1
|
Rajapakshe RPVGSW, Tomlinson S, Tudor EP, Turner SR, Elliott CP, Lewandrowski W. Same, same, but different: dissimilarities in the hydrothermal germination performance of range-restricted endemics emerge despite microclimatic similarities. CONSERVATION PHYSIOLOGY 2024; 12:coae009. [PMID: 38487732 PMCID: PMC10939308 DOI: 10.1093/conphys/coae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 03/17/2024]
Abstract
Seed germination responses for most narrow-range endemic species are poorly understood, imperilling their conservation management in the face of warming and drying terrestrial ecosystems. We quantified the realized microclimatic niches and the hydrothermal germination thresholds in four threatened taxa (Tetratheca erubescens, Tetratheca harperi, Tetratheca paynterae subsp. paynterae and Tetratheca aphylla subsp. aphylla) that are restricted to individual Banded Ironstone Formations in Western Australia. While T. aphylla subsp. aphylla largely failed to germinate in our trials, all other species demonstrated extended hydrothermal time accumulation (186-500°C MPa days), cool minimum temperatures (7.8-8.5°C), but broad base water potential thresholds (-2.46 to -5.41 MPa) under which germination occurred. These slow germination dynamics are suggestive of cool and wet winter months, where soil moisture is retained to a greater capacity in local microsites where these species occur, rather than the warmer and drier conditions in the surrounding arid environment. Hydrothermal time-to-event modelling showed that each species occupied unique hydrothermal germination niches, which correspond with the microclimatic differences the species are exposed to. Our results provide a baseline understanding for environmental and germination thresholds that govern the recruitment, and ultimately the population structure and persistence, of these short-range endemic plants. In addition, our results can aid future conservation, as well as restoration actions such as translocation to bolster population numbers and to mitigate against losses due to anthropogenic disturbance and global environmental change.
Collapse
Affiliation(s)
- Rajapakshe P V G S W Rajapakshe
- ARC Centre for Mine Site Restoration, Curtin University, Bentley, 6102, Australia
- School of Molecular and Life Sciences, Curtin University, Bentley, 6102, Australia
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, Kings Park, 6005, Australia
| | - Sean Tomlinson
- School of Molecular and Life Sciences, Curtin University, Bentley, 6102, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, 5000, Australia
| | - Emily P Tudor
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, Kings Park, 6005, Australia
- School of Biological Sciences, University of Western Australia, Crawley, 6009, Australia
| | - Shane R Turner
- ARC Centre for Mine Site Restoration, Curtin University, Bentley, 6102, Australia
- School of Molecular and Life Sciences, Curtin University, Bentley, 6102, Australia
| | - Carole P Elliott
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, Kings Park, 6005, Australia
- School of Biological Sciences, University of Western Australia, Crawley, 6009, Australia
| | - Wolfgang Lewandrowski
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, Kings Park, 6005, Australia
- School of Biological Sciences, University of Western Australia, Crawley, 6009, Australia
| |
Collapse
|
2
|
Glison N, Romero D, Rosso V, Guerrero JC, Speranza PR. Understanding the Geographic Patterns of Closely-Related Species of Paspalum (Poaceae) Using Distribution Modelling and Seed Germination Traits. PLANTS (BASEL, SWITZERLAND) 2023; 12:1342. [PMID: 36987030 PMCID: PMC10052821 DOI: 10.3390/plants12061342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 06/19/2023]
Abstract
The sexual species of the Dilatata complex (Paspalum dasypleurum, P. flavescens, P. plurinerve, P. vacarianum, and P. urvillei) are closely related phylogenetically and show allopatric distributions, except P. urvillei. These species show microhabitat similarities and differences in germination traits. We integrated species distribution models (SDMs) and seed germination assays to determine whether germination divergences explain their biogeographic pattern. We trained SDMs in South America using species' presence-absence data and environmental variables. Additionally, populations sampled from highly favourable areas in the SDMs of these species were grown together, and their seeds germinated at different temperatures and dormancy-breaking conditions. Differences among species in seed dormancy and germination niche breadth were tested, and linear regressions between seed dormancy and climatic variables were explored. SDMs correctly classified both the observed presences and absences. Spatial factors and anthropogenic activities were the main factors explaining these distributions. Both SDMs and germination analyses confirmed that the niche of P. urvillei was broader than the other species which showed restricted distributions, narrower germination niches, and high correlations between seed dormancy and precipitation regimes. Both approaches provided evidence about the generalist-specialist status of each species. Divergences in seed dormancy between the specialist species could explain these allopatric distributions.
Collapse
Affiliation(s)
- Nicolás Glison
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Avenida Eugenio Garzón 780, Montevideo 12900, Uruguay
| | - David Romero
- Laboratorio de Desarrollo Sustentable y Gestión Ambiental del Territorio, Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
- Grupo Biogeografía, Diversidad & Conservación, Departamento Biología Animal, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Virginia Rosso
- Cátedra de Botánica Sistemática, Facultad de Agronomía, Universidad de Buenos Aires, Avenida San Martín 4453, Buenos Aires C1417DSE, Argentina
| | - José Carlos Guerrero
- Laboratorio de Desarrollo Sustentable y Gestión Ambiental del Territorio, Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Pablo Rafael Speranza
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Avenida Eugenio Garzón 780, Montevideo 12900, Uruguay
| |
Collapse
|
3
|
Seed Traits Research Is on the Rise: A Bibliometric Analysis from 1991–2020. PLANTS 2022; 11:plants11152006. [PMID: 35956484 PMCID: PMC9370117 DOI: 10.3390/plants11152006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Seed traits (ST) influence seedling establishment, population dynamics, community composition and ecosystem function and reflect the adaptability of plants and the environmental conditions they experienced. There has been a historical and global accumulation of studies on ST, but with few pertaining to visual and quantitative analyses. To understand the trends in the field of ST research in the past 30 years, we conducted a bibliometric analysis based on the Science Citation Index-Expanded (SCI-E) database. The analysis provided annual publications, time trends for keywords, the most productive journals, authors, institutions and countries, and a comprehensive overview of the ST field. Our results showed that in the past 30 years, the number of publications in ST research has increased at an average annual growth rate of 9.1%, while the average number of citations per paper per year showed a rapid increase–slow increase–decrease trend. Keyword analysis showed that “germination” was the most popular research section. Crop Science ranked first among the top journals and Theoretical and Applied Genetics had greater influence in this area and more citations than other journals. The 10 most productive institutions were mostly located in the United States, China and Australia. Furthermore, the three countries also had the largest number of publications and citations. Our analysis showed that the research interests in ST have evolved from genetics and agricultural science to ecological research over the last thirty years; as more fields embrace ST research, there are opportunities for international and interdisciplinary collaborations, cooperative institutions and new advances in the field.
Collapse
|
4
|
Finch J, Seglias AE, Kramer AT, Havens K. Recruitment varies among milkweed seed sources for habitat specialist but not generalist. Restor Ecol 2022. [DOI: 10.1111/rec.13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jessamine Finch
- Program in Plant Biology and Conservation Northwestern University, O.T. Hogan Hall, Room 6‐140B, 2205 Tech Drive Evanston IL 60208 USA
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden 1000 Lake Cook Road Glencoe IL 60022 USA
- Native Plant Trust, Conservation Department 180 Hemenway Rd Framingham MA 01701 USA
| | - Alexandra E. Seglias
- Program in Plant Biology and Conservation Northwestern University, O.T. Hogan Hall, Room 6‐140B, 2205 Tech Drive Evanston IL 60208 USA
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden 1000 Lake Cook Road Glencoe IL 60022 USA
- Denver Botanic Gardens, 1007 York St Denver CO 80206 USA
| | - Andrea T. Kramer
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden 1000 Lake Cook Road Glencoe IL 60022 USA
| | - Kayri Havens
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden 1000 Lake Cook Road Glencoe IL 60022 USA
| |
Collapse
|
5
|
Rajapakshe RPVGSW, Cross AT, Turner SR, Tomlinson S. Understanding the interplay of temperature and moisture on the germination niche to improve management of threatened species impacted by mining. Restor Ecol 2022. [DOI: 10.1111/rec.13708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Rajapakshe P. V. G. S. W. Rajapakshe
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences Curtin University Bentley WA 6102 Australia
- School of Molecular and Life Sciences Curtin University Bentley Western Australia 6102 Australia
- Kings Park Science, Department of Biodiversity Conservation and Attractions Kings Park Western Australia 6005 Australia
| | - Adam T. Cross
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences Curtin University Bentley WA 6102 Australia
- School of Molecular and Life Sciences Curtin University Bentley Western Australia 6102 Australia
- EcoHealth Network, 1330 Beacon St, Suite 355a Brookline MA 02446 United States
| | - Shane R. Turner
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences Curtin University Bentley WA 6102 Australia
- Kings Park Science, Department of Biodiversity Conservation and Attractions Kings Park Western Australia 6005 Australia
- School of Biological Sciences University of Western Australia Crawley Western Australia 6009 Australia
| | - Sean Tomlinson
- School of Molecular and Life Sciences Curtin University Bentley Western Australia 6102 Australia
- Kings Park Science, Department of Biodiversity Conservation and Attractions Kings Park Western Australia 6005 Australia
- School of Biological Sciences, University of Adelaide, North Terrace Adelaide South Australia 5000 Australia
| |
Collapse
|
6
|
Fernández-Pascual E, Vaz M, Morais B, Reiné R, Ascaso J, Afif Khouri E, Carta A. Seed ecology of European mesic meadows. ANNALS OF BOTANY 2022; 129:121-134. [PMID: 34718398 PMCID: PMC8796674 DOI: 10.1093/aob/mcab135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/23/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND AND AIMS European mesic meadows are semi-natural open habitats of high biodiversity and an essential part of European landscapes. These species-rich communities can be a source of seed mixes for ecological restoration, urban greening and rewilding. However, limited knowledge of species germination traits is a bottleneck to the development of a competitive native seed industry. Here, we synthesize the seed ecology of mesic meadows. METHODS We combined our own experimental data with data obtained from databases to create a combined dataset containing 2005 germination records of 90 plant species from 31 European countries. We performed a Bayesian meta-analysis of this dataset to test the seed germination response to environmental cues including scarification, stratification, temperature, alternating temperature and light. We also used multivariate ordination to check the relationship between seed traits (germination and morphology) and species ecological preferences, and to compare the seed ecology of mesic meadows with that of other herbaceous plant communities from the same geographic area. KEY RESULTS The seed ecology of mesic meadows is characterized by (1) high seed germinability when compared with other herbaceous plant communities; (2) low correspondence between seed traits and species ecological preferences; and (3) a deep phylogenetic separation between the two major families, Poaceae and Fabaceae. Poaceae produce many light seeds that respond to gap-detecting germination cues (alternating temperatures and light); Fabaceae produce fewer heavy seeds, which need scarification to break their physical dormancy. CONCLUSIONS High germinability of meadow seeds will reduce their capacity to form persistent seed banks, resulting in dispersal limitations to passive regeneration. For centuries, human activities have shaped the regeneration of meadows, leading to a loss of seed dormancy and decoupling seeds from seasonal cycles, as has been found in many domesticated species. The same anthropic processes that have shaped semi-natural mesic meadows have left them dependent on continued human intervention for their regeneration, highlighting the importance of active restoration via seed supply.
Collapse
Affiliation(s)
- Eduardo Fernández-Pascual
- IMIB—Biodiversity Research Institute, University of Oviedo, Mieres, Spain
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Oviedo/Uviéu, Spain
| | - Madalena Vaz
- Banco Português de Germoplasma Vegetal, Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Braga, Portugal
| | - Beatriz Morais
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Oviedo/Uviéu, Spain
| | - Ramón Reiné
- Departamento de Ciencias Agrarias y Medio Natural, Universidad de Zaragoza, Huesca, Spain
| | - Joaquín Ascaso
- Departamento de Ciencias Agrarias y Medio Natural, Universidad de Zaragoza, Huesca, Spain
| | - Elías Afif Khouri
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Oviedo/Uviéu, Spain
| | - Angelino Carta
- CIRSEC - Centre for Climate Change Impact, University of Pisa, Pisa, Italy
| |
Collapse
|
7
|
Escobar DFE, Rubio de Casas R, Morellato LPC. Many roads to success: different combinations of life‐history traits provide accurate germination timing in seasonally dry environments. OIKOS 2021. [DOI: 10.1111/oik.08522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
| | - Rafael Rubio de Casas
- Depto de Ecologia, Univ. de Granada Granada España
- Research Unit Modeling Nature, Univ. de Granada Granada Spain
| | | |
Collapse
|
8
|
Effects of Habitat Loss on the Ecology of Pachyphytum caesium (Crassulaceae), a Specialized Cliff-Dwelling Endemic Species in Central Mexico. DIVERSITY 2021. [DOI: 10.3390/d13090421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cliff-dwelling plant species are highly specialized and adapted to a vulnerable, fragmented, and are mostly endemic, narrowly-distributed and threatened. As a contribution to the conservation efforts of endemic cliff-dwelling species, this study provides an overview of the effects of habitat loss on the abundance and distribution of Pachyphytum caesium (Crassulaceae) due to human disturbances. To achieve this objective, we first conducted a retrospective analysis from 2003–2013 to assess the effects of land use change on the abundance of P. caesium. Secondly, we estimate the abundance and distribution of P. caesium throughout the study area, as well as analyze the effect of rock-climbing activities on the density and population structure of P. caesium. The results suggest differences in population abundance among sites is due to the adverse effects of habitat loss. P. caesium presents a very restricted distribution with small and fragmented populations. In addition, guava agriculture has a significant impact on the chemical soil properties of the hillsides, causing a significant effect on the occurrence of P. caesium, while sport activities remove both the soil and the plants from the cliffs. According to the results, P. caesium is classified as a plant species with extremely small populations (PSESP), and it is highly vulnerable to habitat disturbance. Its conservation is thus a priority to ensure its permanence.
Collapse
|
9
|
Cross AT, Zhong H, Lambers H. Incorporating rock in surface covers improves the establishment of native pioneer vegetation on alkaline mine tailings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:145373. [PMID: 33736352 DOI: 10.1016/j.scitotenv.2021.145373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS Rates of tailings production and deposition around the world have increased markedly in recent decades, and have grown asynchronously with safe and environmentally suitable solutions for their storage. Tailings are often produced in regions harbouring biodiverse native plant communities adapted to old, highly-weathered soils. The highly-altered edaphic conditions of tailings compared with natural soils in these areas will likely select against many locally endemic plant species, making phytostabilisation, rehabilitation or ecological restoration of these landforms challenging. METHODS We established four substrate cover composition treatments on a dry-stacked magnetite tailings storage facility in semi-arid Western Australia, representative of standard industry practices for rehabilitating or restoring post-mining landforms in the region. Plots were seeded with a selection of locally native plant species and monitored for five years to determine whether different substrate cover treatments yielded different edaphic conditions (soil moisture, substrate surface temperature and substrate chemistry) and influenced soil development and the success of native vegetation establishment. RESULTS No vegetation established from seeds on unamended tailings with no surface cover, and substrate chemistry changed minimally over five years. In contrast, rock-containing surface covers allowed establishment of up to 11 native plant species from broadcast seeds at densities of ca. 1.5 seedlings m-2, and up to 3.5 seedlings m-2 of five native pioneer chenopods from capture of wind-dispersed seeds from surrounding undisturbed native vegetation. Greater vegetation establishment in rock-containing surface covers resulted from increased heterogeneity (e.g., lower maximum soil temperature, greater water capture and retention, surface microtopography facilitating seed capture and retention, more niches for seed germination). Soil development and bio-weathering occurred most rapidly under the canopy of native pioneer plants on rock-containing surface covers, particularly increases in organic carbon, total nitrogen, and organo-bound aluminium and iron. CONCLUSIONS Seed germination and seedling survival on tailings were limited by extreme thermal and hydrological conditions and a highly-altered biogeochemical environment. The design of surface cover layers appears crucial to achieving closure outcomes on tailings landforms, and designs should prioritise increasing surface heterogeneity through the incorporation of rock or other structure-improving amendments to assist the establishment of pioneer vegetation.
Collapse
Affiliation(s)
- Adam T Cross
- School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA 6102, Australia; EcoHealth Network, 1330 Beacon St, Suite 355a, Brookline, MA 02446, United States.
| | - Hongtao Zhong
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia; Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA 6102, Australia
| |
Collapse
|
10
|
Fernández-Pascual E, Carta A, Mondoni A, Cavieres LA, Rosbakh S, Venn S, Satyanti A, Guja L, Briceño VF, Vandelook F, Mattana E, Saatkamp A, Bu H, Sommerville K, Poschlod P, Liu K, Nicotra A, Jiménez-Alfaro B. The seed germination spectrum of alpine plants: a global meta-analysis. THE NEW PHYTOLOGIST 2021; 229:3573-3586. [PMID: 33205452 DOI: 10.1111/nph.17086] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
Assumptions about the germination ecology of alpine plants are presently based on individual species and local studies. A current challenge is to synthesise, at the global level, the alpine seed ecological spectrum. We performed a meta-analysis of primary data from laboratory experiments conducted across four continents (excluding the tropics) and 661 species, to estimate the influence of six environmental cues on germination proportion, mean germination time and germination synchrony; accounting for seed morphology (mass, embryo : seed ratio) and phylogeny. Most alpine plants show physiological seed dormancy, a strong need for cold stratification, warm-cued germination and positive germination responses to light and alternating temperatures. Species restricted to the alpine belt have a higher preference for warm temperatures and a stronger response to cold stratification than species whose distribution extends also below the treeline. Seed mass, embryo size and phylogeny have strong constraining effects on germination responses to the environment. Globally, overwintering and warm temperatures are key drivers of germination in alpine habitats. The interplay between germination physiology and seed morphological traits further reflects pressures to avoid frost or drought stress. Our results indicate the convergence, at the global level, of the seed germination patterns of alpine species.
Collapse
Affiliation(s)
| | - Angelino Carta
- Dipartimento di Biologia, Botany Unit, University of Pisa, Pisa, 56126, Italy
| | - Andrea Mondoni
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, 27100, Italy
| | - Lohengrin A Cavieres
- Departamento de Botánica|Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, 4070386, Chile
- Chile and Institute of Ecology and Biodiversity (IEB), Santiago, Chile
| | - Sergey Rosbakh
- Chair of Ecology and Conservation Biology, Institute of Plant Sciences, University of Regensburg, Regensburg, 93053, Germany
| | - Susanna Venn
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, 3125, Australia
| | - Annisa Satyanti
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, ACT, 2600, Australia
| | - Lydia Guja
- Centre for Australian National Biodiversity Research, a joint venture between Parks Australia and CSIRO, Canberra, ACT, 2601, Australia
- National Seed Bank, Australian National Botanic Gardens, Canberra, ACT, 2601, Australia
| | | | | | - Efisio Mattana
- Natural Capital and Plant Health Department, Royal Botanic Gardens, Kew, Ardingly, RH17 6TN, UK
| | - Arne Saatkamp
- Aix Marseille Université, Université d'Avignon, CNRS, IRD, IMBE, Facultés St Jérôme, case 421, Marseille, 13397, France
| | - Haiyan Bu
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, 730000, China
| | - Karen Sommerville
- The Australian PlantBank, Australian Institute of Botanical Science, The Royal Botanic Gardens & Domain Trust, Mount Annan, NSW, 2567, Australia
| | - Peter Poschlod
- Chair of Ecology and Conservation Biology, Institute of Plant Sciences, University of Regensburg, Regensburg, 93053, Germany
| | - Kun Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, 730000, China
| | - Adrienne Nicotra
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, ACT, 2600, Australia
| | - Borja Jiménez-Alfaro
- Research Unit of Biodiversity (CSUC/UO/PA), University of Oviedo, Mieres, 33600, Spain
| |
Collapse
|
11
|
The distinct roles of water table depth and soil properties in controlling alternative woodland-grassland states in the Cerrado. Oecologia 2021; 195:641-653. [PMID: 33619596 DOI: 10.1007/s00442-021-04869-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Open grassy vegetation and forests share riparian zones across the Neotropical savannas, characterizing alternative stable states. However, factors determining the occurrence and maintenance of each vegetation type are yet to be elucidated. To disentangle the role of environmental factors (soil properties and groundwater depth) constraining tree colonization of wet grasslands in the Cerrado, we assessed tree establishment during the early seedling and sapling stages and the influence of these factors on leaf gas exchange and leaf water potential of tree saplings. Three functionally distinct tree species were studied: (1) flood-tolerant species characteristic of gallery forests, (2) flood-intolerant species characteristic of seasonally dry savannas, and (3) generalist species found in both gallery forests and seasonally dry savannas. Savanna species was constrained by waterlogging, especially at the sapling stage, with restricted stomatal conductance and leaf water potential, resulting in low carbon assimilation, decreased plant size, and high mortality (above 80%). The gallery forest and the generalist species, however, were able to colonize the wet grasslands and survive, despite the low seedling emergence (below 30%) and sapling growth constrained by low gas exchange rates. Soil waterlogging is, therefore, an effective environmental filter that prevents savanna trees from expanding over wet grasslands. However, colonization by trees adapted to a shallow water table cannot be constrained by this or other soil properties, turning the wet grasslands dependent on natural disturbances to persist as an alternative state, sharing the waterlogged environments with the gallery forests in the Cerrado region.
Collapse
|
12
|
Del Vecchio S, Mattana E, Ulian T, Buffa G. Functional seed traits and germination patterns predict species coexistence in Northeast Mediterranean foredune communities. ANNALS OF BOTANY 2021; 127:361-370. [PMID: 33090204 PMCID: PMC7872124 DOI: 10.1093/aob/mcaa186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS The structure of plant communities, which is based on species abundance ratios, is closely linked to ecosystem functionality. Seed germination niche plays a major role in shaping plant communities, although it has often been neglected when explaining species coexistence. The aim of this work is to link the seed germination niche to community ecology, investigating how functional seed traits contribute to species coexistence. METHODS Species selection was based on a database of 504 vegetation surveys from the Veneto coast (Italy). Through cluster analysis we identified the foredune community and selected all of its 19 plant species. By using the 'Phi coefficient' and frequency values, species were pooled in different categories (foundation species, accidental species of the semi-fixed dune and aliens), then the 19 species were grouped according to their germination responses to temperature and photoperiod through cluster analyses. For each germination cluster, we investigated germination trends against temperature and photoperiod by using generalized linear mixed models. KEY RESULTS We identified four germination strategies: (1) high germination under all tested conditions ('high-germinating'); (2) high germination at warm temperatures in the dark ('dark warm-cued'); (3) high germination at warm temperatures in the light ('light warm-cued'); and (4) low germination, regardless of conditions ('low-germinating'). Foredune foundation species showed a narrow germination niche, being 'low-germinating' or 'dark warm-cued'. Annual species of semi-fixed dunes were 'high-germinating', while alien species were the only members of the 'light warm-cued' cluster. CONCLUSIONS Our research suggests that different categories of species have dissimilar seed germination niches, which contributes to explaining their coexistence. Climatic events, such as rising temperature, could alter germination patterns, favouring seed regeneration of certain categories (i.e. alien and semi-fixed dune species) at the expense of others (i.e. foundation species, pivotal to ecosystem functioning), and hence potentially altering the plant community structure.
Collapse
Affiliation(s)
- Silvia Del Vecchio
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Venice, Italy
| | - Efisio Mattana
- Natural Capital and Plant Health, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, UK
| | - Tiziana Ulian
- Natural Capital and Plant Health, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, UK
| | - Gabriella Buffa
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Venice, Italy
| |
Collapse
|
13
|
Gremer JR, Chiono A, Suglia E, Bontrager M, Okafor L, Schmitt J. Variation in the seasonal germination niche across an elevational gradient: the role of germination cueing in current and future climates. AMERICAN JOURNAL OF BOTANY 2020; 107:350-363. [PMID: 32056208 DOI: 10.1002/ajb2.1425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/07/2019] [Indexed: 05/22/2023]
Abstract
PREMISE The timing of germination has profound impacts on fitness, population dynamics, and species ranges. Many plants have evolved responses to seasonal environmental cues to time germination with favorable conditions; these responses interact with temporal variation in local climate to drive the seasonal climate niche and may reflect local adaptation. Here, we examined germination responses to temperature cues in Streptanthus tortuosus populations across an elevational gradient. METHODS Using common garden experiments, we evaluated differences among populations in response to cold stratification (chilling) and germination temperature and related them to observed germination phenology in the field. We then explored how these responses relate to past climate at each site and the implications of those patterns under future climate change. RESULTS Populations from high elevations had stronger stratification requirements for germination and narrower temperature ranges for germination without stratification. Differences in germination responses corresponded with elevation and variability in seasonal temperature and precipitation across populations. Further, they corresponded with germination phenology in the field; low-elevation populations germinated in the fall without chilling, whereas high-elevation populations germinated after winter chilling and snowmelt in spring and summer. Climate-change forecasts indicate increasing temperatures and decreasing snowpack, which will likely alter germination cues and timing, particularly for high-elevation populations. CONCLUSIONS The seasonal germination niche for S. tortuosus is highly influenced by temperature and varies across the elevational gradient. Climate change will likely affect germination timing, which may cascade to influence trait expression, fitness, and population persistence.
Collapse
Affiliation(s)
- Jennifer R Gremer
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, 95616, USA
- Center for Population Biology, University of California-Davis, Davis, CA, USA
| | - Alec Chiono
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, 95616, USA
- Department of Biology, University of San Francisco, 2310 Fulton Street, San Francisco, CA, 94117, USA
| | - Elena Suglia
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, 95616, USA
- Population Biology Graduate Group, University of California-Davis, Davis, CA, 95616, USA
| | - Megan Bontrager
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, 95616, USA
- Center for Population Biology, University of California-Davis, Davis, CA, USA
| | - Lauren Okafor
- Department of Biology, Howard University, 415 College St. NW, Washington, D.C., 20059, USA
| | - Johanna Schmitt
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, 95616, USA
- Center for Population Biology, University of California-Davis, Davis, CA, USA
| |
Collapse
|
14
|
Rosbakh S, Phartyal SS, Poschlod P. Seed germination traits shape community assembly along a hydroperiod gradient. ANNALS OF BOTANY 2020; 125:67-78. [PMID: 31420645 PMCID: PMC6948216 DOI: 10.1093/aob/mcz139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/17/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND AIMS Hydroperiod drives plant community composition in wetlands, resulting in distinct zonation patterns. Here, we explored the role of seed germination traits in shaping wetland community assembly along a hydroperiod gradient. Specifically, we tested the hypothesis that seeds of reed, mudflat, swamp, shallow- and deep-water communities only germinate under a specific set of environmental factors characterized by the community-specific optimal conditions for seedling survival and growth. METHODS In a three-factorial experiment, we tested the seed germination response of 50 species typical for temperate wetlands of Europe to temperature fluctuations (constant vs. fluctuating temperature), illumination (light vs. darkness) and oxygen availability (aerobic vs. hypoxia). Phylogenetic principal component analysis, cluster analysis and phylogenetic linear regressions were used to confirm the community-specific seed germination niches. KEY RESULTS Our study revealed the presence of five distinct, community-specific seed germination niches that reflect adaptations made by the study communities to decreasing light intensity, temperature fluctuations and oxygen availability along the hydroperiod gradient. Light as a germination trigger was found to be important in mudflats, swamps and shallow water, whereas the seeds of reed and deep-water species were able to germinate in darkness. A fluctuating temperature is only required for seed germination in mudflat species. Germination of species in the communities at the higher end of the hydroperiod gradient (reed and mudflat) demonstrated a strict requirement for oxygen, whereas swamp, shallow- and deep-water species also germinated under hypoxia. CONCLUSIONS Our study supports the recent argument that the inclusion of seed germination traits in community ecology adds significant insights to community response to the abiotic and biotic environment. Furthermore, the close relationship between seed germination adaptations and community assembly could help reach a better understanding of the existing patterns of wetland plant distribution at local scales and wetland vegetation dynamics, as well as facilitate nature conservation measures and aquatic habitat restoration.
Collapse
Affiliation(s)
- Sergey Rosbakh
- University of Regensburg, Ecology and Conservation Biology, Institute of Plant Sciences, Regensburg, Germany
| | - Shyam S Phartyal
- University of Regensburg, Ecology and Conservation Biology, Institute of Plant Sciences, Regensburg, Germany
- H. N. B. Garhwal University, Department of Forestry and NR, Srinagar-Garhwal, India
| | - Peter Poschlod
- University of Regensburg, Ecology and Conservation Biology, Institute of Plant Sciences, Regensburg, Germany
| |
Collapse
|
15
|
Jerney J, Suikkanen S, Lindehoff E, Kremp A. Future temperature and salinity do not exert selection pressure on cyst germination of a toxic phytoplankton species. Ecol Evol 2019; 9:4443-4451. [PMID: 31031918 PMCID: PMC6476782 DOI: 10.1002/ece3.5009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 11/10/2022] Open
Abstract
Environmental conditions regulate the germination of phytoplankton resting stages. While some factors lead to synchronous germination, others stimulate germination of only a small fraction of the resting stages. This suggests that habitat filters may act on the germination level and thus affect selection of blooming strains. Benthic "seed banks" of the toxic dinoflagellate Alexandrium ostenfeldii from the Baltic Sea are genetically and phenotypically diverse, indicating a high potential for adaptation by selection on standing genetic variation. Here, we experimentally tested the role of climate-related salinity and temperature as selection filters during germination and subsequent establishment of A. ostenfeldii strains. A representative resting cyst population was isolated from sediment samples, and germination and reciprocal transplantation experiments were carried out, including four treatments: Average present day germination conditions and three potential future conditions: high temperature, low salinity, and high temperature in combination with low salinity. We found that the final germination success of A. ostenfeldii resting cysts was unaffected by temperature and salinity in the range tested. A high germination success of more than 80% in all treatments indicates that strains are not selected by temperature and salinity during germination, but selection becomes more important shortly after germination, in the vegetative stage of the life cycle. Moreover, strains were not adapted to germination conditions. Instead, highly plastic responses occurred after transplantation and significantly higher growth rates were observed at higher temperature. High variability of strain-specific responses has probably masked the overall effect of the treatments, highlighting the importance of testing the effect of environmental factors on many strains. It is likely that A. ostenfeldii populations can persist in the future, because suitable strains, which are able to germinate and grow well at potential future climate conditions, are part of the highly diverse cyst population. OPEN RESEARCH BADGES This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://doi.org/10.5061/dryad.c8c83nr.
Collapse
Affiliation(s)
- Jacqueline Jerney
- Marine Research CentreFinnish Environment InstituteHelsinkiFinland
- Tvärminne Zoological StationUniversity of HelsinkiHankoFinland
| | - Sanna Suikkanen
- Marine Research CentreFinnish Environment InstituteHelsinkiFinland
| | - Elin Lindehoff
- Marine Research CentreFinnish Environment InstituteHelsinkiFinland
- Department of Biology and Environmental Science, Linnaeus University Centre of Ecology and Evolution in Microbial Model Systems, EEMiSLinnaeus UniversityKalmarSweden
| | - Anke Kremp
- Marine Research CentreFinnish Environment InstituteHelsinkiFinland
- Leibniz‐Institut für Ostseeforschung WarnemündeRostockGermany
| |
Collapse
|
16
|
Duarte AA, da-Silva CJ, Marques AR, Modolo LV, Lemos Filho JP. Does oxidative stress determine the thermal limits of the regeneration niche of Vriesea friburgensis and Alcantarea imperialis (Bromeliaceae) seedlings? J Therm Biol 2019; 80:150-157. [PMID: 30784479 DOI: 10.1016/j.jtherbio.2019.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 01/03/2019] [Accepted: 02/01/2019] [Indexed: 12/01/2022]
Abstract
The predicted environmental changes may be detrimental to initial seedling growth, particularly the expected increase in air temperature. We therefore investigated the thermal limits for growth and development of Vriesea friburgensis and Alcantarea imperialis seedlings in the context of oxidative stress. The optimal temperatures for the growth of V. friburgensis and A. imperialis were 25 and 25-30 °C, respectively. Extreme temperatures (15, 30, or 35 °C) induced oxidative stress in both species with significant accumulation of hydrogen peroxide (H2O2) and nitric oxide (NO). Under oxidative stress, the amount of chlorophyll decreased in both species, more prominently in V. friburgensis, while carotenoid levels dramatically increased in A. imperialis. Notably, the activities of superoxide dismutase, catalase (CAT), and ascorbate peroxidase increased in A. imperialis at extreme temperatures. Similar results were observed for V. friburgensis; however, the activity of CAT remained unaffected regardless of temperature. Seedlings of A. imperialis survived at a wider range of temperatures than V. friburgensis, which had greater than 40% mortality when growing at 30 °C. Overall, precise control of cellular H2O2 and NO levels takes place during the establishment of A. imperialis seedlings, allowing the species to cope with relatively high temperatures. The thermal limits of the fundamental niches of the species investigated, determined based on the ability of seedlings to cope with oxidative stress, were distinct from the realized niches of these species. The results suggest that recruitment success is dependent on the ability of seedlings to handle extreme temperature-triggered oxidative stress, which limits the regeneration niche.
Collapse
Affiliation(s)
- Alexandre Aparecido Duarte
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cristiane Jovelina da-Silva
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Luzia Valentina Modolo
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - José Pires Lemos Filho
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
17
|
Feedbacks between Biotic and Abiotic Processes Governing the Development of Foredune Blowouts: A Review. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2018. [DOI: 10.3390/jmse7010002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper reviews the initiation, development, and closure of foredune blowouts with focus on biotic-abiotic interactions. There is a rich body of literature describing field measurements and model simulations in and around foredune blowouts. Despite this abundance of data there is no conceptual framework available linking biotic and abiotic observations to pathways of blowout development (e.g., erosional blowout growth or vegetation induced blowout closure). This review identifies morphological and ecological processes facilitating the transition between blowout development stages and sets them in the context of existing conceptual frameworks describing biotic-abiotic systems. By doing so we are able to develop a new conceptual model linking blowout development to the dominance of its governing processes. More specifically we link blowout initiation to the dominance of abiotic (physical) processes, blowout development to the dominance of biotic-abiotic (bio-geomorphological) processes and blowout closure to the dominance of biotic (ecological) processes. Subsequently we identify further steps to test the proposed conceptual model against existing observations and show possibilities to include it in numerical models able to predict blowout development for various abiotic and biotic conditions.
Collapse
|