1
|
Zhang J, Yan L, Liu M, Guo G, Wu B. Analysis of β-d-glucan biosynthetic genes in oat reveals glucan synthesis regulation by light. ANNALS OF BOTANY 2021; 127:371-380. [PMID: 33090200 PMCID: PMC7872105 DOI: 10.1093/aob/mcaa185] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS Oat (Avena sativa) has human health benefits when consumed as a whole-grain food, attributed to the high content of (1,3;1,4)-β-d-glucan (mixed-linkage glucan [MLG]), but little is known about the synthase genes and synthesis mechanism of MLG polysaccharides in this species. METHODS The concentration of oat MLGs under different light intensities was measured by a standard enzymatic approach and further verified by immunoelectron microscopy. The effect of light intensity on MLG synthase genes was examined by RT-qPCR and western blot analyses. The pattern of expression directed by the promoter of the oat MLG synthase gene was also investigated by histochemical β-glucuronidase (GUS) analysis. KEY RESULTS The oat orthologues of genes implicated in the synthesis of MLG in other cereals, including cellulose synthase-like (Csl) F, H and J gene families, were defined. Transcript profiling of these genes across oat tissues indicated that AsCslF6 transcripts dominated. Under high light intensities, the expression of AsCslF6, a major isoform of the MLG synthase genes, increased to >30 % of the dark growth control. The amount of MLG in oat rose from 0.07 to 1.06 % with increased light intensity. Histochemical tests showed that the AsCslF6 gene promoter preferentially directs GUS expression under high light intensity conditions. CONCLUSIONS Oat MLG synthesis is regulated by light. High light intensity upregulates the expression of the MLG synthase AsCslF6 gene, leading to an increase in the amount of MLG in oat leaves.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Lin Yan
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Minxuan Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ganggang Guo
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Bing Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
2
|
Wakabayashi K, Soga K, Hoson T, Kotake T, Yamazaki T, Ishioka N, Shimazu T, Kamada M. Microgravity Affects the Level of Matrix Polysaccharide 1,3:1,4-β-Glucans in Cell Walls of Rice Shoots by Increasing the Expression Level of a Gene Involved in Their Breakdown. ASTROBIOLOGY 2020; 20:820-829. [PMID: 32207981 DOI: 10.1089/ast.2019.2140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The plant cell wall provides each cell with structural support and mechanical strength, and thus, it plays an important role in supporting the plant body against the gravitational force. We investigated the effects of microgravity on the composition of cell wall polysaccharides and on the expression levels of genes involved in cell wall metabolism using rice shoots cultivated under artificial 1 g and microgravity conditions on the International Space Station. The bulk amount of the cell wall obtained from microgravity-grown shoots was comparable with that from 1 g-grown shoots. However, the analysis of sugar constituents of matrix polysaccharides showed that microgravity specifically reduced the amount of glucose (Glc)-containing polysaccharides such as 1,3:1,4-β-glucans, in shoot cell walls. The expression level of a gene for endo-1,3:1,4-β-glucanase, which hydrolyzes 1,3:1,4-β-glucans, largely increased under microgravity conditions. However, the expression levels of genes involved in the biosynthesis of 1,3:1,4-β-glucans were almost the same under both gravity conditions. On the contrary, microgravity scarcely affected the level and the metabolism of arabinoxylans. These results suggest that a microgravity environment promotes the breakdown of 1,3:1,4-β-glucans, which, in turn, causes the reduced level of these polysaccharides in growing rice shoots. Changes in 1,3:1,4-β-glucan level may be involved in the modification of mechanical properties of cell walls under microgravity conditions in space.
Collapse
Affiliation(s)
- Kazuyuki Wakabayashi
- Department of Biological Sciences, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Kouichi Soga
- Department of Biological Sciences, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Takayuki Hoson
- Department of Biological Sciences, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Takashi Yamazaki
- Laboratory of Space and Environmental Medicine, General Medical Education and Research Center, Teikyo University, Itabashi-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
3
|
Nakamura M, Noguchi K. Tolerant mechanisms to O 2 deficiency under submergence conditions in plants. JOURNAL OF PLANT RESEARCH 2020; 133:343-371. [PMID: 32185673 PMCID: PMC7214491 DOI: 10.1007/s10265-020-01176-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/06/2020] [Indexed: 05/02/2023]
Abstract
Wetland plants can tolerate long-term strict hypoxia and anoxic conditions and the subsequent re-oxidative stress compared to terrestrial plants. During O2 deficiency, both wetland and terrestrial plants use NAD(P)+ and ATP that are produced during ethanol fermentation, sucrose degradation, and major amino acid metabolisms. The oxidation of NADH by non-phosphorylating pathways in the mitochondrial respiratory chain is common in both terrestrial and wetland plants. As the wetland plants enhance and combine these traits especially in their roots, they can survive under long-term hypoxic and anoxic stresses. Wetland plants show two contrasting strategies, low O2 escape and low O2 quiescence strategies (LOES and LOQS, respectively). Differences between two strategies are ascribed to the different signaling networks related to phytohormones. During O2 deficiency, LOES-type plants show several unique traits such as shoot elongation, aerenchyma formation and leaf acclimation, whereas the LOQS-type plants cease their growth and save carbohydrate reserves. Many wetland plants utilize NH4+ as the nitrogen (N) source without NH4+-dependent respiratory increase, leading to efficient respiratory O2 consumption in roots. In contrast, some wetland plants with high O2 supply system efficiently use NO3- from the soil where nitrification occurs. The differences in the N utilization strategies relate to the different systems of anaerobic ATP production, the NO2--driven ATP production and fermentation. The different N utilization strategies are functionally related to the hypoxia or anoxia tolerance in the wetland plants.
Collapse
Affiliation(s)
- Motoka Nakamura
- Department of Bio-Production, Faculty of Bio-Industry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido, 099-2493, Japan.
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
4
|
Alhasnawi AN, Zain CRCM, Kadhimi AA, Isahakb A, Mohamad A, Ashraf MF, Yusoff WMW. Applications of polysaccharides (β-glucan) for physiological and biochemical parameters for evaluation rice tolerance under salinity stress at seedling stage. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s12892-016-0009-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Houston K, Tucker MR, Chowdhury J, Shirley N, Little A. The Plant Cell Wall: A Complex and Dynamic Structure As Revealed by the Responses of Genes under Stress Conditions. FRONTIERS IN PLANT SCIENCE 2016; 7:984. [PMID: 27559336 PMCID: PMC4978735 DOI: 10.3389/fpls.2016.00984] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/21/2016] [Indexed: 05/19/2023]
Abstract
The plant cell wall has a diversity of functions. It provides a structural framework to support plant growth and acts as the first line of defense when the plant encounters pathogens. The cell wall must also retain some flexibility, such that when subjected to developmental, biotic, or abiotic stimuli it can be rapidly remodeled in response. Genes encoding enzymes capable of synthesizing or hydrolyzing components of the plant cell wall show differential expression when subjected to different stresses, suggesting they may facilitate stress tolerance through changes in cell wall composition. In this review we summarize recent genetic and transcriptomic data from the literature supporting a role for specific cell wall-related genes in stress responses, in both dicot and monocot systems. These studies highlight that the molecular signatures of cell wall modification are often complex and dynamic, with multiple genes appearing to respond to a given stimulus. Despite this, comparisons between publically available datasets indicate that in many instances cell wall-related genes respond similarly to different pathogens and abiotic stresses, even across the monocot-dicot boundary. We propose that the emerging picture of cell wall remodeling during stress is one that utilizes a common toolkit of cell wall-related genes, multiple modifications to cell wall structure, and a defined set of stress-responsive transcription factors that regulate them.
Collapse
Affiliation(s)
- Kelly Houston
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
- *Correspondence: Kelly Houston
| | - Matthew R. Tucker
- Australian Research Council Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, Waite Research Institute, The University of AdelaideGlen Osmond, SA, Australia
| | - Jamil Chowdhury
- Australian Research Council Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, Waite Research Institute, The University of AdelaideGlen Osmond, SA, Australia
| | - Neil Shirley
- Australian Research Council Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, Waite Research Institute, The University of AdelaideGlen Osmond, SA, Australia
| | - Alan Little
- Australian Research Council Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, Waite Research Institute, The University of AdelaideGlen Osmond, SA, Australia
| |
Collapse
|
6
|
Kuge T, Nagoya H, Tryfona T, Kurokawa T, Yoshimi Y, Dohmae N, Tsubaki K, Dupree P, Tsumuraya Y, Kotake T. Action of an endo-β-1,3(4)-glucanase on cellobiosyl unit structure in barley β-1,3:1,4-glucan. Biosci Biotechnol Biochem 2015; 79:1810-7. [PMID: 26027730 PMCID: PMC4673573 DOI: 10.1080/09168451.2015.1046365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
β-1,3:1,4-Glucan is a major cell wall component accumulating in endosperm and young tissues in grasses. The mixed linkage glucan is a linear polysaccharide mainly consisting of cellotriosyl and cellotetraosyl units linked through single β-1,3-glucosidic linkages, but it also contains minor structures such as cellobiosyl units. In this study, we examined the action of an endo-β-1,3(4)-glucanase from Trichoderma sp. on a minor structure in barley β-1,3:1,4-glucan. To find the minor structure on which the endo-β-1,3(4)-glucanase acts, we prepared oligosaccharides from barley β-1,3:1,4-glucan by endo-β-1,4-glucanase digestion followed by purification by gel permeation and paper chromatography. The endo-β-1,3(4)-glucanase appeared to hydrolyze an oligosaccharide with degree of polymerization 5, designated C5-b. Based on matrix-assisted laser desorption/ionization (MALDI) time-of-flight (ToF)/ToF-mass spectrometry (MS)/MS analysis, C5-b was identified as β-Glc-1,3-β-Glc-1,4-β-Glc-1,3-β-Glc-1,4-Glc including a cellobiosyl unit. The results indicate that a type of endo-β-1,3(4)-glucanase acts on the cellobiosyl units of barley β-1,3:1,4-glucan in an endo-manner.
Collapse
Affiliation(s)
- Takao Kuge
- a Life Science Materials Laboratory, Research and Development Division , ADEKA Corporation , Tokyo , Japan
| | - Hiroki Nagoya
- b Division of Life Science, Graduate School of Science and Engineering , Saitama University , Saitama , Japan
| | - Theodora Tryfona
- c Department of Biochemistry , University of Cambridge , Cambridge , UK
| | - Tsunemi Kurokawa
- b Division of Life Science, Graduate School of Science and Engineering , Saitama University , Saitama , Japan
| | - Yoshihisa Yoshimi
- b Division of Life Science, Graduate School of Science and Engineering , Saitama University , Saitama , Japan
| | - Naoshi Dohmae
- b Division of Life Science, Graduate School of Science and Engineering , Saitama University , Saitama , Japan.,d Global Research Cluster , RIKEN , Saitama , Japan
| | - Kazufumi Tsubaki
- a Life Science Materials Laboratory, Research and Development Division , ADEKA Corporation , Tokyo , Japan
| | - Paul Dupree
- c Department of Biochemistry , University of Cambridge , Cambridge , UK
| | - Yoichi Tsumuraya
- b Division of Life Science, Graduate School of Science and Engineering , Saitama University , Saitama , Japan
| | - Toshihisa Kotake
- b Division of Life Science, Graduate School of Science and Engineering , Saitama University , Saitama , Japan.,e Institute for Environmental Science and Technology , Saitama University , Saitama , Japan
| |
Collapse
|
7
|
Wilson SM, Ho YY, Lampugnani ER, Van de Meene AML, Bain MP, Bacic A, Doblin MS. Determining the subcellular location of synthesis and assembly of the cell wall polysaccharide (1,3; 1,4)-β-D-glucan in grasses. THE PLANT CELL 2015; 27:754-71. [PMID: 25770111 PMCID: PMC4558670 DOI: 10.1105/tpc.114.135970] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 05/05/2023]
Abstract
The current dogma for cell wall polysaccharide biosynthesis is that cellulose (and callose) is synthesized at the plasma membrane (PM), whereas matrix phase polysaccharides are assembled in the Golgi apparatus. We provide evidence that (1,3;1,4)-β-D-glucan (mixed-linkage glucan [MLG]) does not conform to this paradigm. We show in various grass (Poaceae) species that MLG-specific antibody labeling is present in the wall but absent over Golgi, suggesting it is assembled at the PM. Antibodies to the MLG synthases, cellulose synthase-like F6 (CSLF6) and CSLH1, located CSLF6 to the endoplasmic reticulum, Golgi, secretory vesicles, and the PM and CSLH1 to the same locations apart from the PM. This pattern was recreated upon expression of VENUS-tagged barley (Hordeum vulgare) CSLF6 and CSLH1 in Nicotiana benthamiana leaves and, consistent with our biochemical analyses of native grass tissues, shown to be catalytically active with CSLF6 and CSLH1 in PM-enriched and PM-depleted membrane fractions, respectively. These data support a PM location for the synthesis of MLG by CSLF6, the predominant enzymatically active isoform. A model is proposed to guide future experimental approaches to dissect the molecular mechanism(s) of MLG assembly.
Collapse
Affiliation(s)
- Sarah M Wilson
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne, Victoria 3010, Australia
| | - Yin Ying Ho
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne, Victoria 3010, Australia
| | - Edwin R Lampugnani
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne, Victoria 3010, Australia
| | - Allison M L Van de Meene
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne, Victoria 3010, Australia
| | - Melissa P Bain
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne, Victoria 3010, Australia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne, Victoria 3010, Australia Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Monika S Doblin
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
8
|
Takahashi M, Yoshioka K, Imai T, Miyoshi Y, Nakano Y, Yoshida K, Yamashita T, Furuta Y, Watanabe T, Sugiyama J, Takeda T. Degradation and synthesis of β-glucans by a Magnaporthe oryzae endotransglucosylase, a member of the glycoside hydrolase 7 family. J Biol Chem 2013; 288:13821-30. [PMID: 23530038 DOI: 10.1074/jbc.m112.448902] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Plant pathogens secrete enzymes that degrade plant cell walls to enhance infection and nutrient acquisition. RESULTS A novel endotransglucosylase catalyzes cleavage and transfer of β-glucans and decreases the physical strength of plant cell walls. CONCLUSION Endotransglucosylation causes depolymerization and polymerization of β-glucans, depending on substrate molecular size. SIGNIFICANCE Enzymatic degradation of plant cell walls is required for wall loosening, which enhances pathogen invasion. A Magnaporthe oryzae enzyme, which was encoded by the Mocel7B gene, was predicted to act on 1,3-1,4-β-glucan degradation and transglycosylation reaction of cellotriose after partial purification from a culture filtrate of M. oryzae cells, followed by liquid chromatography-tandem mass spectrometry. A recombinant MoCel7B prepared by overexpression in M. oryzae exhibited endo-typical depolymerization of polysaccharides containing β-1,4-linkages, in which 1,3-1,4-β-glucan was the best substrate. When cellooligosaccharides were used as the substrate, the recombinant enzyme generated reaction products with both shorter and longer chain lengths than the substrate. In addition, incorporation of glucose and various oligosaccharides including sulforhodamine-conjugated cellobiose, laminarioligosaccharides, gentiobiose, xylobiose, mannobiose, and xyloglucan nonasaccharide into β-1,4-linked glucans were observed after incubation with the enzyme. These results indicate that the recombinant enzyme acts as an endotransglucosylase (ETG) that cleaves the glycosidic bond of β-1,4-glucan as a donor substrate and transfers the cleaved glucan chain to another molecule functioning as an acceptor substrate. Furthermore, ETG treatment caused greater extension of heat-treated wheat coleoptiles. The result suggests that ETG functions to induce wall loosening by cleaving the 1,3-1,4-β-glucan tethers of plant cell walls. On the other hand, use of cellohexaose as a substrate for ETG resulted in the production of cellulose II with a maximum length (degree of polymerization) of 26 glucose units. Thus, ETG functions to depolymerize and polymerize β-glucans, depending on the size of the acceptor substrate.
Collapse
Affiliation(s)
- Machiko Takahashi
- Iwate Biotechnology Research Center, 22-174-4, Narita Kitakami, Iwate 024-0003, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Vega-Sánchez ME, Verhertbruggen Y, Christensen U, Chen X, Sharma V, Varanasi P, Jobling SA, Talbot M, White RG, Joo M, Singh S, Auer M, Scheller HV, Ronald PC. Loss of Cellulose synthase-like F6 function affects mixed-linkage glucan deposition, cell wall mechanical properties, and defense responses in vegetative tissues of rice. PLANT PHYSIOLOGY 2012; 159:56-69. [PMID: 22388489 PMCID: PMC3375985 DOI: 10.1104/pp.112.195495] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 02/29/2012] [Indexed: 05/17/2023]
Abstract
Mixed-linkage glucan (MLG) is a cell wall polysaccharide containing a backbone of unbranched (1,3)- and (1,4)-linked β-glucosyl residues. Based on its occurrence in plants and chemical characteristics, MLG has primarily been associated with the regulation of cell wall expansion due to its high and transient accumulation in young, expanding tissues. The Cellulose synthase-like F (CslF) subfamily of glycosyltransferases has previously been implicated in mediating the biosynthesis of this polymer. We confirmed that the rice (Oryza sativa) CslF6 gene mediates the biosynthesis of MLG by overexpressing it in Nicotiana benthamiana. Rice cslf6 knockout mutants show a slight decrease in height and stem diameter but otherwise grew normally during vegetative development. However, cslf6 mutants display a drastic decrease in MLG content (97% reduction in coleoptiles and virtually undetectable in other tissues). Immunodetection with an anti-MLG monoclonal antibody revealed that the coleoptiles and leaves retain trace amounts of MLG only in specific cell types such as sclerenchyma fibers. These results correlate with the absence of endogenous MLG synthase activity in mutant seedlings and 4-week-old sheaths. Mutant cell walls are weaker in mature stems but not seedlings, and more brittle in both stems and seedlings, compared to wild type. Mutants also display lesion mimic phenotypes in leaves, which correlates with enhanced defense-related gene expression and enhanced disease resistance. Taken together, our results underline a weaker role of MLG in cell expansion than previously thought, and highlight a structural role for MLG in nonexpanding, mature stem tissues in rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Pamela C. Ronald
- Joint BioEnergy Institute, Emeryville, California 94608 (M.E.V.-S., Y.V., U.C., X.C., V.S., P.V., M.J., S.S., M.A., H.V.S., P.C.R.); Divisions of Physical Biosciences (Y.V., U.C., V.S., H.V.S., P.C.R.) and Life Sciences (M.J., M.A.), Lawrence Berkeley National Laboratory, Berkeley, California 94720; Commonwealth Scientific and Industrial Research Organization Food Futures Flagship (S.A.J., M.T., R.G.W.) and Commonwealth Scientific and Industrial Research Organization Plant Industry (S.A.J.), Black Mountain Laboratories, Black Mountain, Australian Capital Territory 2601, Australia; Department of Plant Pathology (M.E.V.-S., X.C., P.C.R.) and The Genome Center (P.C.R.), University of California, Davis, California 95616; Biomass Science and Conversion Technologies Department, Sandia National Laboratories, Livermore, California 94551 (P.V., S.S.); and Department of Plant Molecular System Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Korea (P.C.R.)
| |
Collapse
|
10
|
Takeda H, Sugahara T, Kotake T, Nakagawa N, Sakurai N. Sugar treatment inhibits IAA-induced expression of endo-1,3:1,4-beta-glucanase EI transcripts in barley coleoptile segments. PHYSIOLOGIA PLANTARUM 2010; 139:413-420. [PMID: 20412461 DOI: 10.1111/j.1399-3054.2010.01372.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The degradation of 1,3:1,4-beta-glucan by glucanases is believed to be critical for auxin-induced elongation in Gramineae coleoptile. In the present study, we reinvestigated the relationship between auxin-induced elongation and gene expression of glucanases upon treatment of coleoptile segments with sugars. Gene expression of exo-beta-1,3:1,4-glucanase ExoII was not affected by treatment with IAA and/or sucrose. In contrast, levels of endo-beta-1,3:1,4-glucanase EI transcripts increased in response to IAA treatment, which was negated by the addition of glucose or sucrose, although the addition of sucrose or glucose did not suppress IAA-induced elongation. Sugar composition analysis of the hemicellulosic fraction revealed that the addition of glucose suppressed the IAA-induced reduction of beta-glucan. In the coleoptile segments that were starved by pre-incubation in water, the IAA-induced accumulation of EI mRNA was accelerated, as compared with the non-starved segments, which suggests that the level of carbon source in the cytoplasm regulates EI expression. Moreover, in the basal region of coleoptiles, where IAA treatment does not induce elongation growth, high levels of EI transcripts were observed in the presence and absence of IAA treatment. These results strongly demonstrated that the expressions of exo- and endo-beta-glucanase genes are not directly involved in the IAA-induced loosening of cell walls associated with elongation and also suggests that cell walls may degrade 1,3:1,4-beta-glucan to provide glucose as an energy source for cell elongation.
Collapse
Affiliation(s)
- Hiroyuki Takeda
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima 739-8528, Japan
| | | | | | | | | |
Collapse
|
11
|
|