1
|
Liu L, Cheng L, Liu K, Yu T, Liu Q, Gong Z, Cai Z, Liu J, Zhao X, Nian H, Ma Q, Lian T. Transgenic soybean of GsMYB10 shapes rhizosphere microbes to promote resistance to aluminum (Al) toxicity. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131621. [PMID: 37187122 DOI: 10.1016/j.jhazmat.2023.131621] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
Plant resistance genes could affect rhizosphere microbiota, which in turn enhanced plant resistance to stresses. Our previous study found that overexpression of the GsMYB10 gene led to enhanced tolerance of soybean plants to aluminum (Al) toxicity. However, whether GsMYB10 gene could regulate rhizosphere microbiota to mitigate Al toxicity remains unclear. Here, we analyzed the rhizosphere microbiomes of HC6 soybean (WT) and transgenic soybean (trans-GsMYB10) at three Al concentrations, and constructed three different synthetic microbial communities (SynComs), including bacterial, fungal and cross-kingdom (bacteria and fungi) SynComs to verify their role in improving Al tolerance of soybean. Trans-GsMYB10 shaped the rhizosphere microbial communities and harbored some beneficial microbes, such as Bacillus, Aspergillus and Talaromyces under Al toxicity. Fungal and cross-kingdom SynComs showed a more effective role than the bacterial one in resistance to Al stress, and these SynComs helped soybean resist Al toxicity via affecting some functional genes that involved cell wall biosynthesis and organic acid transport etc. Overall, this study reveals the mechanism of soybean functional genes regulating the synergistic resistance of rhizosphere microbiota and plants to Al toxicity, and also highlights the possibility of focusing on the rhizobial microbial community as a potential molecular breeding target to produce crops.
Collapse
Affiliation(s)
- Lingrui Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lang Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Kun Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Taobing Yu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qi Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhihui Gong
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Junjie Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Xueqiang Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Kishchenko O, Stepanenko A, Straub T, Zhou Y, Neuhäuser B, Borisjuk N. Ammonium Uptake, Mediated by Ammonium Transporters, Mitigates Manganese Toxicity in Duckweed, Spirodela polyrhiza. PLANTS (BASEL, SWITZERLAND) 2023; 12:208. [PMID: 36616338 PMCID: PMC9824425 DOI: 10.3390/plants12010208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 06/12/2023]
Abstract
Nitrogen is an essential nutrient that affects all aspects of the growth, development and metabolic responses of plants. Here we investigated the influence of the two major sources of inorganic nitrogen, nitrate and ammonium, on the toxicity caused by excess of Mn in great duckweed, Spirodela polyrhiza. The revealed alleviating effect of ammonium on Mn-mediated toxicity, was complemented by detailed molecular, biochemical and evolutionary characterization of the species ammonium transporters (AMTs). Four genes encoding AMTs in S. polyrhiza, were classified as SpAMT1;1, SpAMT1;2, SpAMT1;3 and SpAMT2. Functional testing of the expressed proteins in yeast and Xenopus oocytes clearly demonstrated activity of SpAMT1;1 and SpAMT1;3 in transporting ammonium. Transcripts of all SpAMT genes were detected in duckweed fronds grown in cultivation medium, containing a physiological or 50-fold elevated concentration of Mn at the background of nitrogen or a mixture of nitrate and ammonium. Each gene demonstrated an individual expression pattern, revealed by RT-qPCR. Revealing the mitigating effect of ammonium uptake on manganese toxicity in aquatic duckweed S. polyrhiza, the study presents a comprehensive analysis of the transporters involved in the uptake of ammonium, shedding a new light on the interactions between the mechanisms of heavy metal toxicity and the regulation of the plant nitrogen metabolism.
Collapse
Affiliation(s)
- Olena Kishchenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, West Changjiang Road 111, Huai’an 223000, China
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- Institute of Cell Biology and Genetic Engineering, National Academy of Science of Ukraine, Acad. Zabolotnogo Str. 148, 03143 Kyiv, Ukraine
| | - Anton Stepanenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, West Changjiang Road 111, Huai’an 223000, China
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- Institute of Cell Biology and Genetic Engineering, National Academy of Science of Ukraine, Acad. Zabolotnogo Str. 148, 03143 Kyiv, Ukraine
| | - Tatsiana Straub
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Yuzhen Zhou
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, West Changjiang Road 111, Huai’an 223000, China
| | - Benjamin Neuhäuser
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, West Changjiang Road 111, Huai’an 223000, China
| |
Collapse
|
3
|
Sosa CC, Clavijo-Buriticá DC, García-Merchán VH, López-Rozo N, Riccio-Rengifo C, Diaz MV, Londoño DA, Quimbaya MA. GOCompare: An R package to compare functional enrichment analysis between two species. Genomics 2023; 115:110528. [PMID: 36462728 DOI: 10.1016/j.ygeno.2022.110528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Functional enrichment analysis is a cornerstone in bioinformatics as it makes possible to identify functional information by using a gene list as source. Different tools are available to compare gene ontology (GO) terms, based on a directed acyclic graph structure or content-based algorithms which are time-consuming and require a priori information of GO terms. Nevertheless, quantitative procedures to compare GO terms among gene lists and species are not available. Here we present a computational procedure, implemented in R, to infer functional information derived from comparative strategies. GOCompare provides a framework for functional comparative genomics starting from comparable lists from GO terms. The program uses functional enrichment analysis (FEA) results and implement graph theory to identify statistically relevant GO terms for both, GO categories and analyzed species. Thus, GOCompare allows finding new functional information complementing current FEA approaches and extending their use to a comparative perspective. To test our approach GO terms were obtained for a list of aluminum tolerance-associated genes in Oryza sativa subsp. japonica and their orthologues in Arabidopsis thaliana. GOCompare was able to detect functional similarities for reactive oxygen species and ion binding capabilities which are common in plants as molecular mechanisms to tolerate aluminum toxicity. Consequently, the R package exhibited a good performance when implemented in complex datasets, allowing to establish hypothesis that might explain a biological process from a functional perspective, and narrowing down the possible landscapes to design wet lab experiments.
Collapse
Affiliation(s)
- Chrystian C Sosa
- Department of Natural Sciences and Mathematics, Pontificia Universidad Javeriana, Cali, Cali, Colombia; Evolution, Ecology and Conservation Research Group EECO, Biology Program, Faculty of Basic Sciences and Technologies, Universidad del Quindío, Armenia, Colombia
| | | | - Victor Hugo García-Merchán
- Evolution, Ecology and Conservation Research Group EECO, Biology Program, Faculty of Basic Sciences and Technologies, Universidad del Quindío, Armenia, Colombia
| | - Nicolas López-Rozo
- Department of Natural Sciences and Mathematics, Pontificia Universidad Javeriana, Cali, Cali, Colombia
| | - Camila Riccio-Rengifo
- Department of Natural Sciences and Mathematics, Pontificia Universidad Javeriana, Cali, Cali, Colombia
| | | | - David Arango Londoño
- Department of Natural Sciences and Mathematics, Pontificia Universidad Javeriana, Cali, Cali, Colombia
| | - Mauricio Alberto Quimbaya
- Department of Natural Sciences and Mathematics, Pontificia Universidad Javeriana, Cali, Cali, Colombia.
| |
Collapse
|
4
|
Xiao X, Wang JL, Li JJ, Li XL, Dai XJ, Shen RF, Zhao XQ. Distinct Patterns of Rhizosphere Microbiota Associated With Rice Genotypes Differing in Aluminum Tolerance in an Acid Sulfate Soil. Front Microbiol 2022; 13:933722. [PMID: 35783428 PMCID: PMC9247542 DOI: 10.3389/fmicb.2022.933722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/30/2022] [Indexed: 11/20/2022] Open
Abstract
Rhizosphere microbes are important for plant tolerance to various soil stresses. Rice is the most aluminum (Al)-tolerant small grain cereal crop species, but the link between rice Al tolerance and rhizosphere microbiota remains unclear. This study aimed to investigate the microbial community structure of aluminum-sensitive and Al-tolerant rice varieties in acid sulfate soil under liming and non-liming conditions. We analyzed the rice biomass and mineral element contents of rice plants as well as the chemical properties and microbial (archaea, bacteria, and fungi) communities of rhizosphere and bulk soil samples. The results showed that the Al-tolerant rice genotype grew better and was able to take up more phosphorus from the acid sulfate soil than the Al-sensitive genotype. Liming was the main factor altering the microbial diversity and community structure, followed by rhizosphere effects. In the absence of liming effects, the rice genotypes shifted the community structure of bacteria and fungi, which accounted for the observed variation in the rice biomass. The Al-tolerant rice genotype recruited specific bacterial and fungal taxa (Bacillus, Pseudomonas, Aspergillus, and Rhizopus) associated with phosphorus solubilization and plant growth promotion. The soil microbial co-occurrence network of the Al-tolerant rice genotype was more complex than that of the Al-sensitive rice genotype. In conclusion, the bacterial and fungal community in the rhizosphere has genotype-dependent effects on rice Al tolerance. Aluminum-tolerant rice genotypes recruit specific microbial taxa, especially phosphorus-solubilizing microorganisms, and are associated with complex microbial co-occurrence networks, which may enhance rice growth in acid sulfate soil.
Collapse
Affiliation(s)
- Xun Xiao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia Lin Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiao Jiao Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Li Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Jun Dai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue Qiang Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Xue Qiang Zhao,
| |
Collapse
|
5
|
Hameed MK, Umar W, Razzaq A, Aziz T, Maqsood MA, Wei S, Niu Q, Huang D, Chang L. Differential Metabolic Responses of Lettuce Grown in Soil, Substrate and Hydroponic Cultivation Systems under NH 4+/NO 3- Application. Metabolites 2022; 12:444. [PMID: 35629948 PMCID: PMC9143640 DOI: 10.3390/metabo12050444] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 02/01/2023] Open
Abstract
Nitrogen (N) is an essential element for plant growth and development. The application of a balanced and optimal amount of N is required for sustainable plant yield. For this, different N sources and forms are used, that including ammonium (NH4+) and nitrate (NO3-). These are the main sources for N uptake by plants where NH4+/NO3- ratios have a significant effect on the biomass, quality and metabolites composition of lettuce grown in soil, substrate and hydroponic cultivation systems. A limited supply of N resulted in the reduction in the biomass, quality and overall yield of lettuce. Additionally, different types of metabolites were produced with varying concentrations of N sources and can be used as metabolic markers to improve the N use efficiency. To investigate the differential metabolic activity, we planted lettuce with different NH4+/NO3- ratios (100:0, 75:25, 50:50, 25:75 and 0:100%) and a control (no additional N applied) in soil, substrate and hydroponic cultivation systems. The results revealed that the 25% NH4+/75% NO3- ratio increased the relative chlorophyll contents as well as the biomass of lettuce in all cultivation systems. However, lettuce grown in the hydroponic cultivation system showed the best results. The concentration of essential amino acids including alanine, valine, leucine, lysine, proline and serine increased in soil and hydroponically grown lettuce treated with the 25% NH4+/75% NO3- ratio. The taste and quality-related compounds in lettuce showed maximum relative abundance with the 25% NH4+/75% NO3- ratio, except ascorbate (grown in soil) and lactupicrin (grown in substrate), which showed maximum relative abundance in the 50% NH4+/50% NO3- ratio and control treatments, respectively. Moreover, 1-O-caffeoylglucose, 1,3-dicaffeoylquinic acid, aesculetin and quercetin-3-galactoside were increased by the application of the 100% NH4+/0% NO3- ratio in soil-grown lettuce. The 25% NH4+/75% NO3- ratio was more suitable in the hydroponic cultivation system to obtain increased lettuce biomass. The metabolic profiling of lettuce showed different behaviors when applying different NH4+/NO3- ratios. Therefore, the majority of the parameters were largely influenced by the 25% NH4+/75% NO3- ratio, which resulted in the hyper-accumulation of health-promoting compounds in lettuce. In conclusion, the optimal N applications improve the quality of lettuce grown in soil, substrate and hydroponic cultivation systems which ultimately boost the nutritional value of lettuce.
Collapse
Affiliation(s)
- Muhammad Khalid Hameed
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (M.K.H.); (Q.N.); (D.H.)
| | - Wajid Umar
- Institute of Environmental Science, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary;
| | - Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan;
| | - Tariq Aziz
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38000, Pakistan; (T.A.); (M.A.M.)
| | - Muhammad Aamer Maqsood
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38000, Pakistan; (T.A.); (M.A.M.)
| | - Shiwei Wei
- Shanghai Agrobiological Gene Center, Shanghai 201106, China;
| | - Qingliang Niu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (M.K.H.); (Q.N.); (D.H.)
| | - Danfeng Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (M.K.H.); (Q.N.); (D.H.)
| | - Liying Chang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (M.K.H.); (Q.N.); (D.H.)
| |
Collapse
|
6
|
Zhang LD, Liu X, Wei MY, Guo ZJ, Zhao ZZ, Gao CH, Li J, Xu JX, Shen ZJ, Zheng HL. Ammonium has stronger Cd detoxification ability than nitrate by reducing Cd influx and increasing Cd fixation in Solanum nigrum L. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127947. [PMID: 34896722 DOI: 10.1016/j.jhazmat.2021.127947] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is a harmful heavy metal that affects the growth and development of plants. Nitrogen (N) is an essential nutrient for plants, and appropriate N management can improve Cd tolerance. The aim of our study was to explore the effects of different forms of N on the molecular and physiological responses of the hyperaccumulator Solanum nigrum to Cd toxicity. Measurement of biomass, photosynthetic parameters, and Cd2+ fluxes using non-invasive micro-test technique, Cd fluorescent dying, biochemical methods and quantitative real-time PCR analysis were performed in our study. Our results showed that ammonium (NH4+) has stronger Cd detoxification ability than nitrate (NO3-), which are likely attributed to the following three reasons: (1) NH4+ decreased the influx and accumulation of Cd2+ by regulating the transcription of Cd transport-related genes; (2) the ameliorative effects of NH4+ were accompanied by the increased retention of Cd in the cell walls of roots; and (3) NH4+ up-regulated SnExp expression.
Collapse
Affiliation(s)
- Lu-Dan Zhang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Xiang Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China; Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
| | - Ming-Yue Wei
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Ze-Jun Guo
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Zhi-Zhu Zhao
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Chang-Hao Gao
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Jing Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Jian-Xin Xu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Zhi-Jun Shen
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China.
| |
Collapse
|
7
|
Xue Y, Yan W, Gao Y, Zhang H, Jiang L, Qian X, Cui Z, Zhang C, Liu S, Wang H, Li Z, Liu K. Interaction Effects of Nitrogen Rates and Forms Combined With and Without Zinc Supply on Plant Growth and Nutrient Uptake in Maize Seedlings. FRONTIERS IN PLANT SCIENCE 2021; 12:722752. [PMID: 34956250 PMCID: PMC8695760 DOI: 10.3389/fpls.2021.722752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
Previous studies have shown that zinc (Zn) accumulation in shoot and grain increased as applied nitrogen (N) rate increased only when Zn supply was not limiting, suggesting a synergistic effect of N on plant Zn accumulation. However, little information is available about the effects of different mineral N sources combined with the presence or absence of Zn on the growth of both shoot and root and nutrient uptake. Maize plants were grown under sand-cultured conditions at three N forms as follows: NO3 - nutrition alone, mixture of NO3 -/NH4 + with molar ratio of 1:1 (recorded as mixed-N), and NH4 + nutrition alone including zero N supply as the control. These treatments were applied together without or with Zn supply. Results showed that N forms, Zn supply, and their interactions exerted a significant effect on the growth of maize seedlings. Under Zn-sufficient conditions, the dry weight (DW) of shoot, root, and whole plant tended to increase in the order of NH4 + < NO3 - < mixed-N nutrition. Compared with NH4 + nutrition alone, mixed-N supply resulted in a 27.4 and 28.1% increase in leaf photosynthetic rate and stomatal conductance, which further resulted in 35.7 and 33.5% of increase in shoot carbon (C) accumulation and shoot DW, respectively. Furthermore, mixed-N supply resulted in a 19.7% of higher shoot C/N ratio vs. NH4 + nutrition alone, which means a higher shoot biomass accumulation, because of a significant positive correlation between shoot C/N ratio and shoot DW (R 2 = 0.682***). Additionally, mixed-N supply promoted the greatest root DW, total root length, and total root surface area and synchronously improved the root absorption capacity of N, iron, copper, manganese, magnesium, and calcium. However, the above nutrient uptake and the growth of maize seedlings supplied with NH4 + were superior to either NO3 - or mixed-N nutrition under Zn-deficient conditions. These results suggested that combined applications of mixed-N nutrition and Zn fertilizer can maximize plant growth. This information may be useful for enabling integrated N management of Zn-deficient and Zn-sufficient soils and increasing plant and grain production in the future.
Collapse
Affiliation(s)
- Yanfang Xue
- National Engineering Laboratory of Wheat and Maize, Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai Rivers Plain, Ministry of Agriculture, Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wei Yan
- National Engineering Laboratory of Wheat and Maize, Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai Rivers Plain, Ministry of Agriculture, Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yingbo Gao
- National Engineering Laboratory of Wheat and Maize, Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai Rivers Plain, Ministry of Agriculture, Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hui Zhang
- National Engineering Laboratory of Wheat and Maize, Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai Rivers Plain, Ministry of Agriculture, Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Liping Jiang
- National Engineering Laboratory of Wheat and Maize, Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai Rivers Plain, Ministry of Agriculture, Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Xin Qian
- National Engineering Laboratory of Wheat and Maize, Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai Rivers Plain, Ministry of Agriculture, Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhenling Cui
- National Engineering Laboratory of Wheat and Maize, Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai Rivers Plain, Ministry of Agriculture, Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Resources and Environment, China Agricultural University, Beijing, China
| | - Chunyan Zhang
- Linyi Academy of Agricultural Sciences, Linyi, China
| | - Shutang Liu
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Huimin Wang
- National Engineering Laboratory of Wheat and Maize, Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai Rivers Plain, Ministry of Agriculture, Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zongxin Li
- National Engineering Laboratory of Wheat and Maize, Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai Rivers Plain, Ministry of Agriculture, Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Kaichang Liu
- National Engineering Laboratory of Wheat and Maize, Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai Rivers Plain, Ministry of Agriculture, Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
8
|
Zhang HQ, Zhao XQ, Chen YL, Wang JL, Shen RF. Improved Root Growth by Liming Aluminum-Sensitive Rice Cultivar or Cultivating an Aluminum-Tolerant One Does Not Enhance Fertilizer Nitrogen Recovery Efficiency in an Acid Paddy Soil. PLANTS 2020; 9:plants9060765. [PMID: 32575386 PMCID: PMC7355884 DOI: 10.3390/plants9060765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 11/16/2022]
Abstract
The root is the main site of nitrogen (N) acquisition and aluminum (Al) toxicity. The objective of this study is to investigate whether liming and cultivation of an Al-tolerant rice (Oryza sativa L.) cultivar can improve root growth, thereby increasing N acquisition by rice plants in acid paddy soil. Two rice cultivars ('B690', Al-sensitive, and 'Yugeng5', Al-tolerant) were cultivated with 15N-labeled urea, and with or without lime in an acid paddy soil (pH 4.9) in pots. We examined root and shoot growth, soil pH, soil exchangeable Al, N uptake, 15N distribution in plant-soil system, and fertilizer N recovery efficiency. Results showed that liming improved the root growth of 'B690' by decreasing soil exchangeable Al concentrations, in both N-limited and N-fertilized soils. Liming enhanced the N uptake of 'B690' only in the absence of N fertilizer. The root weight of 'Yugeng5' was greater than that of 'B690' without lime, but the two cultivars showed similar N uptake. The fertilizer N recovery efficiency and N loss did not differ significantly between limed and non-limed conditions, or between the two rice cultivars. Thus, liming an Al-sensitive rice cultivar and cultivating an Al-tolerant one improves root growth, but does not enhance fertilizer N recovery efficiency in the present acid paddy soil.
Collapse
Affiliation(s)
- Hao Qing Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (H.Q.Z.); (Y.L.C.); (J.L.W.); (R.F.S.)
- Institute of Soil Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Qiang Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (H.Q.Z.); (Y.L.C.); (J.L.W.); (R.F.S.)
- Institute of Soil Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| | - Yi Ling Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (H.Q.Z.); (Y.L.C.); (J.L.W.); (R.F.S.)
- Institute of Soil Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Lin Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (H.Q.Z.); (Y.L.C.); (J.L.W.); (R.F.S.)
- Institute of Soil Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (H.Q.Z.); (Y.L.C.); (J.L.W.); (R.F.S.)
- Institute of Soil Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Lu HL, Dong G, Hua H, Zhao WR, Li JY, Xu RK. Method for initially selecting Al-tolerant rice varieties based on the charge characteristics of their roots. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109813. [PMID: 31644989 DOI: 10.1016/j.ecoenv.2019.109813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
To explore the relationship between charge characteristics of rice roots and aluminum (Al) tolerance of rice, roots of 47 different rice genotypes were obtained by hydroponic experiment. The zeta potentials of roots were determined by streaming potential method, and the Al tolerance and the functional groups of rice were measured by relative root elongation and infrared spectroscopy (ATR-FTIR), respectively. The exchangeable, complexed and precipitated Al(III) sorbed on the root surface of rice was extracted with 1 mol L-1 KNO3, 0.05 mol L-1 EDTA-2Na and 0.01 mol L-1 HCl, respectively. There was a significant correlation between the zeta potentials and the relative elongation of rice roots, indicating that the zeta potentials of rice roots could be used to characterize rice tolerance to Al toxicity. Twelve Al-tolerant rice varieties, 25 medium Al-tolerant rice varieties, and 10 Al-sensitive rice varieties were obtained. The Al-tolerant rice varieties sorbed less complexed Al(III) and total Al(III) because there was lower negative charge on their roots compared to less tolerant genotypes. A correlation analysis showed that there were significant negative correlations between the zeta potential, relative root elongation, and the total Al(III) sorption capacity of the roots, which further confirmed the reliability of using the root zeta potential to characterize rice tolerance to Al toxicity. The results of this paper provide a new method for screening Al-tolerant rice varieties.
Collapse
Affiliation(s)
- Hai-Long Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ge Dong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Hua
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Rui Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiu-Yu Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China
| | - Ren-Kou Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Aluminum stress differentially affects physiological performance and metabolic compounds in cultivars of highbush blueberry. Sci Rep 2019; 9:11275. [PMID: 31375763 PMCID: PMC6677737 DOI: 10.1038/s41598-019-47569-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/18/2019] [Indexed: 11/08/2022] Open
Abstract
Aluminum (Al) toxicity is one of the major factors that limit the growth and production of crops in acid soils. Highbush blueberry (Vaccinium corymbosum L.) cultivars differing in resistance to Al toxicity regarding root growth and photosynthetic performance were used. In this study, we compared the physiological and metabolic strategies to cope with Al toxicity among the highbush blueberry cultivars [two new ones (Camellia and Cargo) and three established ones (Brigitta (Al-resistant), Star and Duke)]. Aluminum concentration in roots and leaves increased in all cultivars after 24 and 48 h of exposure to Al, but less so in roots of cultivar Camellia and leaves of cultivar Cargo. These two cultivars displayed minor effects of Al exposure in terms of photosynthetic activity in comparison with the established cultivars. Furthermore, Cargo did not vary fluorescence parameters, whereas Camellia exhibited a decrease in effective quantum yield (ΦPSII) and electron transport rate (ETR) and a change in non-photochemical quenching (NPQ) and maximum quantum yield (Fv/Fm) under Al after 48 h. The Al treatment increased total phenols in leaves of Brigitta, Cargo, and Camellia, whereas antioxidant activity increased in Star and Cargo after 48 h. Aluminum exposure decreased malate concentration in roots of all cultivars, but no change was noted in fumarate concentration. The antioxidant activity correlated with photosynthetic performance and the total phenol concentration in the leaves of new cultivars exposed to Al, suggesting enhanced resistance in the short-term experiment. The principal component analysis separated the new from the established cultivars. In conclusion, the new cultivars appear to be more Al-resistant than the established ones, with Star being most Al-sensitive. Regarding the Al-resistance mechanisms of the new cultivars, it is suggested that Camellia could have a root Al-exclusion mechanism under Al toxicity. This mechanism could be explained by low Al concentration in roots, suggesting that this cultivar could exude organic acid, allowing to chelate Al in the rhizosphere. Nonetheless, further researches are needed to confirm this assumption.
Collapse
|
11
|
Hu AY, Zheng MM, Sun LM, Zhao XQ, Shen RF. Ammonium Alleviates Manganese Toxicity and Accumulation in Rice by Down-Regulating the Transporter Gene OsNramp5 Through Rhizosphere Acidification. FRONTIERS IN PLANT SCIENCE 2019; 10:1194. [PMID: 31632426 PMCID: PMC6785973 DOI: 10.3389/fpls.2019.01194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/30/2019] [Indexed: 05/17/2023]
Abstract
Ammonium ( N H 4 + ) alleviates manganese (Mn) toxicity in various plant species, but the underlying mechanisms are still unclear. In this study, we compared the effects of N H 4 + and nitrate ( N O 3 - ) on rice (Oryza sativa L.) growth, accumulation and distribution of Mn, accumulation of iron (Fe), zinc (Zn) and copper (Cu), root cell wall components, and expression of Mn and Fe transporter genes. After rice seedlings were grown in non-pH-buffered nutrient solution for 2 days, the pH of growth medium changed from an initial value of 4.5 to 3.5 and to 5.5 in the presence of N H 4 + and in the presence of N O 3 - , respectively. Compared with N O 3 - , ammonium decreased nutrient-solution pH and alleviated Mn toxicity and accumulation in rice under non-pH-buffered conditions. This alleviation disappeared when 5 mM Homo-PIPES pH buffer was added. Regardless of N form, roots, shoots, root cell sap, and xylem sap accumulated much lower Mn at pH 3.5 than at pH 5.5, whereas Mn distribution in different leaves and Mn accumulation in root cell walls was affected by neither N form nor pH. Ammonium decreased the expression of the Mn influx transporter gene OsNramp5 in roots under non-pH-buffered conditions, but not under pH-buffered ones. OsNramp5 expression was down-regulated at pH 3.5 compared with pH 5.5. Another efflux Mn transporter gene, OsMTP9, was not regulated by either N form or pH. High pH (5.5) enhanced the expression of the Fe transporter gene OsIRT1 and increased the accumulation of Zn but not Fe or Cu in shoots compared with pH 3.5. Taken together, our results indicate that N H 4 + alleviates Mn toxicity and accumulation in rice through the down-regulatory effects of rhizosphere acidification on the Mn influx transporter gene OsNramp5. In addition, the up-regulation of OsIRT1 expression may contribute to the increased Zn uptake by rice at high pH of nutrient solution.
Collapse
Affiliation(s)
- An Yong Hu
- School of Geographic Science, Nantong University, Nantong, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Man Man Zheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Ming Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue Qiang Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Xue Qiang Zhao,
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Zhu CQ, Zhu XF, Wang C, Dong XY, Shen RF. Nitrate inhibits the remobilization of cell wall phosphorus under phosphorus-starvation conditions in rice (Oryza sativa). PLANTA 2018; 248:185-196. [PMID: 29663070 DOI: 10.1007/s00425-018-2892-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
NO3- not only inhibited the reutilization of cell wall P via decreasing root cell wall pectin content and PME activity, but also hampered the P translocation from root to shoot. The rice cultivars 'Kasalath' (Kas) and 'Nipponbare' (Nip) were used to demonstrate that the nitrogen source NO3- inhibits internal phosphorus (P) reutilization in rice under P-absence conditions. Analysis using Kas showed that the expression of - P-induced marker genes OsIPS1/2 and OsSPX1/2/3/5 are significantly higher under 1 mM NO 3- - P (1N - P) treatment than 0 mM NO 3- - P (0N - P) treatment. The absence of NO3- from the nutrient solution significantly increased cell wall P release by increasing pectin synthesis and increasing the activity of pectin methylesterase (PME), and also significantly improved the translocation of soluble P from the root to the shoot by increasing xylem sap P content under P-absence conditions. The rice seedlings grown in 0 mM NO3- accumulated significantly higher nitric oxide (NO) in the roots than those grown in 1 mM NO3-. Exogenously applying the NO donor sodium nitroprusside (SNP) revealed that NO is a major contributor to differential cell wall P remobilization in rice by mediating pectin synthesis and demethylation under different NO3- concentrations (0 and 1 mM) under P-deprived conditions.
Collapse
Affiliation(s)
- Chun Quan Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, 210008, China
| | - Chao Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, 210008, China
| | - Xiao Ying Dong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, 210008, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Zhao XQ, Shen RF. Aluminum-Nitrogen Interactions in the Soil-Plant System. FRONTIERS IN PLANT SCIENCE 2018; 9:807. [PMID: 29967630 PMCID: PMC6016016 DOI: 10.3389/fpls.2018.00807] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/25/2018] [Indexed: 05/22/2023]
Abstract
Aluminum (Al) is the most abundant metal in the Earth's crust and is not an essential element for plant growth. In contrast, nitrogen (N) is the most important mineral element for plant growth, but this non-metal is often present at low levels in soils, and plants are often N deficient. Aluminum toxicity is dominant in acid soils, and so plants growing in acid soils have to overcome both Al toxicity and N limitation. Because of low N-use efficiency, large amounts of N fertilizers are applied to crop fields to achieve high yields, leading to soil acidification and potential Al toxicity. Aluminum lowers plant N uptake and N-use efficiency because Al inhibits root growth. Although numerous studies have investigated the interactions between Al and N, a complete review of these studies was lacking. This review describes: (1) the link between plant Al tolerance and ammonium/nitrate (NH4+/NO3-) preference; (2) the effects of NH4+/NO3- and pH on Al toxicity; (3) the effects of Al on soil N transformations; and (4) the effects of Al on NH4+/NO3- uptake and assimilation by plants. Acid soils are characterized chemically by a relatively high ratio of NH4+ to NO3- and high concentrations of toxic Al. Aluminum-tolerant plants generally prefer NH4+ as an N source, while Al-sensitive plants prefer NO3-. Compared with NO3-, NH4+ increases the solubilization of toxic Al into soil solutions, but NH4+ generally alleviates Al phytotoxicity under solution culture because the protons from NH4+ compete with Al3+ for adsorption sites on the root surface. Plant NO3- uptake and nitrate reductase activity are both inhibited by Al, while plant NH4+ uptake is inhibited to a smaller degree than NO3-. Together, the results of numerous studies indicate that there is a synergistic interaction between plant Al tolerance and NH4+ nutrition. This has important implications for the adaptation of plants to acid soils that are dominated chemically by toxic Al as well as NH4+. Finally, we discuss how this knowledge can be used to increase plant Al tolerance and N-use efficiency in acid soils.
Collapse
Affiliation(s)
- Xue Q. Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Ren F. Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Liu ZD, Zhou Q, Hong ZN, Xu RK. Effects of Surface Charge and Functional Groups on the Adsorption and Binding Forms of Cu and Cd on Roots of indica and japonica Rice Cultivars. FRONTIERS IN PLANT SCIENCE 2017; 8:1489. [PMID: 28970841 PMCID: PMC5609544 DOI: 10.3389/fpls.2017.01489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/11/2017] [Indexed: 05/08/2023]
Abstract
This work was designed to understand the mechanisms of adsorption of copper (Cu) and cadmium (Cd) on roots of indica and japonica varieties of rice. Six varieties each of indica and japonica rice were grown in hydroponics and the chemical properties of the root surface were analyzed, including surface charges and functional groups (-COO- groups) as measured by the streaming potential and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). Binding forms of heavy metals adsorbed on rice roots were identified using sequential extraction methods. In rice roots exposed to Cu and Cd solutions, Cu existed mainly in both exchangeable and complexed forms, whereas Cd existed mainly in the exchangeable form. The amounts of exchangeable Cu and Cd and total adsorbed metal cations on the roots of indica varieties were significantly greater than those on the roots of japonica varieties, and the higher negative charges and the larger number of functional groups on the roots of indica varieties were responsible for their higher adsorption capacity and greater binding strength for Cu and Cd. Surface charge and functional groups on roots play an important role in the adsorption of Cu and Cd on the rice roots.
Collapse
Affiliation(s)
- Zhao-Dong Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Qin Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Zhi-Neng Hong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
| | - Ren-Kou Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
- *Correspondence: Ren-Kou Xu,
| |
Collapse
|
15
|
Wang W, Zhao XQ, Hu ZM, Shao JF, Che J, Chen RF, Dong XY, Shen RF. Aluminium alleviates manganese toxicity to rice by decreasing root symplastic Mn uptake and reducing availability to shoots of Mn stored in roots. ANNALS OF BOTANY 2015; 116:237-46. [PMID: 26105187 PMCID: PMC4512193 DOI: 10.1093/aob/mcv090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/17/2015] [Accepted: 05/05/2015] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Manganese (Mn) and aluminium (Al) phytotoxicities occur mainly in acid soils. In some plant species, Al alleviates Mn toxicity, but the mechanisms underlying this effect are obscure. METHODS Rice (Oryza sativa) seedlings (11 d old) were grown in nutrient solution containing different concentrations of Mn(2+) and Al(3+) in short-term (24 h) and long-term (3 weeks) treatments. Measurements were taken of root symplastic sap, root Mn plaques, cell membrane electrical surface potential and Mn activity, root morphology and plant growth. KEY RESULTS In the 3-week treatment, addition of Al resulted in increased root and shoot dry weight for plants under toxic levels of Mn. This was associated with decreased Mn concentration in the shoots and increased Mn concentration in the roots. In the 24-h treatment, addition of Al resulted in decreased Mn accumulation in the root symplasts and in the shoots. This was attributed to higher cell membrane surface electrical potential and lower Mn(2+) activity at the cell membrane surface. The increased Mn accumulation in roots from the 3-week treatment was attributed to the formation of Mn plaques, which were probably related to the Al-induced increase in root aerenchyma. CONCLUSIONS The results show that Al alleviated Mn toxicity in rice, and this could be attributed to decreased shoot Mn accumulation resulting from an Al-induced decrease in root symplastic Mn uptake. The decrease in root symplastic Mn uptake resulted from an Al-induced change in cell membrane potential. In addition, Al increased Mn plaques in the roots and changed the binding properties of the cell wall, resulting in accumulation of non-available Mn in roots.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Qiang Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China and
| | - Zhen Min Hu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Feng Shao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Che
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Fu Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China and
| | - Xiao Ying Dong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China and
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China and
| |
Collapse
|
16
|
Wang W, Zhao XQ, Chen RF, Dong XY, Lan P, Ma JF, Shen RF. Altered cell wall properties are responsible for ammonium-reduced aluminium accumulation in rice roots. PLANT, CELL & ENVIRONMENT 2015; 38:1382-90. [PMID: 25444246 DOI: 10.1111/pce.12490] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 11/13/2014] [Accepted: 11/18/2014] [Indexed: 05/19/2023]
Abstract
The phytotoxicity of aluminium (Al) ions can be alleviated by ammonium (NH4(+)) in rice and this effect has been attributed to the decreased Al accumulation in the roots. Here, the effects of different nitrogen forms on cell wall properties were compared in two rice cultivars differing in Al tolerance. An in vitro Al-binding assay revealed that neither NH4(+) nor NO3(-) altered the Al-binding capacity of cell walls, which were extracted from plants not previously exposed to N sources. However, cell walls extracted from NH4(+)-supplied roots displayed lower Al-binding capacity than those from NO3(-)-supplied roots when grown in non-buffered solutions. Fourier-transform infrared microspectroscopy analysis revealed that, compared with NO3(-)-supplied roots, NH4(+)-supplied roots possessed fewer Al-binding groups (-OH and COO-) and lower contents of pectin and hemicellulose. However, when grown in pH-buffered solutions, these differences in the cell wall properties were not observed. Further analysis showed that the Al-binding capacity and properties of cell walls were also altered by pHs alone. Taken together, our results indicate that the NH4(+)-reduced Al accumulation was attributed to the altered cell wall properties triggered by pH decrease due to NH4(+) uptake rather than direct competition for the cell wall binding sites between Al(3+) and NH4(+).
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Qiang Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Rong Fu Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiao Ying Dong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jian Feng Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
17
|
Zhao XQ, Shen RF. Interactive regulation of nitrogen and aluminum in rice. PLANT SIGNALING & BEHAVIOR 2013; 8:e24355. [PMID: 23531694 PMCID: PMC3907435 DOI: 10.4161/psb.24355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Despite many studies on the high aluminum (Al) tolerance of rice (Oryza sativa), its exact mechanisms remain largely unknown. It is also unclear why Al improves growth of some plants. Our research on interactions between nitrogen (N) and Al may help to understand these phenomena. Previously, we found that ammonium-supplemented rice was more Al tolerant than nitrate-supplemented rice. Furthermore, Al-tolerant rice varieties preferred ammonium, while Al-sensitive ones preferred nitrate; in fact, Al tolerance was significantly correlated with the ammonium/nitrate preference among rice varieties. Al even enhanced growth of ammonium-supplemented rice, while it inhibited growth of nitrate-supplemented rice. Based on our own and other reports on N-Al interactions, we propose that intermediate products of N metabolism may play a role in rice Al tolerance. Al-enhanced ammonium utilization may explain why Al promotes growth of some plants, since Al often coexists with higher levels of ammonium than nitrate in acid soils.
Collapse
|