1
|
Roychowdhury A, Srivastava R, Akash, Shukla G, Zehirov G, Mishev K, Kumar R. Metabolic footprints in phosphate-starved plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:755-767. [PMID: 37363416 PMCID: PMC10284745 DOI: 10.1007/s12298-023-01319-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Plants' requirement of Phosphorus (P) as an essential macronutrient is obligatory for their normal growth and metabolism. Besides restricting plants' primary growth, P depletion affects both primary and secondary metabolism and leads to altered levels of sugars, metabolites, amino acids, and other secondary compounds. Such metabolic shifts help plants optimize their metabolism and growth under P limited conditions. Under P deprivation, both sugar levels and their mobilization change that influences the expression of Pi starvation-inducible genes. Increased sugar repartitioning from shoot to root help root growth and organic acids secretion that in turn promotes phosphate (Pi) uptake from the soil. Other metabolic changes such as lipid remodeling or P reallocation from older to younger leaves release the P from its bound forms in the cell. In this review, we summarize the metabolic footprinting of Pi-starved plants with respect to the benefits offered by such metabolic changes to intracellular Pi homeostasis.
Collapse
Affiliation(s)
- Abhishek Roychowdhury
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046 India
| | - Rajat Srivastava
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046 India
| | - Akash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046 India
| | - Gyanesh Shukla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046 India
| | - Grigor Zehirov
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Kiril Mishev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Rahul Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046 India
| |
Collapse
|
2
|
Zhao HL, Chang TG, Xiao Y, Zhu XG. Potential metabolic mechanisms for inhibited chloroplast nitrogen assimilation under high CO2. PLANT PHYSIOLOGY 2021; 187:1812-1833. [PMID: 34618071 PMCID: PMC8566258 DOI: 10.1093/plphys/kiab345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/28/2021] [Indexed: 05/31/2023]
Abstract
Improving photosynthesis is considered a major and feasible option to dramatically increase crop yield potential. Increased atmospheric CO2 concentration often stimulates both photosynthesis and crop yield, but decreases protein content in the main C3 cereal crops. This decreased protein content in crops constrains the benefits of elevated CO2 on crop yield and affects their nutritional value for humans. To support studies of photosynthetic nitrogen assimilation and its complex interaction with photosynthetic carbon metabolism for crop improvement, we developed a dynamic systems model of plant primary metabolism, which includes the Calvin-Benson cycle, the photorespiration pathway, starch synthesis, glycolysis-gluconeogenesis, the tricarboxylic acid cycle, and chloroplastic nitrogen assimilation. This model successfully captures responses of net photosynthetic CO2 uptake rate (A), respiration rate, and nitrogen assimilation rate to different irradiance and CO2 levels. We then used this model to predict inhibition of nitrogen assimilation under elevated CO2. The potential mechanisms underlying inhibited nitrogen assimilation under elevated CO2 were further explored with this model. Simulations suggest that enhancing the supply of α-ketoglutarate is a potential strategy to maintain high rates of nitrogen assimilation under elevated CO2. This model can be used as a heuristic tool to support research on interactions between photosynthesis, respiration, and nitrogen assimilation. It also provides a basic framework to support the design and engineering of C3 plant primary metabolism for enhanced photosynthetic efficiency and nitrogen assimilation in the coming high-CO2 world.
Collapse
Affiliation(s)
- Hong-Long Zhao
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Key Laboratory for Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tian-Gen Chang
- National Key Laboratory for Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi Xiao
- National Key Laboratory for Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200031, China
- Department of Crop Sciences, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, USA
- Department of Plant Biology, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, USA
| | - Xin-Guang Zhu
- National Key Laboratory for Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
3
|
Jiang W, He P, Zhou M, Lu X, Chen K, Liang C, Tian J. Soybean responds to phosphate starvation through reversible protein phosphorylation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:222-234. [PMID: 34371392 DOI: 10.1016/j.plaphy.2021.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/19/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) deficiency is considered as a major constraint on crop production. Although a set of adaptative strategies are extensively suggested in soybean (Glycine max) to phosphate (Pi) deprivation, molecular mechanisms underlying reversible protein phosphorylation in soybean responses to P deficiency remains largely unclear. In this study, isobaric tags for relative and absolute quantitation, combined with liquid chromatography and tandem mass spectrometry analysis was performed to identify differential phosphoproteins in soybean roots under Pi sufficient and deficient conditions. A total of 427 phosphoproteins were found to exhibit differential accumulations, with 213 up-regulated and 214 down-regulated. Among them, a nitrate reductase, GmNR4 exhibiting increased phosphorylation levels under low Pi conditions, was further selected to evaluate the effects of phosphorylation on its nitrate reductase activity and subcellular localization. Mutations of GmNR4 phosphorylation levels significantly influenced its activity in vitro, but not for its subcellular localization. Taken together, identification of differential phosphoproteins reveled the complex regulatory pathways for soybean adaptation to Pi starvation through reversible protein phosphorylation.
Collapse
Affiliation(s)
- Weizhen Jiang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; School of Traditional Chinese Medicine Resources, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Panmin He
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Zhou
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xing Lu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Kang Chen
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Delgado M, Henríquez-Castillo C, Zuñiga-Feest A, Sepúlveda F, Hasbún R, Hanna P, Reyes-Díaz M, Bertin-Benavides A. Cluster roots of Embothrium coccineum modify their metabolism and show differential gene expression in response to phosphorus supply. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:191-199. [PMID: 33621863 DOI: 10.1016/j.plaphy.2021.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Embothrium coccineum produces cluster roots (CR) to acquire sparingly soluble phosphorus (P) from the soil through the exudation of organic compounds. However, the physiological mechanisms involved in carbon drainage through its roots, as well as the gene expression involved in the biosynthesis of carboxylates and P uptake, have not been explored. In this work, we evaluated the relationship between carboxylate exudation rate and phosphoenolpyruvate carboxylase (PEPC) activity in roots of E. coccineum seedlings grown in a nutrient-poor volcanic substrate. Second, we evaluated CR formation and the expression of genes involved in the production of carboxylates (PEPC) and P uptake (PHT1) in E. coccineum seedlings grown under three different P supplies in hydroponic conditions. Our results showed that the carboxylate exudation rate was higher in CR than in non-CR, which was consistent with the higher PEPC activity in CR. We found higher CR formation in seedlings grown at 5 μM of P supply, concomitant with a higher expression of EcPEPC and EcPHT1 in CR than in non-CR. Overall, mature CR of E. coccineum seedlings growing on volcanic substrates poor in nutrients modify their metabolism compared to non-CR, enhancing carboxylate biosynthesis and subsequent carboxylate exudation. Additionally, transcriptional responses of EcPEPC and EcPHT1 were induced simultaneously when E. coccineum seedlings were grown in P-limited conditions that favored CR formation. Our results showed, for the first time, changes at the molecular level in CR of a species of the Proteaceae family, demonstrating that these root structures are highly specialized in P mobilization and uptake.
Collapse
Affiliation(s)
- Mabel Delgado
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Carlos Henríquez-Castillo
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados de Zonas Áridas (CEAZA), Coquimbo, Chile; Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Alejandra Zuñiga-Feest
- Laboratorio de Biología Vegetal, Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco Sepúlveda
- Laboratorio de Epigenética Vegetal, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
| | - Rodrigo Hasbún
- Laboratorio de Epigenética Vegetal, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
| | | | - Marjorie Reyes-Díaz
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile; Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Ariana Bertin-Benavides
- Laboratorio de Epigenética Vegetal, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile; ONG Conciencia Sur, Chile.
| |
Collapse
|
5
|
Dissanayaka DMSB, Ghahremani M, Siebers M, Wasaki J, Plaxton WC. Recent insights into the metabolic adaptations of phosphorus-deprived plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:199-223. [PMID: 33211873 DOI: 10.1093/jxb/eraa482] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Inorganic phosphate (Pi) is an essential macronutrient required for many fundamental processes in plants, including photosynthesis and respiration, as well as nucleic acid, protein, and membrane phospholipid synthesis. The huge use of Pi-containing fertilizers in agriculture demonstrates that the soluble Pi levels of most soils are suboptimal for crop growth. This review explores recent advances concerning the understanding of adaptive metabolic processes that plants have evolved to alleviate the negative impact of nutritional Pi deficiency. Plant Pi starvation responses arise from complex signaling pathways that integrate altered gene expression with post-transcriptional and post-translational mechanisms. The resultant remodeling of the transcriptome, proteome, and metabolome enhances the efficiency of root Pi acquisition from the soil, as well as the use of assimilated Pi throughout the plant. We emphasize how the up-regulation of high-affinity Pi transporters and intra- and extracellular Pi scavenging and recycling enzymes, organic acid anion efflux, membrane remodeling, and the remarkable flexibility of plant metabolism and bioenergetics contribute to the survival of Pi-deficient plants. This research field is enabling the development of a broad range of innovative and promising strategies for engineering phosphorus-efficient crops. Such cultivars are urgently needed to reduce inputs of unsustainable and non-renewable Pi fertilizers for maximum agronomic benefit and long-term global food security and ecosystem preservation.
Collapse
Affiliation(s)
- D M S B Dissanayaka
- Department of Crop Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - Mina Ghahremani
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Meike Siebers
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jun Wasaki
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - William C Plaxton
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
6
|
Funayama-Noguchi S, Shibata M, Noguchi K, Terashima I. Effects of root morphology, respiration and carboxylate exudation on carbon economy in two non-mycorrhizal lupines under phosphorus deficiency. PLANT, CELL & ENVIRONMENT 2021; 44:598-612. [PMID: 33099780 DOI: 10.1111/pce.13925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/05/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Under phosphorus (P) deficiency, Lupinus albus develops cluster roots that allow efficient P acquisition, while L. angustifolius without cluster roots also grows well. Both species are non-mycorrhizal. We quantitatively examined the carbon budgets to investigate the different strategies of these species. Biomass allocation, respiratory rates, protein amounts and carboxylate exudation rates were examined in hydroponically-grown plants treated with low (1 μM; P1) or high (100 μM; P100) P. At P1, L. albus formed cluster roots, and L. angustifolius increased biomass allocation to the roots. The respiratory rates of the roots were faster in L. albus than in L. angustifolius. The protein amounts of the non-phosphorylating alternative oxidase and uncoupling protein were greater in the cluster roots of L. albus at P1 than in the roots at P100, but similar between the P treatments in L. angustifolius roots. At P1, L. albus exuded carboxylates at a faster rate than L. angustifolius. The carbon budgets at P1 were surprisingly similar between the two species, which is attributed to the contrasting root growth and development strategies. L. albus developed cluster roots with rapid respiratory and carboxylate exudation rates, while L. angustifolius developed a larger root system with slow respiratory and exudation rates.
Collapse
Affiliation(s)
- Sachiko Funayama-Noguchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Masaru Shibata
- Faculty of Education, Yamaguchi University, Yamaguchi, Japan
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Ichiro Terashima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Zhao X, Lyu Y, Jin K, Lambers H, Shen J. Leaf Phosphorus Concentration Regulates the Development of Cluster Roots and Exudation of Carboxylates in Macadamia integrifolia. FRONTIERS IN PLANT SCIENCE 2021; 11:610591. [PMID: 33519868 PMCID: PMC7838356 DOI: 10.3389/fpls.2020.610591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/18/2020] [Indexed: 06/08/2023]
Abstract
Phosphorus (P) deficiency induces cluster-root formation and carboxylate exudation in most Proteaceae. However, how external P supply regulates these root traits in Macadamia integrifolia remains unclear. Macadamia plants were grown hydroponically with seven P levels to characterize biomass allocation, cluster-root development, and exudation of carboxylates and acid phosphatases. Plant biomass increased with increasing P supply, peaking at 5 μM P, was the same at 5-25 μM P, and declined at 50-100 μM P. Leaf P concentration increased with increasing P supply, but shoot biomass was positively correlated with leaf P concentration up to 0.7-0.8 mg P g-1 dry weight (DW), and declined with further increasing leaf P concentration. The number of cluster roots declined with increasing P supply, with a critical value of leaf P concentration at 0.7-0.8 mg P g-1 DW. We found a similar trend for carboxylate release, with a critical value of leaf P concentration at 0.5 mg g-1 DW, but the activity of acid phosphatases showed a gradually-decreasing trend with increasing P supply. Our results suggest that leaf P concentration regulates the development and functioning of cluster roots, with a critical P concentration of 0.5-0.8 mg g-1, above which macadamia growth is inhibited.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Yang Lyu
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Kemo Jin
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Hans Lambers
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jianbo Shen
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Fedosejevs ET, Liu LNC, Abergel M, She YM, Plaxton WC. Coimmunoprecipitation of reversibly glycosylated polypeptide with sucrose synthase from developing castor oilseeds. FEBS Lett 2017; 591:3872-3880. [PMID: 29110302 DOI: 10.1002/1873-3468.12893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 11/09/2022]
Abstract
The sucrose synthase (SUS) interactome of developing castor oilseeds (COS; Ricinus communis) was assessed using coimmunoprecipitation (co-IP) with anti-(COS RcSUS1)-IgG followed by proteomic analysis. A 41-kDa polypeptide (p41) that coimmunoprecipitated with RcSUS1 from COS extracts was identified as reversibly glycosylated polypeptide-1 (RcRGP1) by LC-MS/MS and anti-RcRGP1 immunoblotting. Reciprocal Far-western immunodot blotting corroborated the specific interaction between RcSUS1 and RcRGP1. Co-IP using anti-(COS RcSUS1)-IgG and clarified extracts from other developing seeds as well as cluster (proteoid) roots of white lupin and Harsh Hakea consistently recovered 90 kDa SUS polypeptides along with p41/RGP as a SUS interactor. The results suggest that SUS interacts with RGP in diverse sink tissues to channel UDP-glucose derived from imported sucrose into hemicellulose and/or glycoprotein/glycolipid biosynthesis.
Collapse
Affiliation(s)
- Eric T Fedosejevs
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Leo N C Liu
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Megan Abergel
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Yi-Min She
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario, Canada
| | - William C Plaxton
- Department of Biology, Queen's University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
9
|
Ryan PR, Delhaize E, Watt M, Richardson AE. Plant roots: understanding structure and function in an ocean of complexity. ANNALS OF BOTANY 2016; 118:555-559. [PMCID: PMC5055641 DOI: 10.1093/aob/mcw192] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 08/06/2016] [Accepted: 08/19/2016] [Indexed: 05/17/2023]
Abstract
Background The structure and function of plant roots and their interactions with soil are exciting scientific frontiers that will ultimately reveal much about our natural systems, global water and mineral and carbon cycles, and help secure food supplies into the future. This Special Issue presents a collection of papers that address topics at the forefront of our understanding of root biology. Scope These papers investigate how roots cope with drought, nutrient deficiencies, toxicities and soil compaction as well as the interactions that roots have with soil microorganisms. Roots of model plant species, annual crops and perennial species are studied in short-term experiments through to multi-year trials. Spatial scales range from the gene up to farming systems and nutrient cycling. The diverse, integrated approaches described by these studies encompass root genetics as applied to soil management, as well as documenting the signalling processes occurring between roots and shoots and between roots and soil. Conclusions This Special Issue on roots presents invited reviews and research papers covering a span of topics ranging from fundamental aspects of anatomy, growth and water uptake to roots in crop and pasture systems. Understanding root structure and function and adaptation to the abiotic and biotic stresses encountered in field conditions is important for sustainable agricultural production and better management of natural systems.
Collapse
Affiliation(s)
- Peter R. Ryan
- CSIRO Agriculture and Food, GPO Box 1600, Canberra, ACT 2601, Australia
- *For correspondence. E-mail
| | - Emmanuel Delhaize
- CSIRO Agriculture and Food, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Michelle Watt
- Plant Sciences Institute, Bio and Geo Sciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | | |
Collapse
|
10
|
Figueroa CM, Lunn JE. A Tale of Two Sugars: Trehalose 6-Phosphate and Sucrose. PLANT PHYSIOLOGY 2016; 172:7-27. [PMID: 27482078 PMCID: PMC5074632 DOI: 10.1104/pp.16.00417] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/27/2016] [Indexed: 05/02/2023]
Abstract
Trehalose 6-phosphate (Tre6P), the intermediate of trehalose biosynthesis, is an essential signal metabolite in plants, linking growth and development to carbon status. The Suc-Tre6P nexus model postulates that Tre6P is both a signal and negative feedback regulator of Suc levels, forming part of a mechanism to maintain Suc levels within an optimal range and functionally comparable to the insulin-glucagon system for regulating blood Glc levels in animals. The target range and sensitivity of the Tre6P-Suc feedback control circuit can be adjusted according to the cell type, developmental stage, and environmental conditions. In source leaves, Tre6P modulates Suc levels by affecting Suc synthesis, whereas in sink organs it regulates Suc consumption. In illuminated leaves, Tre6P influences the partitioning of photoassimilates between Suc, organic acids, and amino acids via posttranslational regulation of phosphoenolpyruvate carboxylase and nitrate reductase. At night, Tre6P regulates the remobilization of leaf starch reserves to Suc, potentially linking starch turnover in source leaves to carbon demand from developing sink organs. Use of Suc for growth in developing tissues is strongly influenced by the antagonistic activities of two protein kinases: SUC-NON-FERMENTING-1-RELATED KINASE1 (SnRK1) and TARGET OF RAPAMYCIN (TOR). The relationship between Tre6P and SnRK1 in developing tissues is complex and not yet fully resolved, involving both direct and indirect mechanisms, and positive and negative effects. No direct connection between Tre6P and TOR has yet been described. The roles of Tre6P in abiotic stress tolerance and stomatal regulation are also discussed.
Collapse
Affiliation(s)
- Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, 3000 Santa Fe, Argentina (C.M.F.); andMax Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (J.E.L.)
| | - John E Lunn
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, 3000 Santa Fe, Argentina (C.M.F.); andMax Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (J.E.L.)
| |
Collapse
|