1
|
Kantor A, Kučera J, Šlenker M, Breidy J, Dönmez AA, Marhold K, Slovák M, Svitok M, Zozomová-Lihová J. Evolution of hygrophytic plant species in the Anatolia-Caucasus region: insights from phylogenomic analyses of Cardamine perennials. ANNALS OF BOTANY 2023; 131:585-600. [PMID: 36656962 PMCID: PMC10147327 DOI: 10.1093/aob/mcad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/10/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Southwestern Asia is a significant centre of biodiversity and a cradle of diversification for many plant groups, especially xerophytic elements. In contrast, little is known about the evolution and diversification of its hygrophytic flora. To fill this gap, we focus on Cardamine (Brassicaceae) species that grow in wetlands over a wide altitudinal range. We aimed to elucidate their evolution, assess the extent of presumed historical gene flow between species, and draw inferences about intraspecific structure. METHODS We applied the phylogenomic Hyb-Seq approach, ecological niche analyses and multivariate morphometrics to a total of 85 Cardamine populations from the target region of Anatolia-Caucasus, usually treated as four to six species, and supplemented them with close relatives from Europe. KEY RESULTS Five diploids are recognized in the focus area, three of which occur in regions adjacent to the Black and/or Caspian Sea (C. penzesii, C. tenera, C. lazica), one species widely distributed from the Caucasus to Lebanon and Iran (C. uliginosa), and one western Anatolian entity (provisionally C. cf. uliginosa). Phylogenomic data suggest recent speciation during the Pleistocene, likely driven by both geographic separation (allopatry) and ecological divergence. With the exception of a single hybrid (allotetraploid) speciation event proven for C. wiedemanniana, an endemic of southern Turkey, no significant traces of past or present interspecific gene flow were observed. Genetic variation within the studied species is spatially structured, suggesting reduced gene flow due to geographic and ecological barriers, but also glacial survival in different refugia. CONCLUSIONS This study highlights the importance of the refugial regions of the Black and Caspian Seas for both harbouring and generating hygrophytic species diversity in Southwestern Asia. It also supports the significance of evolutionary links between Anatolia and the Balkan Peninsula. Reticulation and polyploidization played a minor evolutionary role here in contrast to the European relatives.
Collapse
Affiliation(s)
- Adam Kantor
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 845 23 Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, 128 01Prague, Czechia
| | - Jaromír Kučera
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 845 23 Bratislava, Slovakia
| | - Marek Šlenker
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 845 23 Bratislava, Slovakia
| | - Joêlle Breidy
- National Genebank, Lebanese Agricultural Research Institute, Zahle 1801, Lebanon
| | - Ali A Dönmez
- Botany Section, Department of Biology, Faculty of Science, Hacettepe University, 06800 Beytepe-Ankara, Turkey
| | - Karol Marhold
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 845 23 Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, 128 01Prague, Czechia
| | - Marek Slovák
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 845 23 Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, 128 01Prague, Czechia
| | - Marek Svitok
- Department of Biology and General Ecology, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, 960 01Zvolen, Slovakia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czechia
| | - Judita Zozomová-Lihová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 845 23 Bratislava, Slovakia
| |
Collapse
|
2
|
Kaya Y, Aydın ZU, Cai X, Wang X, Dönmez AA. Genome-wide characterization of two Aubrieta taxa: Aubrieta canescens subsp. canescens and Au. macrostyla (Brassicaceae). AOB PLANTS 2022; 14:plac035. [PMID: 36196394 PMCID: PMC9521481 DOI: 10.1093/aobpla/plac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Aubrieta canescens complex is divided into two subspecies, Au. canescens subsp. canescens, Au. canescens subsp. cilicica and a distinct species, Au. macrostyla, based on molecular phylogeny. We generated a draft assembly of Au. canescens subsp. canescens and Au. macrostyla using paired-end shotgun sequencing. This is the first attempt at genome characterization for the genus. In the presented study, ~165 and ~157 Mbp of the genomes of Au. canescens subsp. canescens and Au. macrostyla were assembled, respectively, and a total of 32 425 and 31 372 gene models were predicted in the genomes of the target taxa, respectively. We corroborated the phylogenomic affinity of taxa with some core Brassicaceae species (Clades A and B) including Arabis alpina. The orthology-based tree suggested that Aubrieta species differentiated from A. alpina 1.3-2.0 mya (million years ago). The genome-wide syntenic comparison of two Aubrieta taxa revealed that Au. canescens subsp. canescens (46 %) and Au. macrostyla (45 %) have an almost identical syntenic gene pair ratio. These novel genome assemblies are the first steps towards the chromosome-level assembly of Au. canescens and understanding the genome diversity within the genus.
Collapse
Affiliation(s)
| | - Zübeyde Uğurlu Aydın
- Molecular Plant Systematic Laboratory (MOBIS), Department of Biology, Faculty of Science, Hacettepe University, Ankara 06800, Turkey
| | - Xu Cai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ali A Dönmez
- Molecular Plant Systematic Laboratory (MOBIS), Department of Biology, Faculty of Science, Hacettepe University, Ankara 06800, Turkey
| |
Collapse
|
3
|
Khosravi AR, Eslami-Farouji A, Sultani-Ahmadzai A, Mohsenzadeh S. Toward a better understanding of phylogenetic relationships within Conringieae (Brassicaceae). MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2022; 11:37-54. [PMID: 35463819 PMCID: PMC9012428 DOI: 10.22099/mbrc.2022.42767.1709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
One new tribe (Plagiolobeae), one new species (Plagioloba derakii) together with two new combinations (P. persica and P. clavata) are established within Brassicaceae based on a decisive consideration of molecular phylogenetic dataset, morphological characters, fruit septum nature, as well as seed microsculpturing features. Results distinctly justified Arabis ottonis-schulzii as a synonym of Conringia persica and further molecular analyses proved its placement as a member of genus Plagioloba. It is also placed in a new tribe Plagiolobeae as close relatives of Conringieae and Coluteocarpeae. Finally, the diagnostic morphological characters separating the new tribe from the previously assigned tribe (Conringieae) are also discussed.
Collapse
Affiliation(s)
- Ahmad Reza Khosravi
- Department of Biology, School of Science, Shiraz University, Shiraz, Iran ,Corresponding Author: Department of Biology, School of Science, Shiraz University, Shiraz, Iran. Tel: +987136137494; Fax: +987132280916, E. mail:
| | | | | | - Sasan Mohsenzadeh
- Department of Biology, School of Science, Shiraz University, Shiraz, Iran
| |
Collapse
|
4
|
Bruun Asmussen Lange C, Pavlo Hauser T, Deichmann V, Ørgaard M. Hybridization and complex evolution of Barbarea vulgaris and related species (Brassicaceae). Mol Phylogenet Evol 2022; 169:107425. [DOI: 10.1016/j.ympev.2022.107425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 09/15/2020] [Accepted: 01/12/2022] [Indexed: 11/29/2022]
|
5
|
Šlenker M, Kantor A, Marhold K, Schmickl R, Mandáková T, Lysak MA, Perný M, Caboňová M, Slovák M, Zozomová-Lihová J. Allele Sorting as a Novel Approach to Resolving the Origin of Allotetraploids Using Hyb-Seq Data: A Case Study of the Balkan Mountain Endemic Cardamine barbaraeoides. FRONTIERS IN PLANT SCIENCE 2021; 12:659275. [PMID: 33995457 PMCID: PMC8115912 DOI: 10.3389/fpls.2021.659275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/10/2021] [Indexed: 05/19/2023]
Abstract
Mountains of the Balkan Peninsula are significant biodiversity hotspots with great species richness and a large proportion of narrow endemics. Processes that have driven the evolution of the rich Balkan mountain flora, however, are still insufficiently explored and understood. Here we focus on a group of Cardamine (Brassicaceae) perennials growing in wet, mainly mountainous habitats. It comprises several Mediterranean endemics, including those restricted to the Balkan Peninsula. We used target enrichment with genome skimming (Hyb-Seq) to infer their phylogenetic relationships, and, along with genomic in situ hybridization (GISH), to resolve the origin of tetraploid Cardamine barbaraeoides endemic to the Southern Pindos Mts. (Greece). We also explored the challenges of phylogenomic analyses of polyploid species and developed a new approach of allele sorting into homeologs that allows identifying subgenomes inherited from different progenitors. We obtained a robust phylogenetic reconstruction for diploids based on 1,168 low-copy nuclear genes, which suggested both allopatric and ecological speciation events. In addition, cases of plastid-nuclear discordance, in agreement with divergent nuclear ribosomal DNA (nrDNA) copy variants in some species, indicated traces of interspecific gene flow. Our results also support biogeographic links between the Balkan and Anatolian-Caucasus regions and illustrate the contribution of the latter region to high Balkan biodiversity. An allopolyploid origin was inferred for C. barbaraeoides, which highlights the role of mountains in the Balkan Peninsula both as refugia and melting pots favoring species contacts and polyploid evolution in response to Pleistocene climate-induced range dynamics. Overall, our study demonstrates the importance of a thorough phylogenomic approach when studying the evolution of recently diverged species complexes affected by reticulation events at both diploid and polyploid levels. We emphasize the significance of retrieving allelic and homeologous variation from nuclear genes, as well as multiple nrDNA copy variants from genome skim data.
Collapse
Affiliation(s)
- Marek Šlenker
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Adam Kantor
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Karol Marhold
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Roswitha Schmickl
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czechia
| | - Terezie Mandáková
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Martin A. Lysak
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | | | - Michaela Caboňová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Slovák
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Judita Zozomová-Lihová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
6
|
Özüdoğru B, Özgi̇şi K, Perktaş U, Gür H. The Quaternary range dynamics of Noccaea iberidea(Brassicaceae), a typical representative of subalpine/alpine steppe communities of Anatolian mountains. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AbstractThe responses of Anatolian plants to global climate change have been poorly investigated. In this study, we aimed to understand how climatic oscillation during the Quaternary period helped to shape the current distribution patterns of the Anatolian endemic Noccaea iberidea, a typical representative of tragacanthic (thorny cushion) steppe communities of Anatolia. We used ecological niche modelling combined with statistical phylogeography, based on nuclear ribosomal ITS and plastidic trnL-F and trnS-ycf9 regions. Both the structure of the haplotype networks and the results of the extended Bayesian skyline plot analysis clearly indicated that N. iberidea has been through a recent population expansion. This interpretation was also supported by ecological niche modelling analysis, which showed that the availability of areas of high suitability expanded from the Last Interglacial to the Last Glacial Maximum, suggesting that N. iberidea might have expanded its range during the glacial periods. In conclusion, the study improves our understanding of the demographic history and responses of steppe plant communities of Anatolia to global climate changes through the Late Quaternary glacial–interglacial cycles, which in turn might aid in the development of future conservation strategies.
Collapse
Affiliation(s)
- Bariş Özüdoğru
- Department of Biology, Hacettepe University, Ankara, Turkey
- Biogeography Research Laboratory, Hacettepe University, Ankara, Turkey
| | - Kurtuluş Özgi̇şi
- Department of Biology, Faculty of Science and Letters, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Utku Perktaş
- Department of Biology, Hacettepe University, Ankara, Turkey
- Biogeography Research Laboratory, Hacettepe University, Ankara, Turkey
- Department of Ornithology, American Museum of Natural History, New York, NY, USA
| | - Hakan Gür
- Anatolian Biogeography Research Group, Kırşehir Ahi Evran University, Kırşehir, Turkey
| |
Collapse
|
7
|
Koch MA, Möbus J, Klöcker CA, Lippert S, Ruppert L, Kiefer C. The Quaternary evolutionary history of Bristol rock cress (Arabis scabra, Brassicaceae), a Mediterranean element with an outpost in the north-western Atlantic region. ANNALS OF BOTANY 2020; 126:103-118. [PMID: 32211750 PMCID: PMC7304472 DOI: 10.1093/aob/mcaa053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/19/2020] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS Bristol rock cress is among the few plant species in the British Isles considered to have a Mediterranean-montane element. Spatiotemporal patterns of colonization of the British Isles since the last interglacial and after the Last Glacial Maximum (LGM) from mainland Europe are underexplored and have not yet included such floristic elements. Here we shed light on the evolutionary history of a relic and outpost metapopulation of Bristol rock cress in the south-western UK. METHODS Amplified fragment length polymorphisms (AFLPs) were used to identify distinct gene pools. Plastome assembly and respective phylogenetic analysis revealed the temporal context. Herbarium material was largely used to exemplify the value of collections to obtain a representative sampling covering the entire distribution range. KEY RESULTS The AFLPs recognized two distinct gene pools, with the Iberian Peninsula as the primary centre of genetic diversity and the origin of lineages expanding before and after the LGM towards mountain areas in France and Switzerland. No present-day lineages are older than 51 ky, which is in sharp contrast to the species stem group age of nearly 2 My, indicating severe extinction and bottlenecks throughout the Pleistocene. The British Isles were colonized after the LGM and feature high genetic diversity. CONCLUSIONS The short-lived perennial herb Arabis scabra, which is restricted to limestone, has expanded its distribution range after the LGM, following corridors within an open landscape, and may have reached the British Isles via the desiccated Celtic Sea at about 16 kya. This study may shed light on the origin of other rare and peculiar species co-occurring in limestone regions in the south-western British Isles.
Collapse
Affiliation(s)
- Marcus A Koch
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Im Neuenheimer Feld 345, Heidelberg, Germany
| | - Johanna Möbus
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Im Neuenheimer Feld 345, Heidelberg, Germany
| | - Clara A Klöcker
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Im Neuenheimer Feld 345, Heidelberg, Germany
| | - Stephanie Lippert
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Im Neuenheimer Feld 345, Heidelberg, Germany
| | - Laura Ruppert
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Im Neuenheimer Feld 345, Heidelberg, Germany
| | - Christiane Kiefer
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Im Neuenheimer Feld 345, Heidelberg, Germany
| |
Collapse
|
8
|
Mandáková T, Hloušková P, Koch MA, Lysak MA. Genome Evolution in Arabideae Was Marked by Frequent Centromere Repositioning. THE PLANT CELL 2020; 32:650-665. [PMID: 31919297 PMCID: PMC7054033 DOI: 10.1105/tpc.19.00557] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/02/2019] [Accepted: 01/09/2020] [Indexed: 05/04/2023]
Abstract
Centromere position may change despite conserved chromosomal collinearity. Centromere repositioning and evolutionary new centromeres (ENCs) were frequently encountered during vertebrate genome evolution but only rarely observed in plants. The largest crucifer tribe, Arabideae (∼550 species; Brassicaceae, the mustard family), diversified into several well-defined subclades in the virtual absence of chromosome number variation. Bacterial artificial chromosome-based comparative chromosome painting uncovered a constancy of genome structures among 10 analyzed genomes representing seven Arabideae subclades classified as four genera: Arabis, Aubrieta, Draba, and Pseudoturritis Interestingly, the intra-tribal diversification was marked by a high frequency of ENCs on five of the eight homoeologous chromosomes in the crown-group genera, but not in the most ancestral Pseudoturritis genome. From the 32 documented ENCs, at least 26 originated independently, including 4 ENCs recurrently formed at the same position in not closely related species. While chromosomal localization of ENCs does not reflect the phylogenetic position of the Arabideae subclades, centromere seeding was usually confined to long chromosome arms, transforming acrocentric chromosomes to (sub)metacentric chromosomes. Centromere repositioning is proposed as the key mechanism differentiating overall conserved homoeologous chromosomes across the crown-group Arabideae subclades. The evolutionary significance of centromere repositioning is discussed in the context of possible adaptive effects on recombination and epigenetic regulation of gene expression.
Collapse
Affiliation(s)
- Terezie Mandáková
- Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Petra Hloušková
- Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Marcus A Koch
- Centre for Organismal Studies (COS) Heidelberg, Biodiversity and Plant Systematics/Botanical Garden and Herbarium (HEID), Heidelberg University, Heidelberg, Germany
| | - Martin A Lysak
- Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
9
|
Abstract
Despite the importance for scientific and conservation purposes, the knowledge of the Italian territory is far from exhaustive. New chorological data for 87 vascular taxa regarding the central-southern part of Italy and its two main islands (Sicilia and Sardegna) are presented. Among these taxa, Epilobium nummularifolium, Metrosideros excelsa, and Salvinia minima are recorded as casual aliens for the first time in Europe (excluding Azores and Madeira for M. excelsa), while Cyclamen balearicum and Polygala rupestris are reported for the first time and confirmed for Italian native flora, respectively. Furthermore, several taxa are new or confirmed at regional level. Finally, Lathyrus cirrhosus, Urginea fugax, and Linum tenuifolium are excluded from Italy, continental and peninsular Italy, and Sardegna, respectively.
Collapse
|
10
|
Mutun S, Dinç S. The Anatolian Diagonal and Paleoclimatic Changes Shaped the Phylogeography of Cynips quercus (Hymenoptera, Cynipidae). ANN ZOOL FENN 2019. [DOI: 10.5735/086.056.0107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Serap Mutun
- Department of Biology, Faculty of Science and Art, Bolu Abant İzzet Baysal University, TR-14030 Bolu, Turkey
| | - Serdar Dinç
- Department of Biology, Faculty of Science and Art, Bolu Abant İzzet Baysal University, TR-14030 Bolu, Turkey
| |
Collapse
|
11
|
Males J. Geography, environment and organismal traits in the diversification of a major tropical herbaceous angiosperm radiation. AOB PLANTS 2018; 10:ply008. [PMID: 29479409 PMCID: PMC5814923 DOI: 10.1093/aobpla/ply008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 01/29/2018] [Indexed: 06/08/2023]
Abstract
The generation of plant diversity involves complex interactions between geography, environment and organismal traits. Many macroevolutionary processes and emergent patterns have been identified in different plant groups through the study of spatial data, but rarely in the context of a large radiation of tropical herbaceous angiosperms. A powerful system for testing interrelated biogeographical hypotheses is provided by the terrestrial bromeliads, a Neotropical group of extensive ecological diversity and importance. In this investigation, distributional data for 564 species of terrestrial bromeliads were used to estimate variation in the position and width of species-level hydrological habitat occupancy and test six core hypotheses linking geography, environment and organismal traits. Taxonomic groups and functional types differed in hydrological habitat occupancy, modulated by convergent and divergent trait evolution, and with contrasting interactions with precipitation abundance and seasonality. Plant traits in the Bromeliaceae are intimately associated with bioclimatic differentiation, which is in turn strongly associated with variation in geographical range size and species richness. These results emphasize the ecological relevance of structural-functional innovation in a major plant radiation.
Collapse
Affiliation(s)
- Jamie Males
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, UK
| |
Collapse
|
12
|
Koch MA, Michling F, Walther A, Huang XC, Tewes L, Müller C. Early-Mid Pleistocene genetic differentiation and range expansions as exemplified by invasive Eurasian Bunias orientalis (Brassicaceae) indicates the Caucasus as key region. Sci Rep 2017; 7:16764. [PMID: 29196646 PMCID: PMC5711908 DOI: 10.1038/s41598-017-17085-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/22/2017] [Indexed: 11/12/2022] Open
Abstract
Turkish Warty cabbage, Bunias orientalis L. (Brassicaceae) is a perennial herb known for its 250 years of invasion history into Europe and worldwide temperate regions. Putative centers of origin were debated to be located in Turkey, the Caucasus or Eastern Europe. Based on the genetic variation from the nuclear and plastid genomes, we identified two major gene pools in the Caucasian-Irano-Turanian region and close to the Northern Caucasus, respectively. These gene pools are old and started to diverge and expand approximately 930 kya in the Caucasus. Pleistocene glaciation and deglaciation cycles favoured later expansion of a European gene pool 230 kya, which was effectively separated from the Caucasian-Irano-Turanian gene pool. Although the European gene pool is genetically less diverse, it has largely served as source for colonization of Western and Northern Europe in modern times with rare observations of genetic contributions from the Caucasian-Irano-Turanian gene pool such as in North-East America. This study largely utilized herbarium material to take advantage of a biodiversity treasure trove providing biological material and also giving access to detailed collection information.
Collapse
Affiliation(s)
- Marcus A Koch
- Heidelberg University, Centre for Organismal Studies, Heidelberg, 69120, Germany.
| | - Florian Michling
- Heidelberg University, Centre for Organismal Studies, Heidelberg, 69120, Germany
| | - Andrea Walther
- Heidelberg University, Centre for Organismal Studies, Heidelberg, 69120, Germany
| | - Xiao-Chen Huang
- Heidelberg University, Centre for Organismal Studies, Heidelberg, 69120, Germany
| | - Lisa Tewes
- Bielefeld University, Chemical Ecology, Bielefeld, 33615, Germany
| | - Caroline Müller
- Bielefeld University, Chemical Ecology, Bielefeld, 33615, Germany
| |
Collapse
|