1
|
Milani D, Gasparotto AE, Loreto V, Martí DA, Cabral-de-Mello DC. Chromosomal and genomic analysis suggests single origin and high molecular differentiation of the B chromosome of Abracris flavolineata. Genome 2024; 67:327-338. [PMID: 38723289 DOI: 10.1139/gen-2023-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Supernumerary chromosomes (B chromosomes) have been an intriguing subject of study. Our understanding of the molecular differentiation of B chromosomes from an interpopulation perspective remains limited, with most analyses involving chromosome banding and mapping of a few sequences. To gain insights into the molecular composition, origin, and evolution of B chromosomes, we conducted cytogenetic and next-generation sequencing analysis of the repeatome in the grasshopper Abracris flavolineata across various populations. Our results unveiled the presence of B chromosomes in two newly investigated populations and described new satellite DNA sequences. While we observed some degree of genetic connection among A. flavolineata populations, our comparative analysis of genomes with and without B chromosomes provided evidence of two new B chromosome variants. These variants exhibited distinct compositions of various repeat classes, including transposable elements and satellite DNAs. Based on shared repeats, their chromosomal location, and the C-positive heterochromatin content on the B chromosome, these variants likely share a common origin but have undergone distinct molecular differentiation processes, resulting in varying degrees of heterochromatinization. Our data serve as a detailed example of the dynamic and differentiated nature of B chromosome molecular content at the interpopulation level, even when they share a common origin.
Collapse
Affiliation(s)
- Diogo Milani
- Univ Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Rio Claro, São Paulo, Brazil
| | - Ana Elisa Gasparotto
- Univ Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Rio Claro, São Paulo, Brazil
| | - Vilma Loreto
- Univ Federal de Pernambuco (UFPE), Centro de Biociências, Departamento de Genética, Recife, Pernambuco, Brazil
| | | | - Diogo C Cabral-de-Mello
- Univ Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Rio Claro, São Paulo, Brazil
| |
Collapse
|
2
|
Melton AE, Novak SJ, Buerki S. Utilizing a comparative approach to assess genome evolution during diploidization in Artemisia tridentata, a keystone species of western North America. AMERICAN JOURNAL OF BOTANY 2024; 111:e16353. [PMID: 38826031 DOI: 10.1002/ajb2.16353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 06/04/2024]
Abstract
PREMISE Polyploidization is often followed by diploidization. Diploidization is generally studied using synthetic polyploid lines and/or crop plants, but rarely using extant diploids or nonmodel plants such as Artemisia tridentata. This threatened western North American keystone species has a large genome compared to congeneric Artemisia species; dominated by diploid and tetraploid cytotypes, with multiple origins of tetraploids with genome size reduction. METHODS The genome of an A. tridentata sample was resequenced to study genome evolution and compared to that of A. annua, a diploid congener. Three diploid genomes of A. tridentata were compared to test for multiple diploidization events. RESULTS The A. tridentata genome had many chromosomal rearrangements relative to that of A. annua, while large-scale synteny of A. tridentata chromosome 3 and A. annua chromosome 4 was conserved. The three A. tridentata genomes had similar sizes (4.19-4.2 Gbp), heterozygosity (2.24-2.25%), and sequence (98.73-99.15% similarity) across scaffolds, and in k-mer analyses, similar patterns of diploid heterozygous k-mers (AB = 41%, 47%, and 47%), triploid heterozygous k-mers (AAB = 18-21%), and tetraploid k-mers (AABB = 13-17%). Biallelic SNPs were evenly distributed across scaffolds for all individuals. Comparisons of transposable element (TE) content revealed differential enrichment of TE clades. CONCLUSIONS Our findings suggest population-level TE differentiation after a shared polyploidization-to-diploidization event(s) and exemplify the complex processes of genome evolution. This research approached provides new resources for exploration of abiotic stress response, especially the roles of TEs in response pathways.
Collapse
Affiliation(s)
- Anthony E Melton
- Department of Biological Sciences, Boise State University, Boise, 83725, ID, USA
| | - Stephen J Novak
- Department of Biological Sciences, Boise State University, Boise, 83725, ID, USA
| | - Sven Buerki
- Department of Biological Sciences, Boise State University, Boise, 83725, ID, USA
| |
Collapse
|
3
|
Molecular characterization and evolutionary relationships of avenin-like b gene in Aegilops speltoides. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
Integration of Repeatomic and Cytogenetic Data on Satellite DNA for the Genome Analysis in the Genus Salvia (Lamiaceae). PLANTS 2022; 11:plants11172244. [PMID: 36079625 PMCID: PMC9460151 DOI: 10.3390/plants11172244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
Within the complicated and controversial taxonomy of cosmopolitan genus Salvia L. (Lamiaceae) are valuable species Salvia officinalis L. and Salvia sclarea L., which are important for the pharmaceutical, ornamental horticulture, food, and perfume industries. Genome organization and chromosome structure of these essential oil species remain insufficiently studied. For the first time, the comparative repeatome analysis of S. officinalis and S. sclarea was performed using the obtained NGS data, RepeatExplorer/TAREAN pipelines and FISH-based chromosome mapping of the revealed satellite DNA families (satDNAs). In repeatomes of these species, LTR retrotransposons made up the majority of their repetitive DNA. Interspecific variations in genome abundance of Class I and Class II transposable elements, ribosomal DNA, and satellite DNA were revealed. Four (S. sclarea) and twelve (S. officinalis) putative satDNAs were identified. Based on patterns of chromosomal distribution of 45S rDNA; 5S rDNA and the revealed satDNAs, karyograms of S. officinalis and S. sclarea were constructed. Promising satDNAs which can be further used as chromosome markers to assess inter- and intraspecific chromosome variability in Salvia karyotypes were determined. The specific localization of homologous satDNA and 45S rDNA on chromosomes of the studied Salvia species confirmed their common origin, which is consistent with previously reported molecular phylogenetic data.
Collapse
|
5
|
Li D, Ruban A, Fuchs J, Kang H, Houben A. B-A Chromosome Translocations Possessing an A Centromere Partly Overcome the Root-Restricted Process of Chromosome Elimination in Aegilops speltoides. Front Cell Dev Biol 2022; 10:875523. [PMID: 35419361 PMCID: PMC8995527 DOI: 10.3389/fcell.2022.875523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/11/2022] [Indexed: 12/02/2022] Open
Abstract
Some eukaryotes exhibit dramatic genome size differences between cells of different organs, resulting from the programmed elimination of chromosomes. Aegilops speltoides is an annual diploid species from the Poaceae family, with a maximum number of eight B chromosomes (Bs) in addition to its inherent seven pairs of standard A chromosomes (As). The Bs of this species undergo precise elimination in roots early in embryo development. In areal parts of the plant, the number of Bs is stable. To affect the root restricted process of B chromosome elimination, we employed X-ray mutagenesis, and different types of restructured Bs were identified. Standard Bs were observed in all analyzed shoots of mutagenized plants, while B-A translocations were only observed in 35.7% of F1 plants. In total 40 different B variants inconsistently escaped the elimination process in roots. As a result, mosaicism of B chromosome variants was found in roots. Only a small B chromosome fragment fused to an A chromosome was stably maintained in roots and shoots across F1 to F3 generations. The absence of B-A translocation chromosomes possessing a derived B centromere in root cells implies that the centromere of the B is a key component of the chromosome elimination process.
Collapse
Affiliation(s)
- Daiyan Li
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Alevtina Ruban
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.,KWS SAAT SE & Co. KGaA, Einbeck, Germany
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
6
|
The Centre–Periphery Model, a Possible Explanation for the Distribution of Some Pinus spp. in the Sierra Madre Occidental, Mexico. FORESTS 2022. [DOI: 10.3390/f13020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Genetic diversity is key to survival of species. In evolutionary ecology, the general centre–periphery theory suggests that populations of species located at the margins of their distribution areas display less genetic diversity and greater genetic differentiation than populations from central areas. The aim of this study was to evaluate the genetic diversity and differentiation in six of the main pine species of the Sierra Madre Occidental (northern Mexico). The species considered were Pinus arizonica, P. cembroides, P. durangensis, Pinus engelmannii, P. herrerae and P. leiophylla, which occur at the margins and centre of the geographic distribution. We sampled needles from 2799 individuals belonging to 80 populations of the six species. We analysed amplified fragment length polymorphisms (AFLPs) to estimate diversity and rarity indexes, applied Principal Coordinate Analysis (PCoA), and used the Kruskal–Wallis test to detect genetic differences. Finally, we calculated Spearman’s correlation for association between variables. The general centre–periphery model only explained the traits in P. herrerae. The elevation gradient was an important factor that influenced genetic diversity. However, for elevation as partitioning criterion, most populations showed a central distribution. This information may be useful for establishing seed collections of priority individuals for maintenance in germplasm banks and their subsequent sustainable use.
Collapse
|
7
|
Genetic diversity of ribosomal loci (5S and 45S rDNA) and pSc119.2 repetitive DNA sequence among four species of Aegilops (Poaceae) from Algeria. UKRAINIAN BOTANICAL JOURNAL 2021. [DOI: 10.15407/ukrbotj78.06.414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In continuation of our previous research we carried out the karyological investigation of 53 populations of four Aegilops species (A. geniculata, A. triuncialis, A. ventricosa, and A. neglecta) sampled in different eco-geographical habitats in Algeria. The genetic variability of the chromosomal DNA loci of the same collection of Aegilops is highlighted by the Fluorescence In Situ Hybridization technique (FISH) using three probes: 5S rDNA, 45S rDNA, and repetitive DNA (pSc119.2). We found that the two rDNA loci (5S and 45S) hybridized with some chromosomes and showed a large genetic polymorphism within and between the four Aegilops species, while the repetitive DNA sequences (pSc119.2) hybridized with all chromosomes and differentiated the populations of the mountains with a humid bioclimate from the populations of the steppe regions with an arid bioclimate. However, the transposition of the physical maps of the studied loci (5S rDNA, 45S rDNA, and pSc119.2) with those of other collections revealed the existence of new loci in Aegilops from Algeria.
Collapse
|
8
|
Shams I, Raskina O. Supernumerary B Chromosomes and Plant Genome Changes: A Snapshot of Wild Populations of Aegilops speltoides Tausch ( Poaceae, Triticeae). Int J Mol Sci 2020; 21:ijms21113768. [PMID: 32466617 PMCID: PMC7312783 DOI: 10.3390/ijms21113768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 01/12/2023] Open
Abstract
In various eukaryotes, supernumerary B chromosomes (Bs) are an optional genomic component that affect their integrity and functioning. In the present study, the impact of Bs on the current changes in the genome of goatgrass, Aegilops speltoides, was addressed. Individual plants from contrasting populations with and without Bs were explored using fluorescence in situ hybridization. In parallel, abundances of the Ty1-copia, Ty3-gypsy, and LINE retrotransposons (TEs), and the species-specific Spelt1 tandem repeat (TR) in vegetative and generative spike tissues were estimated by real-time quantitative PCR. The results revealed: (i) ectopic associations between Bs and the regular A chromosomes, and (ii) cell-specific rearrangements of Bs in both mitosis and microgametogenesis. Further, the copy numbers of TEs and TR varied significantly between (iii) genotypes and (iv) different spike tissues in the same plant(s). Finally, (v) in plants with and without Bs from different populations, genomic abundances and/or copy number dynamics of TEs and TR were similar. These findings indicate that fluctuations in TE and TR copy numbers are associated with DNA damage and repair processes during cell proliferation and differentiation, and ectopic recombination is one of the mechanisms by which Bs play a role in genome changes.
Collapse
|
9
|
Wu D, Ruban A, Fuchs J, Macas J, Novák P, Vaio M, Zhou Y, Houben A. Nondisjunction and unequal spindle organization accompany the drive of Aegilops speltoides B chromosomes. THE NEW PHYTOLOGIST 2019; 223:1340-1352. [PMID: 31038752 DOI: 10.1111/nph.15875] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
B chromosomes (Bs) are supernumerary chromosomes, which are often preferentially inherited. When transmission rates of chromosomes are higher than 0.5, not obeying the Mendelian law of equal segregation, the resulting transmission advantage is collectively referred to as 'chromosome drive'. Here we analysed the drive mechanism of Aegilops speltoides Bs. The repeat AesTR-183 of A. speltoides Bs, which also can be detected on the Bs of Aegilops mutica and rye, was used to track Bs during pollen development. Nondisjunction of CENH3-positive, tubulin interacting B sister chromatids and an asymmetric spindle during first pollen grain mitosis are key for the accumulation process. A quantitative flow cytometric approach revealed that, independent of the number of Bs present in the mother plant, Bs accumulate in the generative nuclei to > 93%. Nine out of 11 tested (peri)centromeric repeats were shared by A and B chromosomes. Our findings provide new insights into the process of chromosome drive. Quantitative flow cytometry is a useful and reliable method to study the drive frequency of Bs. Nondisjunction and unequal spindle organization accompany during first pollen mitosis the drive of A. speltoides Bs. The prerequisites for the drive process seems to be common in Poaceae.
Collapse
Affiliation(s)
- DanDan Wu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Seeland, Germany
- Triticeae Institute, Sichuan Agricultural University, 611130, Chengdu, China
| | - Alevtina Ruban
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Seeland, Germany
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Seeland, Germany
| | - Jiri Macas
- Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Petr Novák
- Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Magdalena Vaio
- Department of Plant Biology, College of Agronomy, 12900, Montevideo, Uruguay
| | - YongHong Zhou
- Triticeae Institute, Sichuan Agricultural University, 611130, Chengdu, China
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Seeland, Germany
| |
Collapse
|
10
|
Dhar MK, Kour J, Kaul S. Origin, Behaviour, and Transmission of B Chromosome with Special Reference to Plantago lagopus. Genes (Basel) 2019; 10:E152. [PMID: 30781667 PMCID: PMC6410184 DOI: 10.3390/genes10020152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 11/30/2022] Open
Abstract
B chromosomes have been reported in many eukaryotic organisms. These chromosomes occur in addition to the standard complement of a species. Bs do not pair with any of the A chromosomes and they have generally been considered to be non-essential and genetically inert. However, due to tremendous advancements in the technologies, the molecular composition of B chromosomes has been determined. The sequencing data has revealed that B chromosomes have originated from A chromosomes and they are rich in repetitive elements. In our laboratory, a novel B chromosome was discovered in Plantago lagopus. Using molecular cytogenetic techniques, the B chromosome was found to be composed of ribosomal DNA sequences. However, further characterization of the chromosome using next generation sequencing (NGS) etc. revealed that the B chromosome is a mosaic of sequences derived from A chromosomes, 5S ribosomal DNA (rDNA), 45S rDNA, and various types of repetitive elements. The transmission of B chromosome through the female sex track did not follow the Mendelian principles. The chromosome was found to have drive due to which it was perpetuating in populations. The present paper attempts to summarize the information on nature, transmission, and origin of B chromosomes, particularly the current status of our knowledge in P. lagopus.
Collapse
Affiliation(s)
- Manoj K Dhar
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu-180006, India.
| | - Jasmeet Kour
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu-180006, India.
| | - Sanjana Kaul
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu-180006, India.
| |
Collapse
|
11
|
Pollak Y, Zelinger E, Raskina O. Repetitive DNA in the Architecture, Repatterning, and Diversification of the Genome of Aegilops speltoides Tausch (Poaceae, Triticeae). FRONTIERS IN PLANT SCIENCE 2018; 9:1779. [PMID: 30564259 PMCID: PMC6288716 DOI: 10.3389/fpls.2018.01779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
The genome's adaptability to environmental changes, especially during rapid climatic fluctuations, underlies the existence and evolution of species. In the wild, genetic and epigenetic genomic changes are accompanied by significant alterations in the complex nuclear repetitive DNA fraction. Current intraspecific polymorphism of repetitive DNA is closely related to ongoing chromosomal rearrangements, which typically result from erroneous DNA repair and recombination. In this study, we addressed tandem repeat patterns and interaction/reshuffling both in pollen mother cell (PMC) development and somatogenesis in the wild diploid cereal Aegilops speltoides, with a focus on genome repatterning and stabilization. Individual contrasting genotypes were investigated using the fluorescent in situ hybridization (FISH) approach by applying correlative fluorescence and electron microscopy. Species-specific Spelt1 and tribe-specific Spelt52 tandem repeats were used as the markers for monitoring somatic and meiotic chromosomal interactions and dynamics in somatic interphase nuclei. We found that, the number of tandem repeat clusters in nuclei is usually lower than the number on chromosomes due to the associations of clusters of the same type in common blocks. In addition, tightly associated Spelt1-Spelt52 clusters were revealed in different genotypes. The frequencies of nonhomologous/ectopic associations between tandem repeat clusters were revealed in a genotype-/population-specific manner. An increase in the number of tandem repeat clusters in the genome causes an increase in the frequencies of their associations. The distal/terminal regions of homologous chromosomes are separated in nuclear space, and nonhomologous chromosomes are often involved in somatic recombination as seen by frequently formed interchromosomal chromatin bridges. In both microgametogenesis and somatogenesis, inter- and intrachromosomal associations are likely to lead to DNA breaks during chromosome disjunction in the anaphase stage. Uncondensed/improperly packed DNA fibers, mainly in heterochromatic regions, were revealed in both the meiotic and somatic prophases that might be a result of broken associations. Altogether, the data obtained showed that intraorganismal dynamics of repetitive DNA under the conditions of natural out-crossing and artificial intraspecific hybridization mirrors the structural plasticity of the Ae. speltoides genome, which is interlinked with genetic diversity through the species distribution area in contrasting ecogeographical environments in and around the Fertile Crescent.
Collapse
Affiliation(s)
- Yulia Pollak
- The CSI Center for Scientific Imaging, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
- The Electron Microscopy Unit, Faculty of Natural Science, University of Haifa, Haifa, Israel
| | - Einat Zelinger
- The CSI Center for Scientific Imaging, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Olga Raskina
- Institute of Evolution, University of Haifa, Haifa, Israel
| |
Collapse
|
12
|
Marques A, Klemme S, Houben A. Evolution of Plant B Chromosome Enriched Sequences. Genes (Basel) 2018; 9:genes9100515. [PMID: 30360448 PMCID: PMC6210368 DOI: 10.3390/genes9100515] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/13/2018] [Accepted: 10/18/2018] [Indexed: 01/10/2023] Open
Abstract
B chromosomes are supernumerary chromosomes found in addition to the normal standard chromosomes (A chromosomes). B chromosomes are well known to accumulate several distinct types of repeated DNA elements. Although the evolution of B chromosomes has been the subject of numerous studies, the mechanisms of accumulation and evolution of repetitive sequences are not fully understood. Recently, new genomic approaches have shed light on the origin and accumulation of different classes of repetitive sequences in the process of B chromosome formation and evolution. Here we discuss the impact of repetitive sequences accumulation on the evolution of plant B chromosomes.
Collapse
Affiliation(s)
- André Marques
- Laboratory of Genetic Resources, Federal University of Alagoas, Av. Manoel Severino Barbosa, 57309-005 Arapiraca-AL, Brazil.
| | - Sonja Klemme
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, CZ-37005 České Budějovice, Czech Republic.
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany.
| |
Collapse
|
13
|
Ruban AS, Badaeva ED. Evolution of the S-Genomes in Triticum-Aegilops Alliance: Evidences From Chromosome Analysis. FRONTIERS IN PLANT SCIENCE 2018; 9:1756. [PMID: 30564254 PMCID: PMC6288319 DOI: 10.3389/fpls.2018.01756] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/12/2018] [Indexed: 05/20/2023]
Abstract
Five diploid Aegilops species of the Sitopsis section: Ae. speltoides, Ae. longissima, Ae. sharonensis, Ae. searsii, and Ae. bicornis, two tetraploid species Ae. peregrina (= Ae. variabilis) and Ae. kotschyi (Aegilops section) and hexaploid Ae. vavilovii (Vertebrata section) carry the S-genomes. The B- and G-genomes of polyploid wheat are also the derivatives of the S-genome. Evolution of the S-genome species was studied using Giemsa C-banding and fluorescence in situ hybridization (FISH) with DNA probes representing 5S (pTa794) and 18S-5.8S-26S (pTa71) rDNAs as well as nine tandem repeats: pSc119.2, pAesp_SAT86, Spelt-1, Spelt-52, pAs1, pTa-535, and pTa-s53. To correlate the C-banding and FISH patterns we used the microsatellites (CTT)10 and (GTT)9, which are major components of the C-banding positive heterochromatin in wheat. According to the results obtained, diploid species split into two groups corresponding to Emarginata and Truncata sub-sections, which differ in the C-banding patterns, distribution of rDNA and other repeats. The B- and G-genomes of polyploid wheat are most closely related to the S-genome of Ae. speltoides. The genomes of allopolyploid wheat have been evolved as a result of different species-specific chromosome translocations, sequence amplification, elimination and re-patterning of repetitive DNA sequences. These events occurred independently in different wheat species and in Ae. speltoides . The 5S rDNA locus of chromosome 1S was probably lost in ancient Ae. speltoides prior to formation of Timopheevii wheat, but after the emergence of ancient emmer. Evolution of Emarginata species was associated with an increase of C-banding and (CTT)10-positive heterochromatin, amplification of Spelt-52, re-pattering of the pAesp_SAT86, and a gradual decrease in the amount of the D-genome-specific repeats pAs1, pTa-535, and pTa-s53. The emergence of Ae. peregrina and Ae. kotschyi did not lead to significant changes of the S*-genomes. However, partial elimination of 45S rDNA repeats from 5S* and 6S* chromosomes and alterations of C-banding and FISH-patterns have been detected. Similarity of the Sv-genome of Ae. vavilovii with the Ss genome of diploid Ae. searsii confirmed the origin of this hexaploid. A model of the S-genome evolution is suggested.
Collapse
Affiliation(s)
- Alevtina S. Ruban
- Laboratory of Chromosome Structure and Function, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ekaterina D. Badaeva
- Laboratory of Genetic Basis of Plant Identification, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Molecular Karyology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Ekaterina D. Badaeva
| |
Collapse
|
14
|
Sergeeva EM, Shcherban AB, Adonina IG, Nesterov MA, Beletsky AV, Rakitin AL, Mardanov AV, Ravin NV, Salina EA. Fine organization of genomic regions tagged to the 5S rDNA locus of the bread wheat 5B chromosome. BMC PLANT BIOLOGY 2017; 17:183. [PMID: 29143604 PMCID: PMC5688495 DOI: 10.1186/s12870-017-1120-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND The multigene family encoding the 5S rRNA, one of the most important structurally-functional part of the large ribosomal subunit, is an obligate component of all eukaryotic genomes. 5S rDNA has long been a favored target for cytological and phylogenetic studies due to the inherent peculiarities of its structural organization, such as the tandem arrays of repetitive units and their high interspecific divergence. The complex polyploid nature of the genome of bread wheat, Triticum aestivum, and the technically difficult task of sequencing clusters of tandem repeats mean that the detailed organization of extended genomic regions containing 5S rRNA genes remains unclear. This is despite the recent progress made in wheat genomic sequencing. Using pyrosequencing of BAC clones, in this work we studied the organization of two distinct 5S rDNA-tagged regions of the 5BS chromosome of bread wheat. RESULTS Three BAC-clones containing 5S rDNA were identified in the 5BS chromosome-specific BAC-library of Triticum aestivum. Using the results of pyrosequencing and assembling, we obtained six 5S rDNA- containing contigs with a total length of 140,417 bp, and two sets (pools) of individual 5S rDNA sequences belonging to separate, but closely located genomic regions on the 5BS chromosome. Both regions are characterized by the presence of approximately 70-80 copies of 5S rDNA, however, they are completely different in their structural organization. The first region contained highly diverged short-type 5S rDNA units that were disrupted by multiple insertions of transposable elements. The second region contained the more conserved long-type 5S rDNA, organized as a single tandem array. FISH using probes specific to both 5S rDNA unit types showed differences in the distribution and intensity of signals on the chromosomes of polyploid wheat species and their diploid progenitors. CONCLUSION A detailed structural organization of two closely located 5S rDNA-tagged genomic regions on the 5BS chromosome of bread wheat has been established. These two regions differ in the organization of both 5S rDNA and the neighboring sequences comprised of transposable elements, implying different modes of evolution for these regions.
Collapse
Affiliation(s)
- Ekaterina M Sergeeva
- The Federal Research Center "Institute of Cytology and Genetics SB RAS", Novosibirsk, Russia
| | - Andrey B Shcherban
- The Federal Research Center "Institute of Cytology and Genetics SB RAS", Novosibirsk, Russia.
| | - Irina G Adonina
- The Federal Research Center "Institute of Cytology and Genetics SB RAS", Novosibirsk, Russia
| | - Michail A Nesterov
- The Federal Research Center "Institute of Cytology and Genetics SB RAS", Novosibirsk, Russia
| | - Alexey V Beletsky
- The Federal Research Center "Fundamentals of Biotechnology RAS", Moscow, Russia
| | - Andrey L Rakitin
- The Federal Research Center "Fundamentals of Biotechnology RAS", Moscow, Russia
| | - Andrey V Mardanov
- The Federal Research Center "Fundamentals of Biotechnology RAS", Moscow, Russia
| | - Nikolai V Ravin
- The Federal Research Center "Fundamentals of Biotechnology RAS", Moscow, Russia
- Faculty of Biology, Moscow State University, Moscow, Russia
| | - Elena A Salina
- The Federal Research Center "Institute of Cytology and Genetics SB RAS", Novosibirsk, Russia
| |
Collapse
|
15
|
Abstract
An interesting and possibly unique pattern of genome evolution following polyploidy can be observed among allopolyploids of the Triticum and Aegilops genera (wheat group). Most polyploids in this group are presumed to share a common unaltered (pivotal) subgenome (U, D, or A) together with one or two modified (differential) subgenomes, a status that has been referred to as 'pivotal-differential' genome evolution. In this review we discuss various mechanisms that could be responsible for this evolutionary pattern, as well as evidence for and against the putative evolutionary mechanisms involved. We suggest that, in light of recent advances in genome sequencing and related technologies in the wheat group, the time has come to reopen the investigation into pivotal-differential genome evolution.
Collapse
Affiliation(s)
- Ghader Mirzaghaderi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, PO Box 416, Sanandaj, Iran
| | - Annaliese S Mason
- Department of Plant Breeding, Justus Liebig University, Research Center for Biosystems, Land Use, and Nutrition (IFZ), Heinrich-Buff-Ring 26-32, Giessen 35392, Germany.
| |
Collapse
|
16
|
Amosova AV, Bolsheva NL, Zoshchuk SA, Twardovska MO, Yurkevich OY, Andreev IO, Samatadze TE, Badaeva ED, Kunakh VA, Muravenko OV. Comparative molecular cytogenetic characterization of seven Deschampsia (Poaceae) species. PLoS One 2017; 12:e0175760. [PMID: 28407010 PMCID: PMC5391082 DOI: 10.1371/journal.pone.0175760] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/30/2017] [Indexed: 11/18/2022] Open
Abstract
The genus Deschampsia P. Beauv (Poaceae) involves a group of widespread polymorphic species. Some of them are highly tolerant to stressful and variable environmental conditions, and D. antarctica is one of the only two vascular plants growing in Antarctic. This species is a source of useful for selection traits and a valuable model for studying an environmental stress tolerance in plants. Genome diversity and comparative chromosomal phylogeny within the genus have not been studied yet as karyotypes of most Deschampsia species are poorly investigated. We firstly conducted a comparative molecular cytogenetic analysis of D. antarctica (Antarctic Peninsula) and related species from various localities (D. cespitosa, D. danthonioides, D. elongata, D. flexuosa (= Avenella flexuosa), D. parvula and D. sukatschewii by fluorescence in situ hybridization with 45S and 5S rDNA, DAPI-banding and sequential rapid in situ hybridization with genomic DNA of D. antarctica, D. cespitosa, and D. flexuosa. Based on patterns of distribution of the examined markers, chromosomes of the studied species were identified. Within these species, common features as well as species peculiarities in their karyotypic structure and chromosomal distribution of molecular cytogenetic markers were characterized. Different chromosomal rearrangements were detected in D. antarctica, D. flexuosa, D. elongata and D. sukatschewii. In karyotypes of D. antarctica, D. cespitosa, D. elongata and D. sukatschewii, 0-3 B chromosomes possessed distinct DAPI-bands were observed. Our findings suggest that the genome evolution of the genus Deschampsia involved polyploidy and also different chromosomal rearrangements. The obtained results will help clarify the relationships within the genus Deschampsia, and can be a basis for the further genetic and biotechnological studies as well as for selection of plants tolerant to extreme habitats.
Collapse
Affiliation(s)
- Alexandra V Amosova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Nadezhda L Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Svyatoslav A Zoshchuk
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Maryana O Twardovska
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Olga Yu Yurkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Igor O Andreev
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Tatiana E Samatadze
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Ekaterina D Badaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Viktor A Kunakh
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Olga V Muravenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
17
|
Datta AK, Mandal A, Das D, Gupta S, Saha A, Paul R, Sengupta S. B chromosomes in angiosperm—a review. CYTOL GENET+ 2016. [DOI: 10.3103/s0095452716010035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Distribution of rDNA and polyploidy in Deschampsia antarctica E. Desv. in Antarctic and Patagonic populations. Polar Biol 2016. [DOI: 10.1007/s00300-016-1890-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
ULLAH N, ASIF M, BADSHAH H, BASHIR T, MUMTAZ AS. Introgression lines obtained from the cross between Triticum aestivumandTriticum turgidum (durum wheat) as a source of leaf and stripe (yellow)rust resistance genes. Turk J Biol 2016. [DOI: 10.3906/biy-1501-99] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
20
|
Amosova AV, Bolsheva NL, Samatadze TE, Twardovska MO, Zoshchuk SA, Andreev IO, Badaeva ED, Kunakh VA, Muravenko OV. Molecular Cytogenetic Analysis of Deschampsia antarctica Desv. (Poaceae), Maritime Antarctic. PLoS One 2015; 10:e0138878. [PMID: 26394331 PMCID: PMC4578767 DOI: 10.1371/journal.pone.0138878] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/04/2015] [Indexed: 12/23/2022] Open
Abstract
Deschampsia antarctica Desv. (Poaceae) (2n = 26) is one of the two vascular plants adapted to the harshest environment of the Antarctic. Although the species is a valuable model for study of environmental stress tolerance in plants, its karyotype is still poorly investigated. We firstly conducted a comprehensive molecular cytogenetic analysis of D. antarctica collected on four islands of the Maritime Antarctic. D. antarctica karyotypes were studied by Giemsa C- and DAPI/C-banding, Ag-NOR staining, multicolour fluorescence in situ hybridization with repeated DNA probes (pTa71, pTa794, telomere repeats, pSc119.2, pAs1) and the GAA simple sequence repeat probe. We also performed sequential rapid in situ hybridization with genomic DNA of D. caespitosa. Two chromosome pairs bearing transcriptionally active 45S rDNA loci and five pairs with 5S rDNA sites were detected. A weak intercalary site of telomere repeats was revealed on the largest chromosome in addition to telomere hybridization signals at terminal positions. This fact confirms indirectly the hypothesis that chromosome fusion might have been the cause of the unusual for cereals chromosome number in this species. Based on patterns of distribution of the examined molecular cytogenetic markers, all chromosomes in karyotypes were identified, and chromosome idiograms of D. antarctica were constructed. B chromosomes were found in most karyotypes of plants from Darboux Island. A mixoploid plant with mainly triploid cells bearing a Robertsonian rearrangement was detected among typical diploid specimens from Great Jalour Island. The karyotype variability found in D. antarctica is probably an expression of genome instability induced by environmental stress factors. The differences in C-banding patterns and in chromosome distribution of rDNA loci as well as homologous highly repeated DNA sequences detected between genomes of D. antarctica and its related species D. caespitosa indicate that genome reorganization involving coding and noncoding repeated DNA sequences had occurred during the divergence of these species.
Collapse
Affiliation(s)
- Alexandra V. Amosova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail:
| | - Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana E. Samatadze
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maryana O. Twardovska
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | - Igor O. Andreev
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ekaterina D. Badaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Viktor A. Kunakh
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Olga V. Muravenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
21
|
Emadzade K, Jang TS, Macas J, Kovařík A, Novák P, Parker J, Weiss-Schneeweiss H. Differential amplification of satellite PaB6 in chromosomally hypervariable Prospero autumnale complex (Hyacinthaceae). ANNALS OF BOTANY 2014; 114:1597-608. [PMID: 25169019 PMCID: PMC4273535 DOI: 10.1093/aob/mcu178] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Chromosomal evolution, including numerical and structural changes, is a major force in plant diversification and speciation. This study addresses genomic changes associated with the extensive chromosomal variation of the Mediterranean Prospero autumnale complex (Hyacinthaceae), which includes four diploid cytotypes each with a unique combination of chromosome number (x = 5, 6, 7), rDNA loci and genome size. METHODS A new satellite repeat PaB6 has previously been identified, and monomers were reconstructed from next-generation sequencing (NGS) data of P. autumnale cytotype B(6)B(6) (2n = 12). Monomers of all other Prospero cytotypes and species were sequenced to check for lineage-specific mutations. Copy number, restriction patterns and methylation levels of PaB6 were analysed using Southern blotting. PaB6 was localized on chromosomes using fluorescence in situ hybridization (FISH). KEY RESULTS The monomer of PaB6 is 249 bp long, contains several intact and truncated vertebrate-type telomeric repeats and is highly methylated. PaB6 is exceptional because of its high copy number and unprecedented variation among diploid cytotypes, ranging from 10(4) to 10(6) copies per 1C. PaB6 is always located in pericentromeric regions of several to all chromosomes. Additionally, two lineages of cytotype B(7)B(7) (x = 7), possessing either a single or duplicated 5S rDNA locus, differ in PaB6 copy number; the ancestral condition of a single locus is associated with higher PaB6 copy numbers. CONCLUSIONS Although present in all Prospero species, PaB6 has undergone differential amplification only in chromosomally variable P. autumnale, particularly in cytotypes B(6)B(6) and B(5)B(5). These arose via independent chromosomal fusions from x = 7 to x = 6 and 5, respectively, accompanied by genome size increases. The copy numbers of satellite DNA PaB6 are among the highest in angiosperms, and changes of PaB6 are exceptionally dynamic in this group of closely related cytotypes of a single species. The evolution of the PaB6 copy numbers is discussed, and it is suggested that PaB6 represents a recent and highly dynamic system originating from a small pool of ancestral repeats.
Collapse
Affiliation(s)
- Khatere Emadzade
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Tae-Soo Jang
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Jiří Macas
- Czech Academy of Sciences, Institute of Plant Molecular Biology, Ceske Budejovice, Czech Republic
| | - Ales Kovařík
- Czech Academy of Sciences, Institute of Biophysics, Brno, Czech Republic
| | - Petr Novák
- Czech Academy of Sciences, Institute of Plant Molecular Biology, Ceske Budejovice, Czech Republic
| | - John Parker
- Cambridge University Botanic Garden, Cambridge CB2 1JF, UK
| | - Hanna Weiss-Schneeweiss
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| |
Collapse
|
22
|
|
23
|
Ruban A, Fuchs J, Marques A, Schubert V, Soloviev A, Raskina O, Badaeva E, Houben A. B chromosomes of Aegilops speltoides are enriched in organelle genome-derived sequences. PLoS One 2014; 9:e90214. [PMID: 24587288 PMCID: PMC3936023 DOI: 10.1371/journal.pone.0090214] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/27/2014] [Indexed: 11/19/2022] Open
Abstract
B chromosomes (Bs) are dispensable components of the genome exhibiting non-Mendelian inheritance. Chromosome counts and flow cytometric analysis of the grass species Aegilops speltoides revealed a tissue-type specific distribution of the roughly 570 Mbp large B chromosomes. To address the question whether organelle-to-nucleus DNA transfer is a mechanism that drives the evolution of Bs, in situ hybridization was performed with labelled organellar DNA. The observed B-specific accumulation of chloroplast- and mitochondria-derived sequences suggests a reduced selection against the insertion of organellar DNA in supernumerary chromosomes. The distribution of B-localised organellar-derived sequences and other sequences differs between genotypes of different geographical origins.
Collapse
Affiliation(s)
- Alevtina Ruban
- Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, Department of Genetics and Biotechnology, Moscow, Russia
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Chromosome Structure and Function Laboratory, Gatersleben, Germany
| | - Jörg Fuchs
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Chromosome Structure and Function Laboratory, Gatersleben, Germany
| | - André Marques
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Universidade Federal de Pernambuco, Recife, Brazil
| | - Veit Schubert
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Chromosome Structure and Function Laboratory, Gatersleben, Germany
| | - Alexander Soloviev
- Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, Department of Genetics and Biotechnology, Moscow, Russia
| | - Olga Raskina
- Institute of Evolution, University of Haifa, Laboratory of Plant Molecular Cytogenetics, Haifa, Israel
| | - Ekaterina Badaeva
- Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Laboratory of Molecular Karyology, Moscow, Russia
| | - Andreas Houben
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Chromosome Structure and Function Laboratory, Gatersleben, Germany
| |
Collapse
|
24
|
Houben A, Banaei-Moghaddam AM, Klemme S, Timmis JN. Evolution and biology of supernumerary B chromosomes. Cell Mol Life Sci 2014; 71:467-78. [PMID: 23912901 PMCID: PMC11113615 DOI: 10.1007/s00018-013-1437-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/02/2013] [Accepted: 07/24/2013] [Indexed: 12/23/2022]
Abstract
B chromosomes (Bs) are dispensable components of the genome exhibiting non-Mendelian inheritance and have been widely reported on over several thousand eukaryotes, but still remain an evolutionary mystery ever since their first discovery over a century ago [1]. Recent advances in genome analysis have significantly improved our knowledge on the origin and composition of Bs in the last few years. In contrast to the prevalent view that Bs do not harbor genes, recent analysis revealed that Bs of sequenced species are rich in gene-derived sequences. We summarize the latest findings on supernumerary chromosomes with a special focus on the origin, DNA composition, and the non-Mendelian accumulation mechanism of Bs.
Collapse
Affiliation(s)
- Andreas Houben
- Chromosome Structure and Function Laboratory, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany,
| | | | | | | |
Collapse
|
25
|
Martis MM, Zhou R, Haseneyer G, Schmutzer T, Vrána J, Kubaláková M, König S, Kugler KG, Scholz U, Hackauf B, Korzun V, Schön CC, Doležel J, Bauer E, Mayer KF, Stein N. Reticulate evolution of the rye genome. THE PLANT CELL 2013; 25:3685-98. [PMID: 24104565 PMCID: PMC3877785 DOI: 10.1105/tpc.113.114553] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/23/2013] [Accepted: 09/20/2013] [Indexed: 05/18/2023]
Abstract
Rye (Secale cereale) is closely related to wheat (Triticum aestivum) and barley (Hordeum vulgare). Due to its large genome (~8 Gb) and its regional importance, genome analysis of rye has lagged behind other cereals. Here, we established a virtual linear gene order model (genome zipper) comprising 22,426 or 72% of the detected set of 31,008 rye genes. This was achieved by high-throughput transcript mapping, chromosome survey sequencing, and integration of conserved synteny information of three sequenced model grass genomes (Brachypodium distachyon, rice [Oryza sativa], and sorghum [Sorghum bicolor]). This enabled a genome-wide high-density comparative analysis of rye/barley/model grass genome synteny. Seventeen conserved syntenic linkage blocks making up the rye and barley genomes were defined in comparison to model grass genomes. Six major translocations shaped the modern rye genome in comparison to a putative Triticeae ancestral genome. Strikingly dissimilar conserved syntenic gene content, gene sequence diversity signatures, and phylogenetic networks were found for individual rye syntenic blocks. This indicates that introgressive hybridizations (diploid or polyploidy hybrid speciation) and/or a series of whole-genome or chromosome duplications played a role in rye speciation and genome evolution.
Collapse
Affiliation(s)
- Mihaela M. Martis
- Helmholtz Center Munich, German Research Centre for Environmental Health, Munich Information Center for Protein Sequences/IBIS, Institute of Bioinformatics and Systems Biology, 85764 Neuherberg, Germany
| | - Ruonan Zhou
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Seeland (OT) Gatersleben, Germany
| | - Grit Haseneyer
- Technische Universität München, Centre of Life and Food Sciences Weihenstephan, Plant Breeding, 85354 Freising, Germany
| | - Thomas Schmutzer
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Seeland (OT) Gatersleben, Germany
| | - Jan Vrána
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, CZ-783 71 Olomouc, Czech Republic
| | - Marie Kubaláková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, CZ-783 71 Olomouc, Czech Republic
| | - Susanne König
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Seeland (OT) Gatersleben, Germany
| | - Karl G. Kugler
- Helmholtz Center Munich, German Research Centre for Environmental Health, Munich Information Center for Protein Sequences/IBIS, Institute of Bioinformatics and Systems Biology, 85764 Neuherberg, Germany
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Seeland (OT) Gatersleben, Germany
| | - Bernd Hackauf
- Julius Kühn-Institut, Institute for Breeding Research on Agricultural Crops, 18190 Sanitz, Germany
| | | | - Chris-Carolin Schön
- Technische Universität München, Centre of Life and Food Sciences Weihenstephan, Plant Breeding, 85354 Freising, Germany
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, CZ-783 71 Olomouc, Czech Republic
| | - Eva Bauer
- Technische Universität München, Centre of Life and Food Sciences Weihenstephan, Plant Breeding, 85354 Freising, Germany
| | - Klaus F.X. Mayer
- Helmholtz Center Munich, German Research Centre for Environmental Health, Munich Information Center for Protein Sequences/IBIS, Institute of Bioinformatics and Systems Biology, 85764 Neuherberg, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Seeland (OT) Gatersleben, Germany
- Address correspondence to
| |
Collapse
|