiang 150040, China
| | - Qihang Yuan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51, Hexing Road, Harbin, Heilongjiang 150040, China
| | - Zhimin Zheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51, Hexing Road, Harbin, Heilongjiang 150040, China
| | - Qibin Yu
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33580, USA
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51, Hexing Road, Harbin, Heilongjiang 150040, China
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Throckmorton Center, 116 Ackert Hall, Manhattan, KS 66506-5502, USA
| | - Linan Xie
- College of Life Science, Northeast Forestry University, No. 26, Hexing Road, Harbin, Heilongjiang 150040, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Dr, Houghton, MI 49931, USA
| | - Qingzhu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51, Hexing Road, Harbin, Heilongjiang 150040, China
- College of Life Science, Northeast Forestry University, No. 26, Hexing Road, Harbin, Heilongjiang 150040, China
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51, Hexing Road, Harbin, Heilongjiang 150040, China
| |
Collapse
|
3
|
Li W, Wang T, Ma Y, Wang N, Wang W, Tang J, Zhang C, Hou X, Hou H. Ectopic Expression of BcCUC2 Involved in Sculpting the Leaf Margin Serration in Arabidopsis thaliana. Genes (Basel) 2023; 14:1272. [PMID: 37372452 DOI: 10.3390/genes14061272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Leaf margin serration is a morphological characteristic in plants. The CUC2 (CUP-SHAPED COTYLEDON 2) gene plays an important role in the outgrowth of leaf teeth and enhances leaf serration via suppression of growth in the sinus. In this study, we isolated the BcCUC2 gene from Pak-choi (Brassica rapa ssp. chinensis), which contains a 1104 bp coding sequence, encoding 367 amino acid residues. Multiple sequence alignment exhibited that the BcCUC2 gene has a typical conserved NAC domain, and phylogenetic relationship analysis showed that the BcCUC2 protein has high identity with Cruciferae plants (Brassica oleracea, Arabidopsis thaliana, and Cardamine hirsuta). The tissue-specific expression analysis displayed that the BcCUC2 gene has relatively high transcript abundance in floral organs. Meanwhile, the expression profile of BcCUC2 was relatively higher in the '082' lines with serrate leaf margins than the '001' lines with smooth leaf margins in young leaves, roots, and hypocotyls. In addition, the transcript level of BcCUC2 was up-regulated by IAA and GA3 treatment, especially at 1-3 h. The subcellular localization assay demonstrated that BcCUC2 was a nuclear-target protein. Furthermore, leaf serration occurred, and the number of the inflorescence stem was increased in the transgenic Arabidopsis thaliana plants' overexpressed BcCUC2 gene. These data illustrated that BcCUC2 is involved in the development of leaf margin serration, lateral branches, and floral organs, contributing to further uncovering and perfecting the regulation mechanism of leaf serration in Pak-choi.
Collapse
Affiliation(s)
- Wanqi Li
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Tongtong Wang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Yu Ma
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Nan Wang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Wenjing Wang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Jun Tang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Changwei Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xilin Hou
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hualan Hou
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
4
|
Zhao Y, Wei L, Wen S, Li H. Overexpression of the Liriodendron tulipifera BOP2 Gene ( LtuBOP2) Affects Leaf Margin Development in Transgenic Arabidopsis thaliana. Int J Mol Sci 2023; 24:ijms24043262. [PMID: 36834696 PMCID: PMC9961763 DOI: 10.3390/ijms24043262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
BLADE-ON-PETIOLE 2 (BOP2) plays a pivotal role in leaf morphogenesis. Liriodendron tulipifera is a suitable model for exploring the molecular mechanisms underlying leaf serration formation, which are largely unknown. Here, we isolated the full-length LtuBOP2 gene and its promoter from L. tulipifera and characterized its function in leaf morphogenesis through multidimensional approaches. The spatiotemporal expression pattern of LtuBOP2 indicated the high expression of LtuBOP2 in stems and leaf buds. We constructed LtuBOP2 promoter, fused the promoter sequences to the β-glucuronidase (GUS) gene, and then transformed them into Arabidopsis thaliana. Histochemical GUS staining results indicated that GUS activity was higher in petioles and the main vein. LtuBOP2 overexpression in A. thaliana caused moderate serration in the leaf tip, owing to the increased number of abnormal lamina epidermal cells and defective vascular tissue, thus indicating a novel role of BOP2. The ectopic expression of LtuBOP2 in A. thaliana promoted the expression of the lateral organ boundary gene ASYMMETRIC LEAVES2 (AS2) and inhibited JAGGED (JAG) and CUP-SHAPED COTYLEDON2 (CUC2) expression to establish leaf proximal-distal polarity. Moreover, LtuBOP2 participated in leaf serration formation by promoting the antagonistic relationship between KNOX I and hormones during leaf margin development. Our findings revealed the role of LtuBOP2 in the proximal-distal polarity formation and development of leaf margin morphology, providing new insights into the regulatory mechanisms of the leaf formation development of L. tulipifera.
Collapse
Affiliation(s)
- Yanqing Zhao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Lingmin Wei
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Shaoying Wen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Huogen Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-025-8542-8731
| |
Collapse
|
5
|
Bo K, Duan Y, Qiu X, Zhang M, Shu Q, Sun Y, He Y, Shi Y, Weng Y, Wang C. Promoter variation in a homeobox gene, CpDll, is associated with deeply lobed leaf in Cucurbita pepo L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1223-1234. [PMID: 34985539 DOI: 10.1007/s00122-021-04026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
CpDll, encoding an HD-Zip I transcription factor, positively regulates formation of deeply lobed leaf shape in zucchini, Cucurbita pepo, which is associated with sequence variation in its promoter region. Leaf shape is an important horticultural trait in zucchini (Cucurbita pepo L.). Deeply lobed leaves have potential advantages for high-density planting and hybrid production. However, little is known about the molecular basis of deeply lobed leaf formation in this important vegetable crop. Here, we conducted QTL analysis and fine mapping of the deeply lobed leaf (CpDll) locus using recombinant inbred lines and large F2 populations developed from crosses between the deeply lobed leaf HM-S2, and entire leaf Jin-GL parental lines. We show that CpDll exhibited incomplete dominance for the deeply lobed leaf shape in HM-S2. Map-based cloning provided evidence that CpCll encodes a type I homeodomain (HD)- and Leu zipper (Zip) element-containing transcription factor. Sequence analysis between HM-S2 and Jin-GL revealed no sequence variations in the coding sequences, whereas a number of variations were identified in the promoter region between them. DUAL-LUC assays revealed significantly stronger promoter activity in HM-S2 than that in Jin-GL. There was also significantly higher expression of CpDll in the leaf base of deeply lobed leaves of HM-S2 compared with entire leaf Jin-GL. Comparative analysis of CpDll gene homologs in nine cucurbit crop species (family Cucurbitaceae) revealed conservation in both structure and function of this gene in regulation of deeply lobed leaf formation. Our work provides new insights into the molecular basis of leaf lobe formation in pumpkin/squash and other cucurbit crops. This work also facilitates marker-assisted selection for leaf shape in zucchini breeding.
Collapse
Affiliation(s)
- Kailiang Bo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Ying Duan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xiyan Qiu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Meng Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Qin Shu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yapei Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yadi He
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yuzi Shi
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yiqun Weng
- USDA-ARS Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA.
| | - Changlin Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
- China Vegetable Biotechnology (Shouguang) Co., Ltd, Shouguang, Shandong, People's Republic of China.
| |
Collapse
|
6
|
Wen S, Li J, Hao Z, Wei L, Ma J, Zong Y, Li H. Overexpression of the LcCUC2-like gene in Arabidopsis thaliana alters the cotyledon morphology and increases rosette leaf number. PeerJ 2022; 10:e12615. [PMID: 35178288 PMCID: PMC8817629 DOI: 10.7717/peerj.12615] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 11/18/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The unique 'mandarin jacket' leaf shape is the most famous trait of Liriodendron chinense and this characteristic gives L. chinense aesthetic and landscaping value. However, the underlying regulatory mechanism of genes involved in the leaf development of L. chinense has remained unclear. METHODS Based on transcriptome data of leaves at different developmental stages from L. chinense, we identified differentially expression genes (DEGs) functioning in leaf development. A candidate gene named LcCUC2-like (LcCUC2L) had high similarity in sequence with Arabidopsis thaliana CUC2, and used for further research. We isolated the full-length LcCUC2L gene and its promoter from L. chinense. Subsequently, we analyzed the function of the LcCUC2L gene and its promoter activity via transformation into A. thaliana. RESULTS In this study, we found that the LcCUC2L and AtCUC2 are homologous in sequence but not homologous in function. Unlike the role of AtCUC2 in leaf serration and SAM formation, the LcCUC2L mainly regulates cotyledon development and rosette leaf number. Histochemical β-glucuronidase (GUS) staining revealed that LcCUC2L was expressed in the cotyledons of A. thaliana seedlings, indicating that the LcCUC2L may play a role in cotyledon development. Ectopic expression of LcCUC2L resulted in long, narrow cotyledons without petioles, abnormal lamina epidermis cells and defective vascular tissue in cotyledons, and these results were consistent with the LcCUC2L expression pattern. Further analysis showed that overexpression of LcCUC2L also induced numerous rosette leaves. Also, LcCUC2L and other related genes showed a severe response in L. chinense by introducing exogenous auxin stimulation, partly revealed that LcCUC2L affects the leaf development by regulating the auxin content. CONCLUSIONS These results suggest that LcCUC2L may play a critical role in leaf development and morphogenesis in L. chinense, and our findings provide insight into the molecular mechanisms of leaf development in L. chinense.
Collapse
Affiliation(s)
- Shaoying Wen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jiayu Li
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Ziyuan Hao
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Lingmin Wei
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jikai Ma
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Yaxian Zong
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Huogen Li
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Patterns of leaf morphological variation in Quercus frainetto Ten. growing on different soil types in Serbia. ARCH BIOL SCI 2022. [DOI: 10.2298/abs220405018j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Leaf morphology is at a certain level defined by the ways in which plants adapt to different habitats, especially in large trees. In this study, morphological variations in leaf size and shape of the Hungarian oak (Quercus frainetto Ten.) growing on different soil types (lithic leptosol, vertisol, cambisol) were investigated in the central part of Serbia (Sumadija). The information on soil type was obtained using a digitalized soil map of the Republic of Serbia, while leaf traits were characterized by geometric morphometric methods. Landmark analysis and leaf measurements showed significant differences among the analyzed groups, with individuals growing on nutrient-poor, shallow soils having smaller leaves with greater lobation. The observed differences suggest that the levels of soil productivity influence variations in leaf patterns. More studies on a larger sample size and along a broader spatial scale are needed to fully understand the differences in the patterns of leaf morphological variation in Q. frainetto.
Collapse
|
8
|
Neuenkamp L, Zobel M, Koorem K, Jairus T, Davison J, Öpik M, Vasar M, Moora M. Light availability and light demand of plants shape the arbuscular mycorrhizal fungal communities in their roots. Ecol Lett 2020; 24:426-437. [PMID: 33319429 DOI: 10.1111/ele.13656] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023]
Abstract
Plants involved in the arbuscular mycorrhizal (AM) symbiosis trade photosynthetically derived carbon for fungal-provided soil nutrients. However, little is known about how plant light demand and ambient light conditions influence root-associating AM fungal communities. We conducted a manipulative field experiment to test whether plants' shade-tolerance influences their root AM fungal communities in open and shaded grassland sites. We found similar light-dependent shifts in AM fungal community structure for experimental bait plant roots and the surrounding soil. Yet, deviation from the surrounding soil towards lower AM fungal beta-diversity in the roots of shade-intolerant plants in shade suggested preferential carbon allocation to specific AM fungi in conditions where plant-assimilated carbon available to fungi was limited. We conclude that favourable environmental conditions widen the plant biotic niche, as demonstrated here with optimal light availability reducing plants' selectivity for specific AM fungi, and promote compatibility with a larger number of AM fungal taxa.
Collapse
Affiliation(s)
- Lena Neuenkamp
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia.,Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
| | - Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Kadri Koorem
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Teele Jairus
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - John Davison
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Maarja Öpik
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Martti Vasar
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| |
Collapse
|
9
|
Gruntman M, Groß D, Májeková M, Tielbörger K. Decision-making in plants under competition. Nat Commun 2017; 8:2235. [PMID: 29269832 PMCID: PMC5740169 DOI: 10.1038/s41467-017-02147-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/09/2017] [Indexed: 11/30/2022] Open
Abstract
Plants can plastically respond to light competition in three strategies, comprising vertical growth, which promotes competitive dominance; shade tolerance, which maximises performance under shade; or lateral growth, which offers avoidance of competition. Here, we test the hypothesis that plants can 'choose' between these responses, according to their abilities to competitively overcome their neighbours. We study this hypothesis in the clonal plant Potentilla reptans using an experimental setup that simulates both the height and density of neighbours, thus presenting plants with different light-competition scenarios. Potentilla reptans ramets exhibit the highest vertical growth under simulated short-dense neighbours, highest specific leaf area (leaf area/dry mass) under tall-dense neighbours, and tend to increase total stolon length under tall-sparse neighbours. These responses suggest shifts between 'confrontational' vertical growth, shade tolerance and lateral-avoidance, respectively, and provide evidence that plants adopt one of several alternative plastic responses in a way that optimally corresponds to prevailing light-competition scenarios.
Collapse
Affiliation(s)
- Michal Gruntman
- Plant Ecology Group, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany.
| | - Dorothee Groß
- Plant Ecology Group, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Maria Májeková
- Plant Ecology Group, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
- Department of Soil Science, Faculty of Natural Science, Comenius University in Bratislava, Ilkovičova 6, 842 15, Mlynska dolina, Bratislava, Slovak Republic
- Department of Botany, Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic
| | - Katja Tielbörger
- Plant Ecology Group, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| |
Collapse
|
10
|
Chitwood DH, Rundell SM, Li DY, Woodford QL, Yu TT, Lopez JR, Greenblatt D, Kang J, Londo JP. Climate and Developmental Plasticity: Interannual Variability in Grapevine Leaf Morphology. PLANT PHYSIOLOGY 2016; 170:1480-91. [PMID: 26826220 PMCID: PMC4775139 DOI: 10.1104/pp.15.01825] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 01/27/2016] [Indexed: 05/02/2023]
Abstract
The shapes of leaves are dynamic, changing over evolutionary time between species, within a single plant producing different shaped leaves at successive nodes, during the development of a single leaf as it allometrically expands, and in response to the environment. Notably, strong correlations between the dissection and size of leaves with temperature and precipitation exist in both the paleorecord and extant populations. Yet, a morphometric model integrating evolutionary, developmental, and environmental effects on leaf shape is lacking. Here, we continue a morphometric analysis of >5,500 leaves representing 270 grapevines of multiple Vitis species between two growing seasons. Leaves are paired one-to-one and vine-to-vine accounting for developmental context, between growing seasons. Linear discriminant analysis reveals shape features that specifically define growing season, regardless of species or developmental context. The shape feature, a more pronounced distal sinus, is associated with the colder, drier growing season, consistent with patterns observed in the paleorecord. We discuss the implications of such plasticity in a long-lived woody perennial, such as grapevine (Vitis spp.), with respect to the evolution and functionality of plant morphology and changes in climate.
Collapse
Affiliation(s)
| | | | | | | | | | - Jose R. Lopez
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.H.C., S.M.R., D.Y.L., Q.L.W., T.T.Y., D.G.)
- University of Northern Iowa, Department of Biology, Cedar Falls, Iowa 50614 (J.R.L., J.K.); and
- U.S. Department of Agriculture, Agriculture Research Service, Grape Genetics Research Unit, Geneva, New York 14456 (J.P.L.)
| | - Daniel Greenblatt
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.H.C., S.M.R., D.Y.L., Q.L.W., T.T.Y., D.G.)
- University of Northern Iowa, Department of Biology, Cedar Falls, Iowa 50614 (J.R.L., J.K.); and
- U.S. Department of Agriculture, Agriculture Research Service, Grape Genetics Research Unit, Geneva, New York 14456 (J.P.L.)
| | - Julie Kang
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.H.C., S.M.R., D.Y.L., Q.L.W., T.T.Y., D.G.)
- University of Northern Iowa, Department of Biology, Cedar Falls, Iowa 50614 (J.R.L., J.K.); and
- U.S. Department of Agriculture, Agriculture Research Service, Grape Genetics Research Unit, Geneva, New York 14456 (J.P.L.)
| | - Jason P. Londo
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.H.C., S.M.R., D.Y.L., Q.L.W., T.T.Y., D.G.)
- University of Northern Iowa, Department of Biology, Cedar Falls, Iowa 50614 (J.R.L., J.K.); and
- U.S. Department of Agriculture, Agriculture Research Service, Grape Genetics Research Unit, Geneva, New York 14456 (J.P.L.)
| |
Collapse
|
11
|
Dai L, Dai W, Song X, Lu B, Qiang S. A comparative study of competitiveness between different genotypes of weedy rice (Oryza sativa) and cultivated rice. PEST MANAGEMENT SCIENCE 2014; 70:113-122. [PMID: 23512472 DOI: 10.1002/ps.3534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 02/02/2013] [Accepted: 03/19/2013] [Indexed: 06/01/2023]
Abstract
BACKGROUND Competition from weedy rice can cause serious yield losses to cultivated rice. However, key traits that facilitate competitiveness are still not well understood. To explore the mechanisms behind the strong growth and competitive ability, replacement series experiments were established with six genotypes of weedy rice from different regions and one cultivated rice cultivar. RESULTS (1) Weedy rice from southern China had the greatest impact on growth and yield of cultivated rice throughout the entire growing season. Weedy rice from the northeast was very competitive during the early vegetative stage while the competitive effects of eastern weedy rice were more detrimental at later crop-growth stages. (2) As the proportion of weedy rice increased, plant height, tillers, above-ground biomass, and yield of cultivated rice significantly declined; the crop always being at disadvantage regardless of proportion. (3) Weedy biotypes with greater diversity as estimated by their Shannon indexes were more detrimental to the growth and yield of cultivated rice. CONCLUSION Geographic origin (latitude) of weedy rice biotype, its mixture proportion under competition with the crop and its genetic diversity are determinant factors of the outcome of competition and the associated decline in the rice crop yield. © 2013 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lei Dai
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | | | | | | | | |
Collapse
|
12
|
Mägi M, Semchenko M, Kalamees R, Zobel K. Limited phenotypic plasticity in range-edge populations: a comparison of co-occurring populations of two Agrimonia species with different geographical distributions. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:177-184. [PMID: 21143739 DOI: 10.1111/j.1438-8677.2010.00342.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Increased importance of genetic drift and selection for stress resistance have been predicted to lead to a reduction in the degree of phenotypic plasticity in populations at margins of a species' geographical range, relative to those in the centre. We examined the effect of population positioning within the species range on degree of active morphological plasticity to vegetation shade. Importantly, we discriminated between active, size-independent morphological adjustments in response to shade and passive changes in morphology caused by the dependence of morphological traits on plant size, as only the former are considered to be adaptive. Two closely related and ecologically similar Agrimonia species were examined in the same geographical location, where one species reaches the edge of its distribution (Agrimonia pilosa) and the other does not (A. eupatoria). Plasticity to light availability is likely to be advantageous for both species as they occupy habitats with variable light conditions. However, we hypothesised that high levels of environmental stress should lead to reduced active plasticity in marginal compared with more central populations. Agrimonia eupatoria exhibited active adjustments in leaf morphology in response to tree shade, and in elongation of stems and inflorescences in response to herbaceous shade. In contrast, A. pilosa exhibited very limited active plasticity. High active plasticity allowed A. eupatoria to retain constant shoot growth in a wide range of light conditions, while the lack of active plasticity in A. pilosa resulted in a strong dependence of shoot growth on light availability. We propose that high levels of environmental stress in marginal areas of a species' range may lead to a significant reduction in the degree of active plasticity. Our results clearly indicate that discrimination between active and passive plasticity is crucial for reaching valid conclusions about differences in adaptive plasticity between marginal and non-marginal populations.
Collapse
Affiliation(s)
- Maris Mägi
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.
| | | | | | | |
Collapse
|
13
|
Royer DL, Meyerson LA, Robertson KM, Adams JM. Phenotypic plasticity of leaf shape along a temperature gradient in Acer rubrum. PLoS One 2009; 4:e7653. [PMID: 19893620 PMCID: PMC2764093 DOI: 10.1371/journal.pone.0007653] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 10/12/2009] [Indexed: 11/19/2022] Open
Abstract
Both phenotypic plasticity and genetic determination can be important for understanding how plants respond to environmental change. However, little is known about the plastic response of leaf teeth and leaf dissection to temperature. This gap is critical because these leaf traits are commonly used to reconstruct paleoclimate from fossils, and such studies tacitly assume that traits measured from fossils reflect the environment at the time of their deposition, even during periods of rapid climate change. We measured leaf size and shape in Acer rubrum derived from four seed sources with a broad temperature range and grown for two years in two gardens with contrasting climates (Rhode Island and Florida). Leaves in the Rhode Island garden have more teeth and are more highly dissected than leaves in Florida from the same seed source. Plasticity in these variables accounts for at least 6-19% of the total variance, while genetic differences among ecotypes probably account for at most 69-87%. This study highlights the role of phenotypic plasticity in leaf-climate relationships. We suggest that variables related to tooth count and leaf dissection in A. rubrum can respond quickly to climate change, which increases confidence in paleoclimate methods that use these variables.
Collapse
Affiliation(s)
- Dana L Royer
- Department of Earth and Environmental Sciences, Wesleyan University, Middletown, Connecticut, USA.
| | | | | | | |
Collapse
|
14
|
|
15
|
Abstract
Plants are limited in their ability to choose their neighbours, but they are able to orchestrate a wide spectrum of rational competitive behaviours that increase their prospects to prevail under various ecological settings. Through the perception of neighbours, plants are able to anticipate probable competitive interactions and modify their competitive behaviours to maximize their long-term gains. Specifically, plants can minimize competitive encounters by avoiding their neighbours; maximize their competitive effects by aggressively confronting their neighbours; or tolerate the competitive effects of their neighbours. However, the adaptive values of these non-mutually exclusive options are expected to depend strongly on the plants' evolutionary background and to change dynamically according to their past development, and relative sizes and vigour. Additionally, the magnitude of competitive responsiveness is expected to be positively correlated with the reliability of the environmental information regarding the expected competitive interactions and the expected time left for further plastic modifications. Concurrent competition over external and internal resources and morphogenetic signals may enable some plants to increase their efficiency and external competitive performance by discriminately allocating limited resources to their more promising organs at the expense of failing or less successful organs.
Collapse
Affiliation(s)
- Ariel Novoplansky
- Mitrani Department of Desert Ecology, Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus 84990, Israel.
| |
Collapse
|