1
|
Yamamoto Y, Tabata K. Enhancement of Arabidopsis growth by non-24 hour day-night cycles. PLANT DIRECT 2022; 6:e391. [PMID: 35355885 PMCID: PMC8958050 DOI: 10.1002/pld3.391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Plant yield can be increased by matching the internal circadian rhythms with the external light and dark cycle (circadian resonance). The circadian resonance reported in the past was analyzed under light-dark cycles with 20-, 24-, or 28-hr periods; however, the mechanism for circadian resonance is still debatable due to the experimental time schedules in previous studies being few in number and widely separated. By analyzing the yield of Arabidopsis thaliana grown under eight different external light and dark periods, we found that the yield increased when the external cycle was 22 and 26 hr instead of 24 hr. Time course RNA-seq analysis determined that seedling circadian clock genes had a free-running period of 22 ± 1 hr. Furthermore, a group of genes with 25- to 26-hr period rhythms were also observed in the seedlings with a 22- ± 1-hr period as their circadian clock. We propose that resonance that occurred by matching the expression time of a group of genes with the 25- to 26-hr cycle and providing an external day-night cycle of 25 to 26 hr was one factor that caused the yield increase.
Collapse
Affiliation(s)
- Yuko Yamamoto
- New Field Pioneering DivisionToyota Boshoku CorporationKariyaJapan
- Toyota Boshoku Europe N.V.ZaventemBelgium
| | - Kazufumi Tabata
- New Field Pioneering DivisionToyota Boshoku CorporationKariyaJapan
| |
Collapse
|
2
|
de Mello Gallep C, Robert D. Are cyclic plant and animal behaviours driven by gravimetric mechanical forces? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1093-1103. [PMID: 34727177 PMCID: PMC8866634 DOI: 10.1093/jxb/erab462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/20/2021] [Indexed: 05/13/2023]
Abstract
The celestial mechanics of the Sun, Moon, and Earth dominate the variations in gravitational force that all matter, live or inert, experiences on Earth. Expressed as gravimetric tides, these variations are pervasive and have forever been part of the physical ecology with which organisms evolved. Here, we first offer a brief review of previously proposed explanations that gravimetric tides constitute a tangible and potent force shaping the rhythmic activities of organisms. Through meta-analysis, we then interrogate data from three study cases and show the close association between the omnipresent gravimetric tides and cyclic activity. As exemplified by free-running cyclic locomotor activity in isopods, reproductive effort in coral, and modulation of growth in seedlings, biological rhythms coincide with temporal patterns of the local gravimetric tide. These data reveal that, in the presumed absence of rhythmic cues such as light and temperature, local gravimetric tide is sufficient to entrain cyclic behaviour. The present evidence thus questions the phenomenological significance of so-called free-run experiments.
Collapse
Affiliation(s)
| | - Daniel Robert
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
3
|
Thorne S. Modeling the role of gravitation in metabolic processes. Commun Integr Biol 2021; 14:115-135. [PMID: 34349872 PMCID: PMC8293974 DOI: 10.1080/19420889.2021.1914913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
All living organisms are gravitationally bound to earth's surface and spun through three major gravitational potentials at nearly Mach 88. Along this pathway, organisms are subjected to non-isotropic strains that are repetitive in their geometry and their periodicity. Because of the relative smallness of this bias and the slow rate at which such strain accumulates, it typically goes undetected or treated stochastically as a variance from 'best-fit' models and woven into our empirical data. Far from being purely isotropic, equilibrium in systems co-moving with the earth possesses a dynamic component with bias defined by our orbital motion. Interestingly, biologists identify a similar bias in living organisms expressed in the chiral nature of key metabolic molecules and the periodicities of their metabolic cycles. Biologists have also identified a mean mass-specific metabolic rate that correlates well with the daily change in gravitational potential energy experienced by an organism. The evidence is only correlative, but it raises the intriguing question of whether 3 billion years of exposure to gravitational strain cycles might have led to a metabolic strategy that coupled to them. Because the subject of gravity has been omitted from most biology textbooks and, with only a few notable exceptions, relegated to the far corners of biology conferences, this paper is written with two goals in mind. The first goal is to summarize the extensive experimental record produced by biologists, botanists, and zoologists, identifying the strong correlation between metabolic processes and orbital periodicities. The second goal is to suggest experiments that might provide insight into how metabolic processes and gravitation might be so coupled.
Collapse
|
4
|
Zakhvataev VE. Tidal variations of background ionizing radiation and circadian timing of the suprachiasmatic nucleus clock. Med Hypotheses 2020; 140:109667. [PMID: 32182557 DOI: 10.1016/j.mehy.2020.109667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023]
Abstract
Recently, correlations of different physiological processes in humans with variations in the local lunisolar gravitational tide force have been observed under highly controlled laboratory conditions. Understanding of the physical nature of this phenomenon needs a comprehensive study of its possible molecular mechanisms. One of the possible timing cues is the strong periodic variation of the emanation fields of radon-222 and its progeny produced by tidal deformations of geological environment. In the present work, we argue that this variation could induce temporal modulation of radiation-induced bystander signaling pathways associated with fundamental regulators of gene expression in the suprachiasmatic nucleus clock.
Collapse
Affiliation(s)
- V E Zakhvataev
- Federal Research Center "Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences", 660036 Krasnoyarsk, Russia; Siberian Federal University, 660041 Krasnoyarsk, Russia.
| |
Collapse
|
5
|
van Wyk AS, Prinsloo G. Challenging current interpretation of sunflower movements. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6049-6056. [PMID: 31504705 DOI: 10.1093/jxb/erz381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
In the literature, Helianthus annuus L. (sunflower) movements are generally described as heliotropic. It is generally believed that the leaves and flowers of the growing H. annuus plant track the sun as the sun moves across the sky from east to west. This paper, however, challenges current interpretation regarding H. annuus movements, as the literature generally excludes the rotation of the earth around its own axis, gravity, and the possible role of gravitation. The general exclusion of the earth's rotation in the literature may also have resulted in flawed research design in studies conducted on H. annuus movements, which in turn may have directed researchers towards the misinterpretation of results. This paper aims to include the possible role of the Earth's rotation, gravity, and gravitation when describing H. annuus movements and to provide possible alternative explanations for the results achieved by researchers. This paper further includes concepts and examples relevant to plant movements, such as the rhythms often associated with plant movements, the physiology of plant movements, referring to turgor pressure as the main force behind plant movements, and plant rhythmic clocks and their characteristics, in order to explain the alternative views and to relate them to H. annuus movements.
Collapse
Affiliation(s)
- Anne S van Wyk
- Department of Environmental Sciences, University of South Africa, Florida campus, Florida, South Africa
| | - Gerhard Prinsloo
- Department of Agriculture and Animal Health, University of South Africa, Florida campus, Florida, South Africa
| |
Collapse
|
6
|
Chaffey N, Volkmann D, Baluška F. The botanical multiverse of Peter Barlow. Commun Integr Biol 2019; 12:14-30. [PMID: 31156759 PMCID: PMC6529214 DOI: 10.1080/19420889.2019.1575788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/25/2019] [Indexed: 02/02/2023] Open
Abstract
Dr Peter Barlow, who died in 2017, was one of the most respected botanists and biologists of the latter half of the 20th Century. His interests covered a wide range of plant biological topics, e.g. root growth and development, plant cytoskeleton, effects of gravity, plant intelligence, pattern formation, and evolution of eukaryotic cells. Here we consider Peter's numerous contributions to the: elucidation of plant patterns; understanding of root biology; role of the plant cytoskeleton in growth and development; influence of the Moon on terrestrial vegetation; Cell Body concept; and plant neurobiology. In so doing we attempt not only to provide an overview of Peter's important work in many areas of plant biology, but also to place that work in the context of recent advances in plant and biological sciences.
Collapse
Affiliation(s)
- Nigel Chaffey
- College of Liberal Arts, Bath Spa University, Bath, UK
| | | | | |
Collapse
|
7
|
Gallep CM, Viana JF, Cifra M, Clarke D, Robert D. Peter Barlow's insights and contributions to the study of tidal gravity variations and ultra-weak light emissions in plants. ANNALS OF BOTANY 2018; 122:757-766. [PMID: 29300820 PMCID: PMC6215041 DOI: 10.1093/aob/mcx176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/23/2017] [Indexed: 06/01/2023]
Abstract
BACKGROUND A brief review is given of Peter W. Barlows' contributions to research on gravity tide-related phenomena in plant biology, or 'selenonastic' effects as he called them, including his early research on root growth. Also, new results are presented here from long-term recordings of spontaneous ultra-weak light emission during germination, reinforcing the relationship between local lunisolar tidal acceleration and seedling growth. SCOPE The main ideas and broad relevance of the work by Barlow and his collaborators about the effects of gravity on plants are reviewed, highlighting the necessity of new models to explain the apparent synchronism between root growth and microscale gravity changes 107 times lower than that exerted by the Earth's gravity. The new results, showing for the first time the germination of coffee beans in sequential tests over 2 months, confirm the co-variation between the patterns in ultra-weak light emission and the lunisolar tidal gravity curves for the initial growth phase. For young sprouts (<1 month old), the rhythm of growth as well as variation in light emission exhibit the once a day and twice a day periodic variations, frequency components that are the hallmark of local lunisolar gravimetric tides. Although present, this pattern is less pronounced in coffee beans older than 1 month. CONCLUSIONS The apparent co-variation between ultra-weak light emission and growth pattern in coffee seedlings and the lunisolar gravity cycles corroborate those previously found in seedlings from other species. It is proposed here that such patterns may attenuate with time for older sprouts with slow development. These data suggest that new models considering both intra- and intercellular interactions are needed to explain the putative sensing and reaction of seedlings to the variations in the gravimetric tide. Here, a possible model is presented based on supracellular matrix interconnections.
Collapse
Affiliation(s)
- Cristiano M Gallep
- School of Technology, University of Campinas, DTT-FT, Limeira/SP, Brazil
| | - João F Viana
- School of Technology, University of Campinas, DTT-FT, Limeira/SP, Brazil
| | - Michal Cifra
- Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská, Prague, Czech Republic
| | - Dominic Clarke
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Daniel Robert
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
8
|
Fisahn J. Are there tides within trees? ANNALS OF BOTANY 2018; 122:735-739. [PMID: 29373629 PMCID: PMC6215047 DOI: 10.1093/aob/mcx215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/09/2018] [Indexed: 06/07/2023]
Abstract
BACKGROUND Tree stem diameters and electrical stem potentials exhibit rhythmic variations with periodicities of 24-25 h. Under free-running conditions of constant light or darkness these rhythms were suggested to be mediated by the lunisolar gravitational force. SCOPE To further unravel the regulation of tree stem diameter dilatations, many of the published time courses of diameter variations were re-evaluated in conjunction with the contemporaneous time courses of the lunisolar tidal acceleration. This was accomplished by application of the Etide program, which estimates, with high temporal resolution, local gravitational changes as a consequence of the diurnal variations of the lunisolar gravitational force due to the orbits and relative positions of Earth, Moon and Sun. In all instances investigated, it was evident that a synchronism exists between the times of the turning points of both the lunisolar tide and stem diameter variations when the direction of extension changes. This finding of synchrony documents that the lunisolar tide is a regulator of the tree stem diameter dilatations. CONCLUSIONS Under the described experimental conditions, rhythms in tree stem diameter dilations and electrical stem potentials are controlled by the lunisolar gravitational acceleration.
Collapse
Affiliation(s)
- Joachim Fisahn
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
9
|
Fisahn J, Barlow P, Dorda G. A proposal to explain how the circatidal rhythm of the Arabidopsis thaliana root elongation rate could be mediated by the lunisolar gravitational force: a quantum physical approach. ANNALS OF BOTANY 2018; 122:725-733. [PMID: 29236939 PMCID: PMC6215034 DOI: 10.1093/aob/mcx143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Background and Aims Roots of Arabidopsis thaliana exhibit a 24.8 h oscillation of elongation rate when grown under free-running conditions. This growth rhythm is synchronized with the time course of the local lunisolar tidal acceleration. The present study aims at a physiological/physical model to describe the interaction of weak gravitational fields with cellular water dynamics that mediate rhythmic root growth profiles. Methods Fundamental physical laws are applied to model the water dynamics within single plant cells in an attempt to mimic the 24.8 h oscillations in root elongation growth. In particular, a quantum gravitational description of the time course in root elongation is presented, central to which is the formation of coherent assemblies of mass due to the lunisolar gravitational field. Mathematical equations that characterize lunisolar gravity-induced coherent assemblies of water molecules are derived and related to the mass of cellular water within roots of A. thaliana. Key Results The derived physical model of gravitationally modulated water assemblies is capable of accounting for the experimentally observed arabidopsis root growth kinetics under free-running conditions. The close analogy between the derived time-dependent lunisolar effect upon coherent molecular states of water within single cells and the coherent assemblies of electrons that characterize the quantum Hall effect is emphasized. Conclusions The dynamics of the lunisolar-induced variation in coherent water assemblies provide a possible mechanism to describe the observed 24.8 h oscillation of root growth rate of A. thaliana. Therefore, this mechanism could function as an independent timekeeper to control cell elongation.
Collapse
Affiliation(s)
- Joachim Fisahn
- Max Planck Institute of Molecular Plant Physiology, Postdam, Germany
| | - Peter Barlow
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, Bristol, UK
| | - Gerhard Dorda
- Institute of Physics, University of the Federal Armed Forces, Neubiberg, Germany
| |
Collapse
|
10
|
Fisahn J. Control of plant leaf movements by the lunisolar tidal force. ANNALS OF BOTANY 2018; 121:e1-e6. [PMID: 29373644 PMCID: PMC6007428 DOI: 10.1093/aob/mcx214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/09/2018] [Indexed: 06/07/2023]
Abstract
BACKGROUND Investigations into the diurnal ascent and descent of leaves of beans and other species, as well as experimental interventions into these movements, such as exposures to light at different times during the movement cycle, led to the concept of an endogenous 'clock' as a regulator of these oscillations. The causal origin of leaf movement can be traced to processes that modulate cell volume in target tissues of the pulvinus and petiole. However, these elements of the leaf-movement process do not sufficiently account for the rhythms that are generated following germination in constant light or dark conditions, or when plants are transferred to similar free-running conditions. SCOPE To further unravel the regulation of leaf-movement rhythms, many of the published time courses of leaf movements that provided evidence for the concept of the endogenous clock were analysed in conjunction with the contemporaneous time courses of the lunisolar tidal acceleration. This was accomplished by application of the Etide program, which estimates, with high temporal resolution, local gravitational changes as a consequence of the diurnal variations of the lunisolar gravitational force due to the orbits and relative positions of Earth, Moon and Sun. To substantiate the results obtained in earthbound laboratories additional experiments were performed in the International Space Station (ISS). Tidal recurrence within the ISS exhibited a periodicity of 45 min. In all instances investigated, it was evident that a synchronism exists between the times of the turning points of both the lunisolar tide and of the leaftide when the direction of leaf movement changes. This finding of synchrony documents that the lunisolar tide is a regulator of the leaftide, and that the rhythm of leaf movement is not of endogenous origin but is an expression of an exogenous lunisolar clock impressed upon the leaf-movement apparatus. CONCLUSIONS A huge number of correlations between leaftide and Etide time courses were established for leaf movement rhythms in natural conditions of the greenhouse, in conditions of constant light or dark, and under the microgravity conditions of the International Space Station. Even the apparently spontaneous short-period, small-amplitude rhythms recorded from leaves under unusual growth conditions are consistent with the hypothesis of a lunisolar zeitgeber. Synchronism between leaftide and Etide is discussed in terms of classical and quantum mechanics.
Collapse
Affiliation(s)
- Joachim Fisahn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam, Germany
| |
Collapse
|
11
|
Zajączkowska U, Barlow PW. The effect of lunisolar tidal acceleration on stem elongation growth, nutations and leaf movements in peppermint (Mentha × piperita L.). PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:630-642. [PMID: 28258604 DOI: 10.1111/plb.12561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
Orbital movement of the Moon generates a system of gravitational fields that periodically alter the gravitational force on Earth. This lunar tidal acceleration (Etide) is known to act as an external environmental factor affecting many growth and developmental phenomena in plants. Our study focused on the lunar tidal influence on stem elongation growth, nutations and leaf movements of peppermint. Plants were continuously recorded with time-lapse photography under constant illumination as well in constant illumination following 5 days of alternating dark-light cycles. Time courses of shoot movements were correlated with contemporaneous time courses of the Etide estimates. Optical microscopy and SEM were used in anatomical studies. All plant shoot movements were synchronised with changes in the lunisolar acceleration. Using a periodogram, wavelet analysis and local correlation index, a convergence was found between the rhythms of lunisolar acceleration and the rhythms of shoot growth. Also observed were cyclical changes in the direction of rotation of stem apices when gravitational dynamics were at their greatest. After contrasting dark-light cycle experiments, nutational rhythms converged to an identical phase relationship with the Etide and almost immediately their renewed movements commenced. Amplitudes of leaf movements decreased during leaf growth up to the stage when the leaf was fully developed; the periodicity of leaf movements correlated with the Etide rhythms. For the fist time, it was documented that lunisolar acceleration is an independent rhythmic environmental signal capable of influencing the dynamics of plant stem elongation. This phenomenon is synchronised with the known effects of Etide on nutations and leaf movements.
Collapse
Affiliation(s)
- U Zajączkowska
- Department of Forest Botany, Faculty of Forestry, Warsaw University of Life Sciences, Warsaw, Poland
| | - P W Barlow
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
12
|
Gallep CM, Barlow PW, Burgos RCR, van Wijk EPA. Simultaneous and intercontinental tests show synchronism between the local gravimetric tide and the ultra-weak photon emission in seedlings of different plant species. PROTOPLASMA 2017; 254:315-325. [PMID: 26820150 DOI: 10.1007/s00709-016-0947-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
In order to corroborate the hypothesis that variations in the rate of spontaneous ultra-weak photon emission (UPE) from germinating seedlings are related to local variations of the lunisolar tidal force, a series of simultaneous tests was performed using the time courses of UPE collected from three plant species-corn, wheat and sunflower-and also from wheat samples whose grains were transported between continents, from Brazil to The Netherlands and vice versa. All tests which were run in parallel showed coincident inflections within the UPE time courses not only between seedlings of the same species but also between the different species. In most cases, the UPE inflections were synchronised with the turning points in the local gravimetric tidal variation. Statistical tests using the local Pearson correlation verified these coincidences in the two time series. The results therefore support the hypothesis of a relationship between UPE emissions and, in the oscillations, the local gravimetric tide. This applies to both the emissions from seedlings of different species and to the seedlings raised from transported grain samples of the same species.
Collapse
Affiliation(s)
| | - Peter W Barlow
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Rosilene C R Burgos
- Sino-Dutch Centre for Preventive and Personalized Medicine/Centre for Photonics of Living Systems, Leiden University, Leiden, The Netherlands
- Division of Analytical Biosciences, LACDR, Leiden University, Leiden, The Netherlands
| | - Eduard P A van Wijk
- Sino-Dutch Centre for Preventive and Personalized Medicine/Centre for Photonics of Living Systems, Leiden University, Leiden, The Netherlands
- Division of Analytical Biosciences, LACDR, Leiden University, Leiden, The Netherlands
- Meluna Research, Geldermalsen, The Netherlands
| |
Collapse
|
13
|
Bevington M. Lunar biological effects and the magnetosphere. PATHOPHYSIOLOGY 2015; 22:211-22. [DOI: 10.1016/j.pathophys.2015.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/12/2015] [Accepted: 08/28/2015] [Indexed: 12/24/2022] Open
|
14
|
De Swaef T, De Schepper V, Vandegehuchte MW, Steppe K. Stem diameter variations as a versatile research tool in ecophysiology. TREE PHYSIOLOGY 2015; 35:1047-61. [PMID: 26377875 DOI: 10.1093/treephys/tpv080] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/28/2015] [Indexed: 05/10/2023]
Abstract
High-resolution stem diameter variations (SDV) are widely recognized as a useful drought stress indicator and have therefore been used in many irrigation scheduling studies. More recently, SDV have been used in combination with other plant measurements and biophysical modelling to study fundamental mechanisms underlying whole-plant functioning and growth. The present review aims to scrutinize the important insights emerging from these more recent SDV applications to identify trends in ongoing fundamental research. The main mechanism underlying SDV is variation in water content in stem tissues, originating from reversible shrinkage and swelling of dead and living tissues, and irreversible growth. The contribution of different stem tissues to the overall SDV signal is currently under debate and shows variation with species and plant age, but can be investigated by combining SDV with state-of-the-art technology like magnetic resonance imaging. Various physiological mechanisms, such as water and carbon transport, and mechanical properties influence the SDV pattern, making it an extensive source of information on dynamic plant behaviour. To unravel these dynamics and to extract information on plant physiology or plant biophysics from SDV, mechanistic modelling has proved to be valuable. Biophysical models integrate different mechanisms underlying SDV, and help us to explain the resulting SDV signal. Using an elementary modelling approach, we demonstrate the application of SDV as a tool to examine plant water relations, plant hydraulics, plant carbon relations, plant nutrition, freezing effects, plant phenology and dendroclimatology. In the ever-expanding SDV knowledge base we identified two principal research tracks. First, in detailed short-term experiments, SDV measurements are combined with other plant measurements and modelling to discover patterns in phloem turgor, phloem osmotic concentrations, root pressure and plant endogenous control. Second, long-term SDV time series covering many different species, regions and climates provide an expanding amount of phenotypic data of growth, phenology and survival in relation to microclimate, soil water availability, species or genotype, which can be coupled with genetic information to support ecological and breeding research under on-going global change. This under-exploited source of information has now encouraged research groups to set up coordinated initiatives to explore this data pool via global analysis techniques and data-mining.
Collapse
Affiliation(s)
- Tom De Swaef
- Plant Sciences Unit, Institute for Agricultural and Fisheries Research (ILVO), Caritasstraat 21, 9090 Melle, Belgium Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Veerle De Schepper
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Maurits W Vandegehuchte
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| |
Collapse
|
15
|
Barlow PW. Leaf movements and their relationship with the lunisolar gravitational force. ANNALS OF BOTANY 2015. [PMID: 26205177 PMCID: PMC4512198 DOI: 10.1093/aob/mcv096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Observation of the diurnal ascent and descent of leaves of beans and other species, as well as experimental interventions into these movements, such as exposures to light at different times during the movement cycle, led to the concept of an endogenous 'clock' as a regulator of these oscillations. The physiological basis of leaf movement can be traced to processes that modulate cell volume in target tissues of the pulvinus and petiole. However, these elements of the leaf-movement process do not completely account for the rhythms that are generated following germination in constant light or dark conditions, or when plants are transferred to similar free-running conditions. SCOPE To develop a new perspective on the regulation of leaf-movement rhythms, many of the published time courses of leaf movements that provided evidence for the concept of the endogenous clock were analysed in conjunction with the contemporaneous time courses of the lunisolar tidal acceleration at the relevant experimental locations. This was made possible by application of the Etide program, which estimates, with high temporal resolution, local gravitational changes as a consequence of the diurnal variations of the lunisolar gravitational force due to the orbits and relative positions of Earth, Moon and Sun. In all cases, it was evident that a synchronism exists between the times of the turning points of both the lunisolar tide and of the leaftide when the direction of leaf movement changes. This finding of synchrony leads to the hypothesis that the lunisolar tide is a regulator of the leaftide, and that the rhythm of leaf movement is not necessarily of endogenous origin but is an expression of an exogenous lunisolar 'clock' impressed upon the leaf-movement apparatus. CONCLUSIONS Correlation between leaftide and Etide time courses holds for leaf movement rhythms in natural conditions of the greenhouse, in conditions of constant light or dark, under microgravity conditions of the International Space Station, and also holds for rhythms that are atypical, such as pendulum and relaxation rhythms whose periods are longer or shorter than usual. Even the apparently spontaneous short-period, small-amplitude rhythms recorded from leaves under unusual growth conditions are consistent with the hypothesis of a lunisolar zeitgeber. Two hypotheses that could account for the synchronism between leaftide and Etide, and which are based on either quantum considerations or on classical Newtonian physics, are presented and discussed.
Collapse
Affiliation(s)
- Peter W Barlow
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndalls Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
16
|
Barlow PW. The natural history of consciousness, and the question of whether plants are conscious, in relation to the Hameroff-Penrose quantum-physical 'Orch OR' theory of universal consciousness. Commun Integr Biol 2015; 8:e1041696. [PMID: 26478778 PMCID: PMC4594572 DOI: 10.1080/19420889.2015.1041696] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 03/28/2015] [Accepted: 04/13/2015] [Indexed: 12/23/2022] Open
Affiliation(s)
- Peter W Barlow
- School of Biological Sciences; University of Bristol; Bristol Life Sciences Building; Bristol, UK
| |
Collapse
|
17
|
Fisahn J, Klingelé E, Barlow P. Lunar gravity affects leaf movement of Arabidopsis thaliana in the International Space Station. PLANTA 2015; 241:1509-18. [PMID: 25795423 DOI: 10.1007/s00425-015-2280-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/13/2015] [Indexed: 05/26/2023]
Abstract
Cyclic leaf ascent and descent occur in synchrony and phase congruence with the lunisolar tidal force under a broad range of conditions. Digitized records of the vertical leaf movements of Arabidopsis thaliana were collected under space flight conditions in the International Space Station (ISS). Oscillations of leaf movements with periods of 45 and 90 min were found under light-adapted conditions, whereas in darkness, the periods were 45, 90, and 135 min. To demonstrate the close relationship between these oscillations and cyclical variations of the lunisolar gravitational force, we estimated the oscillations of the in-orbit lunisolar tide as they apply to the ISS, with the aid of the Etide software application. In general, in-orbit lunisolar gravitational profiles exhibited a periodicity of 45 min. Alignment of these in-orbit oscillations with the oscillations of Arabidopsis leaf movement revealed high degrees of synchrony and a congruence of phase. These data corroborate previous results which suggested a correlative relationship and a possible causal link between leaf movement rhythms obtained on ground and the rhythmic variation of the lunisolar tidal force.
Collapse
Affiliation(s)
- Joachim Fisahn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg1, 14476, Potsdam, Germany,
| | | | | |
Collapse
|
18
|
Zakhvataev VE. Tidal variations of radon activity as a possible factor synchronizing biological processes. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915010273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Rydin C, Bolinder K. Moonlight pollination in the gymnosperm Ephedra (Gnetales). Biol Lett 2015; 11:20140993. [PMID: 25832814 PMCID: PMC4424609 DOI: 10.1098/rsbl.2014.0993] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/10/2015] [Indexed: 01/25/2023] Open
Abstract
Most gymnosperms are wind-pollinated, but some are insect-pollinated, and in Ephedra (Gnetales), both wind pollination and insect pollination occur. Little is, however, known about mechanisms and evolution of pollination syndromes in gymnosperms. Based on four seasons of field studies, we show an unexpected correlation between pollination and the phases of the moon in one of our studied species, Ephedra foeminea. It is pollinated by dipterans and lepidopterans, most of them nocturnal, and its pollination coincides with the full moon of July. This may be adaptive in two ways. Many nocturnal insects navigate using the moon. Further, the spectacular reflection of the full-moonlight in the pollination drops is the only apparent means of nocturnal attraction of insects in these plants. In the sympatric but wind-pollinated Ephedra distachya, pollination is not correlated to the full moon but occurs at approximately the same dates every year. The lunar correlation has probably been lost in most species of Ephedra subsequent an evolutionary shift to wind pollination in the clade. When the services of insects are no longer needed for successful pollination, the adaptive value of correlating pollination with the full moon is lost, and conceivably also the trait.
Collapse
Affiliation(s)
- Catarina Rydin
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm 106 91, Sweden
| | - Kristina Bolinder
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm 106 91, Sweden
| |
Collapse
|
20
|
Fisahn J, Klingelé E, Barlow P. Lunisolar tidal force and its relationship to chlorophyll fluorescence in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2015; 10:e1057367. [PMID: 26376108 PMCID: PMC4883933 DOI: 10.1080/15592324.2015.1057367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 05/12/2023]
Abstract
The yield of chlorophyll fluorescence Ft was measured in leaves of Arabidopsis thaliana over periods of several days under conditions of continuous illumination (LL) without the application of saturating light pulses. After linearization of the time series of the chlorophyll fluorescence yield (ΔFt), oscillations became apparent with periodicities in the circatidal range. Alignments of these linearized time series ΔFt with the lunisolar tidal acceleration revealed high degrees of synchrony and phase congruence. Similar congruence with the lunisolar tide was obtained with the linearized quantum yield of PSII (ΔФII), recorded after application of saturating light pulses. These findings strongly suggest that there is an exogenous timekeeper which is a stimulus for the oscillations detected in both the linearized yield of chlorophyll fluorescence (ΔFt) and the linearized quantum yield of PSII (ΔФII).
Collapse
Affiliation(s)
- Joachim Fisahn
- Max Planck Institute of Molecular Plant Physiology; Potsdam, Germany
| | - Emile Klingelé
- Institute of Geodesy and Photogrammetry; Zürich, Switzerland
| | - Peter Barlow
- School of Biological Sciences; University of Bristol; Bristol, UK
| |
Collapse
|
21
|
Gallep CM, Moraes TA, Červinková K, Cifra M, Katsumata M, Barlow PW. Lunisolar tidal synchronism with biophoton emission during intercontinental wheat-seedling germination tests. PLANT SIGNALING & BEHAVIOR 2014; 9:e28671. [PMID: 24714075 PMCID: PMC4091565 DOI: 10.4161/psb.28671] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Synchronic measurements of spontaneous ultra-weak light emission from germinating wheat seedlings both in Brazil and after transportation to Japan, and with a simultaneous series of germinations with local seedlings in the Czech Republic, are presented. A series of tests was also performed with samples returned from Japan to Brazil and results compared with those from undisturbed Brazilian seedlings. Native seedlings presented semi-circadian rhythms of emission which correlated with the gravimetric tidal acceleration at their locality, as did seeds which had been transported from Brazil to Japan, and then returned to Brazil. Here, however, there were very small disturbances within the periodicity of emissions, perhaps as a result of similar tidal profiles at locations whose longitudes are 180° apart, as in this case, different from previous results obtained in Brazil-Germany tests with other longitude shift. This feature of the Brazil and Japan locations may have minimized the requirement for the acclimatization of the transported seed to their new location.
Collapse
Affiliation(s)
- Cristiano M Gallep
- School of Technology; University of Campinas; Limeira, Brazil
- Correspondence to: Cristiano M Gallep,
| | - Thiago A Moraes
- School of Technology; University of Campinas; Limeira, Brazil
- Max Planck Institute of Molecular Plant Physiology; Potsdam-Golm, Germany
| | - Kateřina Červinková
- Institute of Photonics and Electronics; Academy of Sciences of the Czech Republic; Prague, Czech Republic
| | - Michal Cifra
- Institute of Photonics and Electronics; Academy of Sciences of the Czech Republic; Prague, Czech Republic
| | | | - Peter W Barlow
- School of Biological Sciences; University of Bristol; Bristol, United Kingdom
| |
Collapse
|
22
|
Gallep CM, Moraes TA, Dos Santos SR, Barlow PW. Coincidence of biophoton emission by wheat seedlings during simultaneous, transcontinental germination tests. PROTOPLASMA 2013; 250:793-6. [PMID: 23011402 DOI: 10.1007/s00709-012-0447-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/07/2012] [Indexed: 05/26/2023]
Abstract
Measurements of spontaneous ultra-weak light (biophoton) emission from native Brazilian and German wheat seedlings in three simultaneous series of germination tests are presented, two run in Germany and one in Brazil. Seedlings in both countries presented semi-circadian rhythms of emission that were in accordance with the local lunisolar gravimetric tidal acceleration, as did seeds which had been transported from Brazil to Germany. The simultaneity of the photon emission patterns in all tests argues for the lunisolar tide and its rhythmic variations as regulators of the natural rhythm of photon emission. However, seedlings from seed samples transported from Brazil to Germany showed, in addition, a temporary disturbance within the emission periodicity which may indicate a possible short-term acclimatization to the new location.
Collapse
|
23
|
Barlow PW, Fisahn J, Yazdanbakhsh N, Moraes TA, Khabarova OV, Gallep CM. Arabidopsis thaliana root elongation growth is sensitive to lunisolar tidal acceleration and may also be weakly correlated with geomagnetic variations. ANNALS OF BOTANY 2013; 111:859-72. [PMID: 23532042 PMCID: PMC3631336 DOI: 10.1093/aob/mct052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/23/2013] [Indexed: 05/12/2023]
Abstract
BACKGROUND Correlative evidence suggests a relationship between the lunisolar tidal acceleration and the elongation rate of arabidopsis roots grown under free-running conditions of constant low light. METHODS Seedlings of Arabidopsis thaliana were grown in a controlled-climate chamber maintained at a constant temperature and subjected to continuous low-level illumination from fluorescent tubes, conditions that approximate to a 'free-running' state in which most of the abiotic factors that entrain root growth rates are excluded. Elongation of evenly spaced, vertical primary roots was recorded continuously over periods of up to 14 d using high temporal- and spatial-resolution video imaging and were analysed in conjunction with geophysical variables. KEY RESULTS AND CONCLUSIONS The results confirm the lunisolar tidal/root elongation relationship. Also presented are relationships between the hourly elongation rates and the contemporaneous variations in geomagnetic activity, as evaluated from the disturbance storm time and ap indices. On the basis of time series of root elongation rates that extend over ≥4 d and recorded at different seasons of the year, a provisional conclusion is that root elongation responds to variation in the lunisolar force and also appears to adjust in accordance with variations in the geomagnetic field. Thus, both lunisolar tidal acceleration and the geomagnetic field should be considered as modulators of root growth rate, alongside other, stronger and more well-known abiotic environmental regulators, and perhaps unexplored factors such as air ions. Major changes in atmospheric pressure are not considered to be a factor contributing to oscillations of root elongation rate.
Collapse
Affiliation(s)
- Peter W Barlow
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
While water shortage remains the single-most important factor influencing world agriculture, there are very few studies on how plants grow in response to water potential, i.e., hydrotropism. Terrestrial plant roots dwell in the soil, and their ability to grow and explore underground requires many sensors for stimuli such as gravity, humidity gradients, light, mechanical stimulations, temperature, and oxygen. To date, extremely limited information is available on the components of such sensors; however, all of these stimuli are sensed in the root cap. Directional growth of roots is controlled by gravity, which is fixed in direction and intensity. However, other environmental factors, such as water potential gradients, which fluctuate in time, space, direction, and intensity, can act as a signal for modifying the direction of root growth accordingly. Hydrotropism may help roots to obtain water from the soil and at the same time may participate in the establishment of the root system. Current genetic analysis of hydrotropism in Arabidopsis has offered new players, mainly AHR1, NHR1, MIZ1, and MIZ2, which seem to modulate how root caps sense and choose to respond hydrotropically as opposed to other tropic responses. Here we review the mechanism(s) by which these genes and the plant hormones abscisic acid and cytokinins coordinate hydrotropism to counteract the tropic responses to gravitational field, light or touch stimuli. The biological consequence of hydrotropism is also discussed in relation to water stress avoidance.
Collapse
Affiliation(s)
- Gladys I Cassab
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Col. Chamilpa, Cuernavaca, Mor. 62250 México.
| | | | | |
Collapse
|
25
|
Barlow PW. The primal integrated realm and the derived interactive realm in relation to biosemiosis, and their link with the ideas of J.W. von Goethe. Commun Integr Biol 2012. [PMID: 23181156 PMCID: PMC3502203 DOI: 10.4161/cib.21253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Certain phenomena in Nature which might logically be regarded as indicating biosemiotic communication, with signal, receptor and interpretant, may, in fact, indicate no such thing. Instead, the respective phenomenological observations may point to an underlying system that JW von Goethe termed an "Urphänomen". From such Primal Phenomena emerge derived phenomena, or "Types", which are made substantial by processes that uniquely define Life and Living. Biosemiosis arises and takes place within the derived Types. Examples of Primal Phenomena and their derivatives are taken from recent observations on the putative influence of the lunisolar gravitational force upon animal and plant behavior, and from some aspects of plant development that show connection with Goethe’s idea of the ‘Urpflanze’.
Collapse
Affiliation(s)
- Peter W Barlow
- School of Biological Sciences; University of Bristol; Bristol, UK
| |
Collapse
|
26
|
Fisahn J, Yazdanbakhsh N, Klingele E, Barlow P. Arabidopsis thaliana root growth kinetics and lunisolar tidal acceleration. THE NEW PHYTOLOGIST 2012; 195:346-355. [PMID: 22583121 DOI: 10.1111/j.1469-8137.2012.04162.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
• All living organisms on Earth are continually exposed to diurnal variations in the gravitational tidal force due to the Sun and Moon. • Elongation of primary roots of Arabidopsis thaliana seedlings maintained at a constant temperature was monitored for periods of up to 14 d using high temporal- and spatial-resolution video imaging. The time-course of the half-hourly elongation rates exhibited an oscillation which was maintained when the roots were placed in the free-running condition of continuous illumination. • Correlation between the root growth kinetics collected from seedlings initially raised under several light protocols but whose roots were subsequently in the free-running condition and the lunisolar tidal profiles enabled us to identify that the latter is the probable exogenous determinant of the rhythmic variation in root elongation rate. Similar observations and correlations using roots of Arabidopsis starch mutants suggest a central function of starch metabolism in the response to the lunisolar tide. The periodicity of the lunisolar tidal signal and the concomitant adjustments in root growth rate indicate that an exogenous timer exists for the modulation of root growth and development. • We propose that, in addition to the sensitivity to Earthly 1G gravity, which is inherent to all animals and plants, there is another type of responsiveness which is attuned to the natural diurnal variations of the lunisolar tidal force.
Collapse
Affiliation(s)
- Joachim Fisahn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Nima Yazdanbakhsh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Emile Klingele
- Institute of Geodesy and Photogrammetry, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | - Peter Barlow
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK
| |
Collapse
|
27
|
Lux A, Rost TL. Plant root research: the past, the present and the future. ANNALS OF BOTANY 2012; 110:201-4. [PMID: 22966495 PMCID: PMC3394661 DOI: 10.1093/aob/mcs156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
This special issue is dedicated to root biologists past and present who have been exploring all aspects of root structure and function with an extensive publication record going over 100 years. The content of the Special Issue on Root Biology covers a wide scale of contributions, spanning interactions of roots with microorganisms in the rhizosphere, the anatomy of root cells and tissues, the subcellular components of root cells, and aspects of metal accumulation and stresses on root function and structure. We have organized the papers into three topic categories: (1) root ecology, interactions with microbes, root architecture and the rhizosphere; (2) experimental root biology, root structure and physiology; and (3) applications of new technology to study root biology. Finally, we will speculate on root research for the future.
Collapse
Affiliation(s)
- Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina B-2, 84215 Bratislava, Slovakia
| | - Thomas L. Rost
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
28
|
Moraes TA, Barlow PW, Klingelé E, Gallep CM. Spontaneous ultra-weak light emissions from wheat seedlings are rhythmic and synchronized with the time profile of the local gravimetric tide. Naturwissenschaften 2012; 99:465-72. [PMID: 22639076 DOI: 10.1007/s00114-012-0921-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/20/2012] [Accepted: 04/27/2012] [Indexed: 11/26/2022]
Affiliation(s)
- Thiago A Moraes
- School of Technology, University of Campinas, Rua Paschoal Marmo 1888, 13484-332, Limeira, SP, Brazil
| | | | | | | |
Collapse
|