1
|
Bicknell R, Gaillard M, Catanach A, McGee R, Erasmuson S, Fulton B, Winefield C. Genetic mapping of the LOSS OF PARTHENOGENESIS locus in Pilosella piloselloides and the evolution of apomixis in the Lactuceae. FRONTIERS IN PLANT SCIENCE 2023; 14:1239191. [PMID: 37692427 PMCID: PMC10485273 DOI: 10.3389/fpls.2023.1239191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023]
Abstract
Pilosella piloselloides var. praealta (syn. P. praealta; Hieracium praealtum) is a versatile model used to study gametophytic apomixis. In this system apomixis is controlled by three loci: one that controls the avoidance of meiosis (LOA), one that controls the avoidance of fertilization (LOP) and a third that controls autonomous endosperm formation (AutE). Using a unique polyhaploid mapping approach the LOP locus was mapped to a 654 kb genomic interval syntenic to linkage group 8 of Lactuca sativa. Polyhaploids form through the gametophytic action of a dominant determinant at LOP, so the mapped region represents both a functional and a physical domain for LOP in P. piloselloides. Allele sequence divergence (ASD) analysis of the PARTHENOGENESIS (PAR) gene within the LOP locus revealed that dominant PAR alleles in Pilosella remain highly similar across the genus, whilst the recessive alleles are more divergent. A previous report noted that dominant PAR alleles in both Pilosella and Taraxacum are modified by the presence of a class II transposable element (TE) in the promoter of the gene. This observation was confirmed and further extended to the related genus Hieracium. Sufficient differences were noted in the structure and location of the TE elements to conclude that TE insertional events had occurred independently in the three genera. Measures of allele crossover amongst the polyhaploids revealed that P. piloselloides is an autopolyploid species with tetrasomic inheritance. It was also noted that the dominant determinant of LOP in P. piloselloides could transmit via a diploid gamete (pollen or egg) but not via a haploid gamete. Using this information, a model is presented of how gametophytic apomixis may have evolved in several members of the Lactuceae, a tribe of the Asteraceae.
Collapse
Affiliation(s)
- Ross Bicknell
- Department of Breeding and Genomics, The New Zealand Institute for Plant and Food Research Limited, Christchurch, New Zealand
| | - Marion Gaillard
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | - Andrew Catanach
- Department of Breeding and Genomics, The New Zealand Institute for Plant and Food Research Limited, Christchurch, New Zealand
| | - Robert McGee
- Department of Plant Science, McGill University, Lincoln, QC, Canada
| | - Sylvia Erasmuson
- Department of Breeding and Genomics, The New Zealand Institute for Plant and Food Research Limited, Christchurch, New Zealand
| | - Beatrice Fulton
- Department of Breeding and Genomics, The New Zealand Institute for Plant and Food Research Limited, Christchurch, New Zealand
| | - Christopher Winefield
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Canterbury, New Zealand
| |
Collapse
|
2
|
Soliman M, Bocchini M, Stein J, Ortiz JPA, Albertini E, Delgado L. Environmental and Genetic Factors Affecting Apospory Expressivity in Diploid Paspalum rufum. PLANTS 2021; 10:plants10102100. [PMID: 34685909 PMCID: PMC8537111 DOI: 10.3390/plants10102100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022]
Abstract
In angiosperms, gametophytic apomixis (clonal reproduction through seeds) is strongly associated with polyploidy and hybridization. The trait is facultative and its expressivity is highly variable between genotypes. Here, we used an F1 progeny derived from diploid apomictic (aposporic) genotypes of Paspalum rufum and two F2 families, derived from F1 hybrids with different apospory expressivity (%AES), to analyze the influence of the environment and the transgenerational transmission of the trait. In addition, AFLP markers were developed in the F1 population to identify genomic regions associated with the %AES. Cytoembryological analyses showed that the %AES was significantly influenced by different environments, but remained stable across the years. F1 and F2 progenies showed a wide range of %AES variation, but most hybrids were not significantly different from the parental genotypes. Maternal and paternal genetic linkage maps were built covering the ten expected linkage groups (LG). A single-marker analysis detected at least one region of 5.7 cM on LG3 that was significantly associated with apospory expressivity. Our results underline the importance of environmental influence in modulating apospory expressivity and identified a genomic region associated with apospory expressivity at the diploid level.
Collapse
Affiliation(s)
- Mariano Soliman
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Rosario S2125ZAA, Zavalla, Argentina; (M.S.); (J.S.); (J.P.A.O.)
| | - Marika Bocchini
- Department Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.B.); (E.A.)
| | - Juliana Stein
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Rosario S2125ZAA, Zavalla, Argentina; (M.S.); (J.S.); (J.P.A.O.)
| | - Juan Pablo A. Ortiz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Rosario S2125ZAA, Zavalla, Argentina; (M.S.); (J.S.); (J.P.A.O.)
| | - Emidio Albertini
- Department Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.B.); (E.A.)
| | - Luciana Delgado
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Rosario S2125ZAA, Zavalla, Argentina; (M.S.); (J.S.); (J.P.A.O.)
- Correspondence:
| |
Collapse
|
3
|
Henderson SW, Henderson ST, Goetz M, Koltunow AMG. Efficient CRISPR/Cas9-Mediated Knockout of an Endogenous PHYTOENE DESATURASE Gene in T1 Progeny of Apomictic Hieracium Enables New Strategies for Apomixis Gene Identification. Genes (Basel) 2020; 11:E1064. [PMID: 32927657 PMCID: PMC7563859 DOI: 10.3390/genes11091064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Most Hieracium subgenus Pilosella species are self-incompatible. Some undergo facultative apomixis where most seeds form asexually with a maternal genotype. Most embryo sacs develop by mitosis, without meiosis and seeds form without fertilization. Apomixis is controlled by dominant loci where recombination is suppressed. Loci deletion by γ-irradiation results in reversion to sexual reproduction. Targeted mutagenesis of genes at identified loci would facilitate causal gene identification. In this study, the efficacy of CRISPR/Cas9 editing was examined in apomictic Hieracium by targeting mutations in the endogenous PHYTOENE DESATURASE (PDS) gene using Agrobacterium-mediated leaf disk transformation. In three experiments, the expected albino dwarf-lethal phenotype, characteristic of PDS knockout, was evident in 11% of T0 plants, 31.4% were sectorial albino chimeras, and the remainder were green. The chimeric plants flowered. Germinated T1 seeds derived from apomictic reproduction in two chimeric plants were phenotyped and sequenced to identify PDS gene edits. Up to 86% of seeds produced albino seedlings with complete PDS knockout. This was attributed to continuing Cas9-mediated editing in chimeric plants during apomictic seed formation preventing Cas9 segregation from the PDS target. This successful demonstration of efficient CRISPR/Cas9 gene editing in apomictic Hieracium, enabled development of the discussed strategies for future identification of causal apomixis genes.
Collapse
Affiliation(s)
- Sam W. Henderson
- Correspondence: (S.W.H.); (A.M.G.K.); Tel.: +61-407-323-260 (A.M.G.K.)
| | | | | | | |
Collapse
|
4
|
Płachno BJ, Świątek P, Kozieradzka-Kiszkurno M, Szeląg Z, Stolarczyk P. Integument cell gelatinisation-the fate of the integumentary cells in Hieracium and Pilosella (Asteraceae). PROTOPLASMA 2017; 254:2287-2294. [PMID: 28508157 PMCID: PMC5653734 DOI: 10.1007/s00709-017-1120-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 05/02/2017] [Indexed: 05/27/2023]
Abstract
Members of the genera Hieracium and Pilosella are model plants that are used to study the mechanisms of apomixis. In order to have a proper understanding of apomixis, knowledge about the relationship between the maternal tissue and the gametophyte is needed. In the genus Pilosella, previous authors have described the specific process of the "liquefaction" of the integument cells that surround the embryo sac. However, these observations were based on data only at the light microscopy level. The main aim of our paper was to investigate the changes in the integument cells at the ultrastructural level in Pilosella officinarum and Hieracium alpinum. We found that the integument peri-endothelial zone in both species consisted of mucilage cells. The mucilage was deposited as a thick layer between the plasma membrane and the cell wall. The mucilage pushed the protoplast to the centre of the cell, and cytoplasmic bridges connected the protoplast to the plasmodesmata through the mucilage layers. Moreover, an elongation of the plasmodesmata was observed in the mucilage cells. The protoplasts had an irregular shape and were finally degenerated. After the cell wall breakdown of the mucilage cells, lysigenous cavities that were filled with mucilage were formed.
Collapse
Affiliation(s)
- Bartosz J Płachno
- Department of Plant Cytology and Embryology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387, Kraków, Poland.
| | - Piotr Świątek
- Department of Animal Histology and Embryology, University of Silesia in Katowice, 9 Bankowa St., 40-007, Katowice, Poland
| | | | - Zbigniew Szeląg
- Department of Botany, Pedagogical University of Kraków, 3 Podchorążych St., 30-084, Kraków, Poland
| | - Piotr Stolarczyk
- Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54 Street, 31-425, Kraków, Poland
| |
Collapse
|
5
|
|
6
|
Henderson ST, Johnson SD, Eichmann J, Koltunow AMG. Genetic analyses of the inheritance and expressivity of autonomous endosperm formation in Hieracium with different modes of embryo sac and seed formation. ANNALS OF BOTANY 2017; 119:1001-1010. [PMID: 28130222 PMCID: PMC5604576 DOI: 10.1093/aob/mcw262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/18/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS Apomixis, or asexual seed formation, in polyploid Hieracium subgenus Pilosella species results in clonal progeny with a maternal genotype. An aposporous embryo sac forms mitotically from a somatic cell, without prior meiosis, while embryo and endosperm formation is fertilization independent (autonomous). The latter two developmental components are tightly linked in Hieracium . Recently, two plants, AutE196 and AutE24, were identified from two different crosses. Both form embryo sacs via the sexual route by undergoing meiosis, and embryo development requires fertilization; however, 18 % of embryo sacs can undergo autonomous endosperm (AutE) formation. This study investigated the qualitative and quantitative inheritance of the AutE trait and factors influencing phenotype expressivity. An additional focus was to identify the linkage group bearing the AutE locus in AutE196. METHODS Crosses and cytology were used to examine the inheritance of AutE from AutE24 and AutE196, and to reintroduce apomictic components into AutE plants, thereby changing the ploidy of developing embryo sacs and increasing the dosage of AutE loci. Markers from a Hieracium apomict linkage map were examined within a backcrossed AutE196 mapping population to identify the linkage group containing the AutE196 locus. KEY RESULTS Qualitative autonomous endosperm in the AutE24 line was conferred by a single dominant locus, and the trait was transmitted through male and female gametes in AutE196 and AutE24. Expressivity of the trait did not significantly increase when AutE loci from AutE196 and AutE24 were both present in the progeny, within embryo sacs formed via apospory, or sexually derived embryo sacs with increased ploidy. It remains unclear if these are identical loci. CONCLUSIONS The qualitative trait of autonomous endosperm formation is conferred by single dominant loci in AutE196 and AutE24. High expressivity of autonomous endosperm formation observed in apomicts requires additional genetic factors. Potential candidates may be signals arising from fertilization-independent embryo formation.
Collapse
|
7
|
Rabiger DS, Taylor JM, Spriggs A, Hand ML, Henderson ST, Johnson SD, Oelkers K, Hrmova M, Saito K, Suzuki G, Mukai Y, Carroll BJ, Koltunow AMG. Generation of an integrated Hieracium genomic and transcriptomic resource enables exploration of small RNA pathways during apomixis initiation. BMC Biol 2016; 14:86. [PMID: 27716180 PMCID: PMC5054587 DOI: 10.1186/s12915-016-0311-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/21/2016] [Indexed: 11/23/2022] Open
Abstract
Background Application of apomixis, or asexual seed formation, in crop breeding would allow rapid fixation of complex traits, economizing improved crop delivery. Identification of apomixis genes is confounded by the polyploid nature, high genome complexity and lack of genomic sequence integration with reproductive tissue transcriptomes in most apomicts. Results A genomic and transcriptomic resource was developed for Hieracium subgenus Pilosella (Asteraceae) which incorporates characterized sexual, apomictic and mutant apomict plants exhibiting reversion to sexual reproduction. Apomicts develop additional female gametogenic cells that suppress the sexual pathway in ovules. Disrupting small RNA pathways in sexual Arabidopsis also induces extra female gametogenic cells; therefore, the resource was used to examine if changes in small RNA pathways correlate with apomixis initiation. An initial characterization of small RNA pathway genes within Hieracium was undertaken, and ovary-expressed ARGONAUTE genes were identified and cloned. Comparisons of whole ovary transcriptomes from mutant apomicts, relative to the parental apomict, revealed that differentially expressed genes were enriched for processes involved in small RNA biogenesis and chromatin silencing. Small RNA profiles within mutant ovaries did not reveal large-scale alterations in composition or length distributions; however, a small number of differentially expressed, putative small RNA targets were identified. Conclusions The established Hieracium resource represents a substantial contribution towards the investigation of early sexual and apomictic female gamete development, and the generation of new candidate genes and markers. Observed changes in small RNA targets and biogenesis pathways within sexual and apomictic ovaries will underlie future functional research into apomixis initiation in Hieracium. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0311-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David S Rabiger
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Private Bag 2, Glen Osmond, South Australia, 5064, Australia
| | - Jennifer M Taylor
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Bellenden Street, Crace, Australian Capital Territory, 2911, Australia
| | - Andrew Spriggs
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Bellenden Street, Crace, Australian Capital Territory, 2911, Australia
| | - Melanie L Hand
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Private Bag 2, Glen Osmond, South Australia, 5064, Australia
| | - Steven T Henderson
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Private Bag 2, Glen Osmond, South Australia, 5064, Australia
| | - Susan D Johnson
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Private Bag 2, Glen Osmond, South Australia, 5064, Australia
| | - Karsten Oelkers
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Private Bag 2, Glen Osmond, South Australia, 5064, Australia
| | - Maria Hrmova
- Australian Centre for Plant Functional Genomics, University of Adelaide PMB 1, Glen Osmond, South Australia, 5064, Australia
| | - Keisuke Saito
- Division of Natural Science, Osaka Kyoiku University, Osaka, 582-8582, Japan
| | - Go Suzuki
- Division of Natural Science, Osaka Kyoiku University, Osaka, 582-8582, Japan
| | - Yasuhiko Mukai
- Division of Natural Science, Osaka Kyoiku University, Osaka, 582-8582, Japan
| | - Bernard J Carroll
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Anna M G Koltunow
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Private Bag 2, Glen Osmond, South Australia, 5064, Australia.
| |
Collapse
|