1
|
Jyoti TP, Chandel S, Singh R. Unveiling the epigenetic landscape of plants using flow cytometry approach. Cytometry A 2024; 105:231-241. [PMID: 38437027 DOI: 10.1002/cyto.a.24834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/12/2024] [Accepted: 02/22/2024] [Indexed: 03/06/2024]
Abstract
Plants are sessile creatures that have to adapt constantly changing environmental circumstances. Plants are subjected to a range of abiotic stressors as a result of unpredictable climate change. Understanding how stress-responsive genes are regulated can help us better understand how plants can adapt to changing environmental conditions. Epigenetic markers that dynamically change in response to stimuli, such as DNA methylation and histone modifications are known to regulate gene expression. Individual cells or particles' physical and/or chemical properties can be measured using the method known as flow cytometry. It may therefore be used to evaluate changes in DNA methylation, histone modifications, and other epigenetic markers, making it a potent tool for researching epigenetics in plants. We explore the use of flow cytometry as a technique for examining epigenetic traits in this thorough discussion. The separation of cell nuclei and their subsequent labeling with fluorescent antibodies, offering information on the epigenetic mechanisms in plants when utilizing flow cytometry. We also go through the use of high-throughput data analysis methods to unravel the complex epigenetic processes occurring inside plant systems.
Collapse
Affiliation(s)
- Thakur Prava Jyoti
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Shivani Chandel
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
2
|
Wang H, Huang Y, Li Y, Cui Y, Xiang X, Zhu Y, Wang Q, Wang X, Ma G, Xiao Q, Huang X, Gao X, Wang J, Lu X, Larkins BA, Wang W, Wu Y. An ARF gene mutation creates flint kernel architecture in dent maize. Nat Commun 2024; 15:2565. [PMID: 38519520 PMCID: PMC10960022 DOI: 10.1038/s41467-024-46955-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Dent and flint kernel architectures are important characteristics that affect the physical properties of maize kernels and their grain end uses. The genes controlling these traits are unknown, so it is difficult to combine the advantageous kernel traits of both. We found mutation of ARFTF17 in a dent genetic background reduces IAA content in the seed pericarp, creating a flint-like kernel phenotype. ARFTF17 is highly expressed in the pericarp and encodes a protein that interacts with and inhibits MYB40, a transcription factor with the dual functions of repressing PIN1 expression and transactivating genes for flavonoid biosynthesis. Enhanced flavonoid biosynthesis could reduce the metabolic flux responsible for auxin biosynthesis. The decreased IAA content of the dent pericarp appears to reduce cell division and expansion, creating a shorter, denser kernel. Introgression of the ARFTF17 mutation into dent inbreds and hybrids improved their kernel texture, integrity, and desiccation, without affecting yield.
Collapse
Affiliation(s)
- Haihai Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yongcai Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yujie Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yahui Cui
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaoli Xiang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yidong Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiong Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaoqing Wang
- Forestry and Pomology Research Institute, Shanghai Academy of Agriculture Sciences, Shanghai, 201403, China
| | - Guangjin Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiao Xiao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyan Gao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaoduo Lu
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, 250200, China
| | - Brian A Larkins
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Wenqin Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
3
|
Michael K, Andreou C, Markou A, Christoforou M, Nikoloudakis N. A Novel Sorbitol-Based Flow Cytometry Buffer Is Effective for Genome Size Estimation across a Cypriot Grapevine Collection. PLANTS (BASEL, SWITZERLAND) 2024; 13:733. [PMID: 38475579 DOI: 10.3390/plants13050733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Flow cytometry (FCM) is a widely used technique to study genome size (C-value), but recalcitrant metabolites in grapevines often hinder its efficiency in grapevine research. The aim of the present study was (i) to develop a novel buffer tailormade for the nuclei isolation of grapevines and (ii) to characterize a Cypriot germplasm collection based on C-values. A local cultivar "Xinisteri" was used as a pilot test to evaluate a Sorbitol-based buffer, while sprouting, young, and fully matured leaves were examined to evaluate the developmental parameter. The novel Sorbitol buffer was shown to have a coefficient of variation (CV) of 4.06%, indicating improved properties compared to other commonly used FCM buffers [WPB (7.69%), LB01 (6.69%), and LB (7.13%), respectively]. In addition, a significant variation in genome size between genotypes was found in a comprehensive application with 24 grape varieties. Nucleic content (2C) ranged from 0.577/1C pg for the "Assyrtiko" cultivar up to 0.597/1C pg for the "Spourtiko" cultivar, revealing a 17.6/1C Mbp difference. The lowest coefficient of variation (CV) across all entries was found in the variety "Ofthalmo" (2.29%), while the highest was observed in "Pinot Noir" (3.44%). Anova analysis revealed several distinct clusters, showing that in several cases, C-values can be used as a simple method to distinguish grapevine cultivars.
Collapse
Affiliation(s)
- Kyriakos Michael
- Department of Agricultural Science, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Constantina Andreou
- Department of Agricultural Science, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Anastasia Markou
- Department of Agricultural Science, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Michalakis Christoforou
- Department of Agricultural Science, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Nikolaos Nikoloudakis
- Department of Agricultural Science, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| |
Collapse
|
4
|
Khan S, Al-Qurainy F, Al-hashimi A, Nadeem M, Tarroum M, Shaikhaldein HO, Salih AM. Effect of Green Synthesized ZnO-NPs on Growth, Antioxidant System Response and Bioactive Compound Accumulation in Echinops macrochaetus, a Potential Medicinal Plant, and Assessment of Genome Size (2C DNA Content). PLANTS (BASEL, SWITZERLAND) 2023; 12:1669. [PMID: 37111892 PMCID: PMC10141689 DOI: 10.3390/plants12081669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Echinops macrochaetus is a medicinal plant that can be used to cure various diseases. In the present study, plant-mediated zinc oxide nanoparticles (ZnO-NPs) were synthesized using an aqueous leaf extract of the medicinal plant Heliotropium bacciferum and characterized using various techniques. E. macrochaetus was collected from the wild and identified using the internal transcribed spacer sequence of nrDNA (ITS-nrDNA), which showed the closeness to its related genus in a phylogenetic tree. The effect of synthesized biogenic ZnO-NPs was studied on E. macrochaetus in a growth chamber for growth, bioactive compound enhancement and antioxidant system response. The irrigation of plants at a low concentration of ZnO-NPs (T1 = 10 mg/L) induced more growth in terms of biomass, chlorophyll content (273.11 µg/g FW) and carotenoid content (135.61 µg/g FW) than the control and other treatments (T2-20 mg/L and T3-40 mg/L). However, the application of a high concentration of ZnO-NPs (20 and 40 mg/L) increased the level of antioxidant enzymes (SOD, APX and GR), total crude and soluble protein, proline and TBARS contents. The accumulations of the compounds quercetin-3-β-D-glucoside, luteolin 7-rutinoside and p-coumaric acid were greater in the leaf compared to the shoot and root. A minor variation was observed in genome size in treated plants as compared to the control group. Overall, this study revealed the stimulatory effect of phytomediated ZnO-NPs, which act as bio-stimulants/nano-fertilizers as revealed by more biomass and the higher production of phytochemical compounds in different parts of the E. macrochaetus.
Collapse
|
5
|
Ji C, Xu L, Li Y, Fu Y, Li S, Wang Q, Zeng X, Zhang Z, Zhang Z, Wang W, Wang J, Wu Y. The O2-ZmGRAS11 transcriptional regulatory network orchestrates the coordination of endosperm cell expansion and grain filling in maize. MOLECULAR PLANT 2022; 15:468-487. [PMID: 34848346 DOI: 10.1016/j.molp.2021.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/03/2021] [Accepted: 11/26/2021] [Indexed: 05/12/2023]
Abstract
Maize (Zea mays) endosperm filling is coordinated with cell expansion to enlarge the grain size, but the mechanism coupling the two processes is poorly understood. Starchy endosperm cells basically contain no visible vacuoles for cell expansion. During grain filling, efficient synthesis of storage compounds leads to reduced cytoplasm and thus lowered cell turgor pressure. Although bioactive gibberellins (GAs) are essential for cell expansion, they accumulate at a low level at this stage. In this study, we identified an endosperm-specific GRAS domain-containing protein (ZmGRAS11) that lacks the DELLA domain and promotes cell expansion in the filling endosperm. The zmgras11 loss-of-function mutants showed normal grain filling but delayed cell expansion, thereby resulting in reduced kernel size and weight. Overexpression of ZmGRAS11 led to larger endosperm cells and therefore increased kernel size and weight. Consistent with this, ZmGRAS11 positively regulates the expression of ZmEXPB12, which is essential for cell expansion, at the endosperm filling stage. Moreover, we found that Opaque2 (O2), a central transcription factor that regulates endosperm filling, could directly bind to the promoter of ZmGRAS11 and activate its expression. Taken together, these results suggest that endosperm cell expansion is coupled with endosperm filling, which is orchestrated by the O2-ZmGRAS11-centered transcriptional regulatory network. Our findings also provide potential targets for maize yield improvement by increasing the storage capacity of endosperm cells.
Collapse
Affiliation(s)
- Chen Ji
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai 200032, China
| | - Yujie Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxin Fu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuai Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiong Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai 200032, China
| | - Xing Zeng
- College of Agronomy, Northeast Agricultural University, Harbin 150030, China
| | - Zhongqin Zhang
- Hebei Sub-center of the Chinese National Maize Improvement Center, College of Agronomy, Agricultural University of Hebei, Baoding, China
| | - Zhiyong Zhang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Wenqin Wang
- College of Life Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200233, China
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai 200032, China.
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai 200032, China.
| |
Collapse
|
6
|
Manna I, Mishra S, Bandyopadhyay M. In vivo genotoxicity assessment of nickel oxide nanoparticles in the model plant Allium cepa L. THE NUCLEUS 2021. [DOI: 10.1007/s13237-021-00377-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
7
|
Estimation of Genome Size in the Endemic Species Reseda pentagyna and the Locally Rare Species Reseda lutea Using comparative Analyses of Flow Cytometry and K-Mer Approaches. PLANTS 2021; 10:plants10071362. [PMID: 34371565 PMCID: PMC8309327 DOI: 10.3390/plants10071362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022]
Abstract
Genome size is one of the fundamental cytogenetic features of a species, which is critical for the design and initiation of any genome sequencing projects and can provide essential insights in studying taxonomy, cytogenetics, phylogenesis, and evolutionary studies. However, this key cytogenetic information is almost lacking in the endemic species Reseda pentagyna and the locally rare species Reseda lutea in Saudi Arabia. Therefore, genome size was analyzed by propidium iodide PI flow cytometry and compared to k-mer analysis methods. The standard method for genome size measures (flow cytometry) estimated the genome size of R. lutea and R. pentagyna with nuclei isolation MB01 buffer were found to be 1.91 ± 0.02 and 2.09 ± 0.03 pg/2 °C, respectively, which corresponded approximately to a haploid genome size of 934 and 1.022 Mbp, respectively. For validation, K-mer analysis was performed on both species' Illumina paired-end sequencing data from both species. Five k-mer analysis approaches were examined for biocomputational estimation of genome size: A general formula and four well-known programs (CovEST, Kmergenie, FindGSE, and GenomeScope). The parameter preferences had a significant impact on GenomeScope and Kmergenie estimates. While the general formula estimations did not differ considerably, with an average genome size of 867.7 and 896. Mbp. The differences across flow cytometry and biocomputational predictions may be due to the high repeat content, particularly long repetitive regions in both genomes, 71% and 57%, which interfered with k-mer analysis. GenomeScope allowed quantification of high heterozygosity levels (1.04 and 1.37%) of R. lutea and R. pentagyna genomes, respectively. Based on our observations, R. lutea may have a tetraploid genome or higher. Our results revealed fundamental cytogenetic information for R. lutea and R. pentagyna, which should be used in future taxonomic studies and whole-genome sequencing.
Collapse
|
8
|
Pan Y, Fang G, Wang Z, Cao Y, Liu Y, Li G, Liu X, Xiao Q, Zhan S. Chromosome-level genome reference and genome editing of the tea geometrid. Mol Ecol Resour 2021; 21:2034-2049. [PMID: 33738922 DOI: 10.1111/1755-0998.13385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022]
Abstract
The tea geometrid is a destructive insect pest on tea plants, which seriously affects tea production in terms of both yield and quality and causes severe economic losses. The tea geometrid also provides an important study system to address the ecological adaptive mechanisms underlying its unique host plant adaptation and protective resemblance. In this study, we fully sequenced and de novo assembled the reference genome of the tea geometrid, Ectropis grisescens, using long sequencing reads. We presented a highly continuous, near-complete genome reference (787.4 Mb; scaffold N50: 26.9 Mb), along with the annotation of 18,746 protein-coding genes and 53.3% repeat contents. Importantly, we successfully placed 97.8% of the assembly in 31 chromosomes based on Hi-C interactions and characterized the sex chromosome based on sex-biased sequencing coverage. Multiple quality-control assays and chromosome-scale synteny with the model species all supported the high quality of the presented genome reference. We focused biological annotations on gene families related to the host plant adaptation and camouflage in the tea geometrid and performed comparisons with other representative lepidopteran species. Important findings include the E. grisescens-specific expansion of CYP6 P450 genes that might be involved in metabolism of tea defensive chemicals and unexpected massive expansion of gustatory receptor gene families that suggests potential polyphagy for this tea pest. Furthermore, we developed an efficient genome editing system based on CRISPR/Cas9 technology and successfully implement mutagenesis of a Hox gene in the tea geometrid. Our study provides key genomic resources both for exploring unique mechanisms underlying the ecological adaptation of tea geometrids and for developing environment-friendly strategies for tea pest management.
Collapse
Affiliation(s)
- Yunjie Pan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Gangqi Fang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Zhibo Wang
- Key Laboratory of Tea Quality and Safety Control, Tea Research Institute, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yanghui Cao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yongjian Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guiyun Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaojing Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Xiao
- Key Laboratory of Tea Quality and Safety Control, Tea Research Institute, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Mgwatyu Y, Stander AA, Ferreira S, Williams W, Hesse U. Rooibos ( Aspalathus linearis) Genome Size Estimation Using Flow Cytometry and K-Mer Analyses. PLANTS (BASEL, SWITZERLAND) 2020; 9:E270. [PMID: 32085566 PMCID: PMC7076435 DOI: 10.3390/plants9020270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 01/09/2023]
Abstract
Plant genomes provide information on biosynthetic pathways involved in the production of industrially relevant compounds. Genome size estimates are essential for the initiation of genome projects. The genome size of rooibos (Aspalathus linearis species complex) was estimated using DAPI flow cytometry and k-mer analyses. For flow cytometry, a suitable nuclei isolation buffer, plant tissue and a transport medium for rooibos ecotype samples collected from distant locations were identified. When using radicles from commercial rooibos seedlings, Woody Plant Buffer and Vicia faba as an internal standard, the flow cytometry-estimated genome size of rooibos was 1.24 ± 0.01 Gbp. The estimates for eight wild rooibos growth types did not deviate significantly from this value. K-mer analysis was performed using Illumina paired-end sequencing data from one commercial rooibos genotype. For biocomputational estimation of the genome size, four k-mer analysis methods were investigated: A standard formula and three popular programs (BBNorm, GenomeScope, and FindGSE). GenomeScope estimates were strongly affected by parameter settings, specifically CovMax. When using the complete k-mer frequency histogram (up to 9 × 105), the programs did not deviate significantly, estimating an average rooibos genome size of 1.03 ± 0.04 Gbp. Differences between the flow cytometry and biocomputational estimates are discussed.
Collapse
Affiliation(s)
- Yamkela Mgwatyu
- South African National Bioinformatics Institute (SANBI), University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa;
| | - Allison Anne Stander
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa; (A.A.S.); (W.W.)
| | - Stephan Ferreira
- WestCape Biotech, Portion 26 of Farm 27, R304, Koelenhof, Stellenbosh 7605, South Africa;
| | - Wesley Williams
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa; (A.A.S.); (W.W.)
| | - Uljana Hesse
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa; (A.A.S.); (W.W.)
| |
Collapse
|
10
|
Moonkaew P, Nopporncharoenkul N, Jenjittikul T, Umpunjun P. Cytogenetic and pollen identification of genus Gagnepainia (Zingiberaceae) in Thailand. COMPARATIVE CYTOGENETICS 2020; 14:11-25. [PMID: 31988702 PMCID: PMC6971126 DOI: 10.3897/compcytogen.v14i1.47346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Gagnepainia godefroyi K. Schumann, 1904 and G. harmandii K. Schumann, 1904 belong to the genus Gagnepainia K. Schumann, 1904 of the Ginger family. They have the potential to be developed as medicinal and attractive ornamental plants. To date, the knowledge on the cytological and reproductive aspects of Gagnepainia have not been publicly available. Therefore, the aims of this research are to investigate the cytogenetic and pollen characters of Gagnepainia species using light, fluorescence, and scanning electron microscopes. The regular meiotic figures of 15 bivalents are found in both species and presented for the first time. These evidences indicate that Gagnepainia is diploid and contains 2n = 2x = 30 with basic number of x = 15. The mean nuclear DNA contents range from 1.986 pg in Gagnepainia sp., 2.090 pg in G. godefroyi to 2.195 pg in G. harmandii. Pollens of all species are monad, inaperturate, prolate with bilateral symmetry, and thick wall with fossulate exine sculpturing. The pollen size of G. harmandii (74.506 ± 5.075 μm, 56.082 ± 6.459 μm) is significantly larger than that of G. godefroyi (59.968 ± 3.484 μm, 45.439 ± 2.870 μm). Both 2C DNA content and pollen size are the effective characteristics for species discrimination. The reproductive evidence of high meiotic stability and normal pollen production indicate that both Gagnepainia species have high fertility and seed productivity, which are in accordance with the broad distribution. The present study provides good cytogenetic and pollen characters not only for plant identification, but also plant fertility assessment through plant genetic resource management and improvement of Gagnepainia.
Collapse
Affiliation(s)
- Paramet Moonkaew
- Department of Plant Science, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok, 10400, ThailandMahidol UniversityBangkokThailand
| | - Nattapon Nopporncharoenkul
- Department of Plant Science, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok, 10400, ThailandMahidol UniversityBangkokThailand
| | - Thaya Jenjittikul
- Department of Plant Science, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok, 10400, ThailandMahidol UniversityBangkokThailand
| | - Puangpaka Umpunjun
- Department of Plant Science, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok, 10400, ThailandMahidol UniversityBangkokThailand
| |
Collapse
|
11
|
Basak S, Rangan L. New record of nuclear DNA amounts of some Zingiberaceae species from North east India. Data Brief 2018; 17:66-70. [PMID: 29876375 PMCID: PMC5988222 DOI: 10.1016/j.dib.2017.12.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/28/2017] [Indexed: 10/30/2022] Open
Abstract
Members of the family Zingiberaceae are important medicinal plants and have great economic significance. Some taxonomic issues are still pending within the family and the genome size estimates of many species are still very scarce. Therefore, studies concerning genome size can provide complementary data that may be useful to characterize the family on whole. Genome size estimate have been used to characterize four Northeast Indian taxa of the family Zingiberaceae occurring in the wild in addition to that of a sacred cultivated species. In this data article we have provided genome size estimates of four species based on flow cytometry for the first time. This data will be valuable for genomic and molecular authentication of these species for all future studies.
Collapse
Affiliation(s)
- Supriyo Basak
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.,Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Latha Rangan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| |
Collapse
|
12
|
Basak S, Krishnamurthy H, Rangan L. Genome size variation among 3 selected genera of Zingiberoideae. Meta Gene 2018. [DOI: 10.1016/j.mgene.2017.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
13
|
Sadhu A, Bhadra S, Bandyopadhyay M. Characterization of Tulbaghia violacea (Tulbaghieae, Allioideae, Amaryllidaceae) from India: a cytogenetic and molecular approach. THE NUCLEUS 2017. [DOI: 10.1007/s13237-017-0202-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|