1
|
Tucci A, Flores-Vergara MA, Franks RG. Machine Learning Inference of Gene Regulatory Networks in Developing Mimulus Seeds. PLANTS (BASEL, SWITZERLAND) 2024; 13:3297. [PMID: 39683091 DOI: 10.3390/plants13233297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
The angiosperm seed represents a critical evolutionary breakthrough that has been shown to propel the reproductive success and radiation of flowering plants. Seeds promote the rapid diversification of angiosperms by establishing postzygotic reproductive barriers, such as hybrid seed inviability. While prezygotic barriers to reproduction tend to be transient, postzygotic barriers are often permanent and therefore can play a pivotal role in facilitating speciation. This property of the angiosperm seed is exemplified in the Mimulus genus. In order to further the understanding of the gene regulatory mechanisms important in the Mimulus seed, we performed gene regulatory network (GRN) inference analysis by using time-series RNA-seq data from developing hybrid seeds from a viable cross between Mimulus guttatus and Mimulus pardalis. GRN inference has the capacity to identify active regulatory mechanisms in a sample and highlight genes of potential biological importance. In our case, GRN inference also provided the opportunity to uncover active regulatory relationships and generate a reference set of putative gene regulations. We deployed two GRN inference algorithms-RTP-STAR and KBoost-on three different subsets of our transcriptomic dataset. While the two algorithms yielded GRNs with different regulations and topologies when working with the same data subset, there was still significant overlap in the specific gene regulations they inferred, and they both identified potential novel regulatory mechanisms that warrant further investigation.
Collapse
Affiliation(s)
- Albert Tucci
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Miguel A Flores-Vergara
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Robert G Franks
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
2
|
Soliman HK, Coughlan JM. United by conflict: Convergent signatures of parental conflict in angiosperms and placental mammals. J Hered 2024; 115:625-642. [PMID: 38366852 PMCID: PMC11498613 DOI: 10.1093/jhered/esae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Endosperm in angiosperms and placenta in eutherians are convergent innovations for efficient embryonic nutrient transfer. Despite advantages, this reproductive strategy incurs metabolic costs that maternal parents disproportionately shoulder, leading to potential inter-parental conflict over optimal offspring investment. Genomic imprinting-parent-of-origin-biased gene expression-is fundamental for endosperm and placenta development and has convergently evolved in angiosperms and mammals, in part, to resolve parental conflict. Here, we review the mechanisms of genomic imprinting in these taxa. Despite differences in the timing and spatial extent of imprinting, these taxa exhibit remarkable convergence in the molecular machinery and genes governing imprinting. We then assess the role of parental conflict in shaping evolution within angiosperms and eutherians using four criteria: 1) Do differences in the extent of sibling relatedness cause differences in the inferred strength of parental conflict? 2) Do reciprocal crosses between taxa with different inferred histories of parental conflict exhibit parent-of-origin growth effects? 3) Are these parent-of-origin growth effects caused by dosage-sensitive mechanisms and do these loci exhibit signals of positive selection? 4) Can normal development be restored by genomic perturbations that restore stoichiometric balance in the endosperm/placenta? Although we find evidence for all criteria in angiosperms and eutherians, suggesting that parental conflict may help shape their evolution, many questions remain. Additionally, myriad differences between the two taxa suggest that their respective biologies may shape how/when/where/to what extent parental conflict manifests. Lastly, we discuss outstanding questions, highlighting the power of comparative work in quantifying the role of parental conflict in evolution.
Collapse
Affiliation(s)
- Hagar K Soliman
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, United States
- Department of Biotechnology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Jenn M Coughlan
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, United States
| |
Collapse
|
3
|
Khouider S, Gehring M. Parental dialectic: Epigenetic conversations in endosperm. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102591. [PMID: 38944896 PMCID: PMC11392645 DOI: 10.1016/j.pbi.2024.102591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024]
Abstract
Endosperm is a major evolutionary innovation of flowering plants, and its proper development critically impacts seed growth and viability. Epigenetic regulators have a key function in parental control of endosperm development. Notably, epigenetic regulation of parental genome dosage is a major determinant of seed development success, and disruption of this balance can produce inviable seed, as observed in some interploidy and interspecific crosses. These postzygotic reproduction barriers are also a potent driver of speciation. The molecular machinery and regulatory architecture governing endosperm development is proposed to have evolved under parental conflict. In this review, we emphasize parental conflict as a dialectic conflict and discuss recent findings about the epigenetic molecular machinery that mediates parental conflict in the endosperm.
Collapse
Affiliation(s)
- Souraya Khouider
- Whitehead Institute for Biomedical Research, Cambridge MA 02142, USA
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139, USA.
| |
Collapse
|
4
|
Florez-Rueda AM, Miguel CM, Figueiredo DD. Comparative transcriptomics of seed nourishing tissues: uncovering conserved and divergent pathways in seed plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1134-1157. [PMID: 38709819 DOI: 10.1111/tpj.16786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
The evolutionary and ecological success of spermatophytes is intrinsically linked to the seed habit, which provides a protective environment for the initial development of the new generation. This environment includes an ephemeral nourishing tissue that supports embryo growth. In gymnosperms this tissue originates from the asexual proliferation of the maternal megagametophyte, while in angiosperms it is a product of fertilization, and is called the endosperm. The emergence of these nourishing tissues is of profound evolutionary value, and they are also food staples for most of the world's population. Here, using Orthofinder to infer orthologue genes among newly generated and previously published datasets, we provide a comparative transcriptomic analysis of seed nourishing tissues from species of several angiosperm clades, including those of early diverging lineages, as well as of one gymnosperm. Our results show that, although the structure and composition of seed nourishing tissues has seen significant divergence along evolution, there are signatures that are conserved throughout the phylogeny. Conversely, we identified processes that are specific to species within the clades studied, and thus illustrate their functional divergence. With this, we aimed to provide a foundation for future studies on the evolutionary history of seed nourishing structures, as well as a resource for gene discovery in future functional studies.
Collapse
Affiliation(s)
- Ana Marcela Florez-Rueda
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
- University of Potsdam, Karl-Liebknechts-Str. 24-25, Haus 26, 14476, Potsdam, Germany
| | - Célia M Miguel
- Faculty of Sciences, Biosystems and Integrative Sciences Institute (BioISI), University of Lisbon, Lisboa, Portugal
| | - Duarte D Figueiredo
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
5
|
Bente H, Köhler C. Molecular basis and evolutionary drivers of endosperm-based hybridization barriers. PLANT PHYSIOLOGY 2024; 195:155-169. [PMID: 38298124 PMCID: PMC11060687 DOI: 10.1093/plphys/kiae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 02/02/2024]
Abstract
The endosperm, a transient seed tissue, plays a pivotal role in supporting embryo growth and germination. This unique feature sets flowering plants apart from gymnosperms, marking an evolutionary innovation in the world of seed-bearing plants. Nevertheless, the importance of the endosperm extends beyond its role in providing nutrients to the developing embryo by acting as a versatile protector, preventing hybridization events between distinct species and between individuals with different ploidy. This phenomenon centers on growth and differentiation of the endosperm and the speed at which both processes unfold. Emerging studies underscore the important role played by type I MADS-box transcription factors, including the paternally expressed gene PHERES1. These factors, along with downstream signaling pathways involving auxin and abscisic acid, are instrumental in regulating endosperm development and, consequently, the establishment of hybridization barriers. Moreover, mutations in various epigenetic regulators mitigate these barriers, unveiling a complex interplay of pathways involved in their formation. In this review, we discuss the molecular underpinnings of endosperm-based hybridization barriers and their evolutionary drivers.
Collapse
Affiliation(s)
- Heinrich Bente
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Claudia Köhler
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| |
Collapse
|
6
|
Tezuka T, Nagai S, Matsuo C, Okamori T, Iizuka T, Marubashi W. Genetic Cause of Hybrid Lethality Observed in Reciprocal Interspecific Crosses between Nicotiana simulans and N. tabacum. Int J Mol Sci 2024; 25:1226. [PMID: 38279225 PMCID: PMC10817076 DOI: 10.3390/ijms25021226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Hybrid lethality, a type of postzygotic reproductive isolation, is an obstacle to wide hybridization breeding. Here, we report the hybrid lethality that was observed in crosses between the cultivated tobacco, Nicotiana tabacum (section Nicotiana), and the wild tobacco species, Nicotiana simulans (section Suaveolentes). Reciprocal hybrid seedlings were inviable at 28 °C, and the lethality was characterized by browning of the hypocotyl and roots, suggesting that hybrid lethality is due to the interaction of nuclear genomes derived from each parental species, and not to a cytoplasmic effect. Hybrid lethality was temperature-sensitive and suppressed at 36 °C. However, when hybrid seedlings cultured at 36 °C were transferred to 28 °C, all of them showed hybrid lethality. After crossing between an N. tabacum monosomic line missing one copy of the Q chromosome and N. simulans, hybrid seedlings with or without the Q chromosome were inviable and viable, respectively. These results indicated that gene(s) on the Q chromosome are responsible for hybrid lethality and also suggested that N. simulans has the same allele at the Hybrid Lethality A1 (HLA1) locus responsible for hybrid lethality as other species in the section Suaveolentes. Haplotype analysis around the HLA1 locus suggested that there are at least six and two haplotypes containing Hla1-1 and hla1-2 alleles, respectively, in the section Suaveolentes.
Collapse
Affiliation(s)
- Takahiro Tezuka
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Osaka, Japan;
- Education and Research Field, School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Osaka, Japan
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Osaka, Japan;
- School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Osaka, Japan
| | - Shota Nagai
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Osaka, Japan;
| | - Chihiro Matsuo
- School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Osaka, Japan
| | - Toshiaki Okamori
- School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Osaka, Japan
| | - Takahiro Iizuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Osaka, Japan;
| | - Wataru Marubashi
- School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan;
| |
Collapse
|
7
|
Coughlan JM. The role of conflict in shaping plant biodiversity. THE NEW PHYTOLOGIST 2023; 240:2210-2217. [PMID: 37667567 PMCID: PMC11077469 DOI: 10.1111/nph.19233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/27/2023] [Indexed: 09/06/2023]
Abstract
Although intrinsic postzygotic reproductive barriers can play a fundamental role in speciation, their underlying evolutionary causes are widely debated. One hypothesis is that incompatibilities result from genomic conflicts. Here, I synthesize the evidence that conflict generates incompatibilities in plants, thus playing a creative role in plant biodiversity. While much evidence supports a role for conflict in several classes of incompatibility, integrating knowledge of incompatibility alleles with natural history can provide further essential tests. Moreover, comparative work can shed light on the relative importance of conflict in causing incompatibilities, including the extent to which their evolution is repeatable. Together, these approaches can provide independent lines of evidence that conflict causes incompatibilities, cementing its role in plant speciation.
Collapse
Affiliation(s)
- Jenn M Coughlan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
8
|
Yang G, Feng M, Yu K, Cui G, Zhou Y, Sun L, Gao L, Zhang Y, Peng H, Yao Y, Hu Z, Rossi V, De Smet I, Ni Z, Sun Q, Xin M. Paternally imprinted LATE-FLOWERING2 transcription factor contributes to paternal-excess interploidy hybridization barriers in wheat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2587-2603. [PMID: 37846823 DOI: 10.1111/jipb.13574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
Interploidy hybridization between hexaploid and tetraploid genotypes occurred repeatedly during genomic introgression events throughout wheat evolution, and is commonly employed in wheat breeding programs. Hexaploid wheat usually serves as maternal parent because the reciprocal cross generates progeny with severe defects and poor seed germination, but the underlying mechanism is poorly understood. Here, we performed detailed analysis of phenotypic variation in endosperm between two interploidy reciprocal crosses arising from tetraploid (Triticum durum, AABB) and hexaploid wheat (Triticum aestivum, AABBDD). In the paternal- versus the maternal-excess cross, the timing of endosperm cellularization was delayed and starch granule accumulation in the endosperm was repressed, causing reduced germination percentage. The expression profiles of genes involved in nutrient metabolism differed strongly between these endosperm types. Furthermore, expression patterns of parental alleles were dramatically disturbed in interploidy versus intraploidy crosses, leading to increased number of imprinted genes. The endosperm-specific TaLFL2 showed a paternally imprinted expression pattern in interploidy crosses partially due to allele-specific DNA methylation. Paternal TaLFL2 binds to and represses a nutrient accumulation regulator TaNAC019, leading to reduced storage protein and starch accumulation during endosperm development in paternal-excess cross, as confirmed by interploidy crosses between tetraploid wild-type and clustered regularly interspaced palindromic repeats (CRISPR) - CRISPR-associated protein 9 generated hexaploid mutants. These findings reveal a contribution of genomic imprinting to paternal-excess interploidy hybridization barriers during wheat evolution history and explains why experienced breeders preferentially exploit maternal-excess interploidy crosses in wheat breeding programs.
Collapse
Affiliation(s)
- Guanghui Yang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Man Feng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Kuohai Yu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Guangxian Cui
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yan Zhou
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Lv Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Lulu Gao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yumei Zhang
- Qingdao Agricultural University, Qingdao, 266109, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Vincenzo Rossi
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Bergamo, 24126, Italy
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
9
|
Reifová R, Ament-Velásquez SL, Bourgeois Y, Coughlan J, Kulmuni J, Lipinska AP, Okude G, Stevison L, Yoshida K, Kitano J. Mechanisms of Intrinsic Postzygotic Isolation: From Traditional Genic and Chromosomal Views to Genomic and Epigenetic Perspectives. Cold Spring Harb Perspect Biol 2023; 15:a041607. [PMID: 37696577 PMCID: PMC10547394 DOI: 10.1101/cshperspect.a041607] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Intrinsic postzygotic isolation typically appears as reduced viability or fertility of interspecific hybrids caused by genetic incompatibilities between diverged parental genomes. Dobzhansky-Muller interactions among individual genes, and chromosomal rearrangements causing problems with chromosome synapsis and recombination in meiosis, have both long been considered as major mechanisms behind intrinsic postzygotic isolation. Recent research has, however, suggested that the genetic basis of intrinsic postzygotic isolation can be more complex and involves, for example, overall divergence of the DNA sequence or epigenetic changes. Here, we review the mechanisms of intrinsic postzygotic isolation from genic, chromosomal, genomic, and epigenetic perspectives across diverse taxa. We provide empirical evidence for these mechanisms, discuss their importance in the speciation process, and highlight questions that remain unanswered.
Collapse
Affiliation(s)
- Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | | | - Yann Bourgeois
- DIADE, University of Montpellier, CIRAD, IRD, 34090 Montpellier, France
| | - Jenn Coughlan
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Jonna Kulmuni
- Institute for Biodiversity and Ecosystem Dynamics, Department of Evolutionary and Population Biology, University of Amsterdam, 1012 Amsterdam, The Netherlands
- Organismal & Evolutionary Biology Research Programme, University of Helsinki, 00100 Helsinki, Finland
| | - Agnieszka P Lipinska
- Department of Algal Development and Evolution, Max Planck Institute for Biology, 72076 Tuebingen, Germany
- CNRS, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Genta Okude
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Laurie Stevison
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | - Kohta Yoshida
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Jun Kitano
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
10
|
He H, Shiragaki K, Tezuka T. Understanding and overcoming hybrid lethality in seed and seedling stages as barriers to hybridization and gene flow. FRONTIERS IN PLANT SCIENCE 2023; 14:1219417. [PMID: 37476165 PMCID: PMC10354522 DOI: 10.3389/fpls.2023.1219417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Abstract
Hybrid lethality is a type of reproductive isolation barrier observed in two developmental stages, hybrid embryos (hybrid seeds) and hybrid seedlings. Hybrid lethality has been reported in many plant species and limits distant hybridization breeding including interspecific and intergeneric hybridization, which increases genetic diversity and contributes to produce new germplasm for agricultural purposes. Recent studies have provided molecular and genetic evidence suggesting that underlying causes of hybrid lethality involve epistatic interaction of one or more loci, as hypothesized by the Bateson-Dobzhansky-Muller model, and effective ploidy or endosperm balance number. In this review, we focus on the similarities and differences between hybrid seed lethality and hybrid seedling lethality, as well as methods of recovering seed/seedling activity to circumvent hybrid lethality. Current knowledge summarized in our article will provides new insights into the mechanisms of hybrid lethality and effective methods for circumventing hybrid lethality.
Collapse
Affiliation(s)
- Hai He
- School of Agriculture, Sun Yat-sen University, Shenzhen, China
| | - Kumpei Shiragaki
- Laboratory of Plant Breeding and Genetics, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Takahiro Tezuka
- Laboratory of Breeding and Genetics, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
- Education and Research Field, School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
| |
Collapse
|
11
|
Coughlan JM. The role of hybrid seed inviability in angiosperm speciation. AMERICAN JOURNAL OF BOTANY 2023; 110:1-14. [PMID: 36801827 DOI: 10.1002/ajb2.16135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 05/11/2023]
Abstract
Understanding which reproductive barriers contribute to speciation is essential to understanding the diversity of life on earth. Several contemporary examples of strong hybrid seed inviability (HSI) between recently diverged species suggest that HSI may play a fundamental role in plant speciation. Yet, a broader synthesis of HSI is needed to clarify its role in diversification. Here, I review the incidence and evolution of HSI. Hybrid seed inviability is common and evolves rapidly, suggesting that it may play an important role early in speciation. The developmental mechanisms that underlie HSI involve similar developmental trajectories in endosperm, even between evolutionarily deeply diverged incidents of HSI. In hybrid endosperm, HSI is often accompanied by whole-scale gene misexpression, including misexpression of imprinted genes which have a key role in endosperm development. I explore how an evolutionary perspective can clarify the repeated and rapid evolution of HSI. In particular, I evaluate the evidence for conflict between maternal and paternal interests in resource allocation to offspring (i.e., parental conflict). I highlight that parental conflict theory generates explicit predictions regarding the expected hybrid phenotypes and genes responsible for HSI. While much phenotypic evidence supports a role of parental conflict in the evolution of HSI, an understanding of the underlying molecular mechanisms of this barrier is essential to test parental conflict theory. Lastly, I explore what factors may influence the strength of parental conflict in natural plant populations as an explanation for why rates of HSI may differ between plant groups and the consequences of strong HSI in secondary contact.
Collapse
Affiliation(s)
- Jenn M Coughlan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
12
|
Sandstedt GD, Sweigart AL. Developmental evidence for parental conflict in driving Mimulus species barriers. THE NEW PHYTOLOGIST 2022; 236:1545-1557. [PMID: 35999713 PMCID: PMC9826125 DOI: 10.1111/nph.18438] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/08/2022] [Indexed: 05/25/2023]
Abstract
The endosperm, a tissue that nourishes the embryo in the seeds of flowering plants, is often disrupted in inviable hybrid seeds of closely related species. A key question is whether parental conflict is a major driver of this common form of reproductive isolation. Here, we performed reciprocal crosses between pairs of three monkeyflower species (Mimulus caespitosa, Mimulus tilingii, and Mimulus guttatus). The severity of hybrid seed inviability varies among these crosses, which we inferred to be due to species divergence in effective ploidy. By performing a time series experiment of seed development, we discovered parent-of-origin phenotypes that provide strong evidence for parental conflict in shaping endosperm evolution. We found that the chalazal haustorium, a tissue within the endosperm that is found at the maternal-filial boundary, shows pronounced differences between reciprocal hybrid seeds formed from Mimulus species that differ in effective ploidy. These parent-of-origin effects suggest that the chalazal haustorium might act as a mediator of parental conflict, potentially by controlling sucrose movement from the maternal parent into the endosperm. Our study suggests that parental conflict in the endosperm may function as a driver of speciation by targeting regions and developmental stages critical for resource allocation and thus proper seed development.
Collapse
|
13
|
He H, Sadahisa K, Yokoi S, Tezuka T. Parental Genome Imbalance Causes Hybrid Seed Lethality as Well as Ovary Abscission in Interspecific and Interploidy Crosses in Nicotiana. FRONTIERS IN PLANT SCIENCE 2022; 13:899206. [PMID: 35665169 PMCID: PMC9161172 DOI: 10.3389/fpls.2022.899206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Enhanced ovary abscission after pollination and hybrid seed lethality result in post-zygotic reproductive isolation in plant interspecific crosses. However, the connection between these barriers remains unclear. Here, we report that an imbalance in parental genomes or endosperm balance number (EBN) causes hybrid seed lethality and ovary abscission in both interspecific and intraspecific-interploidy crosses in the genus Nicotiana. Auxin treatment suppressed ovary abscission, but not hybrid seed lethality, in an interspecific cross between Nicotiana suaveolens and N. tabacum, suggesting that ovary abscission-related genes are located downstream of those involved in hybrid seed lethality. We performed interploidy crosses among N. suaveolens tetraploids, octoploids, and neopolyploids and revealed hybrid seed lethality and ovary abscission in interploid crosses. Furthermore, a higher maternal EBN than paternal EBN caused these barriers, as previously observed in N. suaveolens × N. tabacum crosses. Altogether, these results suggest that maternal excess of EBN causes hybrid seed lethality, which in turn leads to ovary abscission through the same mechanism in both interspecific and interploidy crosses.
Collapse
Affiliation(s)
- Hai He
- Laboratory of Plant Breeding and Propagation, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Kumi Sadahisa
- Laboratory of Plant Breeding and Propagation, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Shuji Yokoi
- Laboratory of Plant Breeding and Propagation, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
- Laboratory of Breeding and Genetics, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Japan
- Education and Research Field, School of Agriculture, Osaka Metropolitan University, Sakai, Japan
- Bioeconomy Research Institute, Research Center for the 21st Century, Osaka Metropolitan University, Sakai, Japan
| | - Takahiro Tezuka
- Laboratory of Plant Breeding and Propagation, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
- Laboratory of Breeding and Genetics, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Japan
- Education and Research Field, School of Agriculture, Osaka Metropolitan University, Sakai, Japan
| |
Collapse
|
14
|
Matilla AJ. Exploring Breakthroughs in Three Traits Belonging to Seed Life. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040490. [PMID: 35214823 PMCID: PMC8875957 DOI: 10.3390/plants11040490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 05/06/2023]
Abstract
Based on prior knowledge and with the support of new methodology, solid progress in the understanding of seed life has taken place over the few last years. This update reflects recent advances in three key traits of seed life (i.e., preharvest sprouting, genomic imprinting, and stored-mRNA). The first breakthrough refers to cloning of the mitogen-activated protein kinase-kinase 3 (MKK3) gene in barley and wheat. MKK3, in cooperation with ABA signaling, controls seed dormancy. This advance has been determinant in producing improved varieties that are resistant to preharvest sprouting. The second advance concerns to uniparental gene expression (i.e., imprinting). Genomic imprinting primarily occurs in the endosperm. Although great advances have taken place in the last decade, there is still a long way to go to complete the puzzle regarding the role of genomic imprinting in seed development. This trait is probably one of the most important epigenetic facets of developing endosperm. An example of imprinting regulation is polycomb repressive complex 2 (PRC2). The mechanism of PRC2 recruitment to target endosperm with specific genes is, at present, robustly studied. Further progress in the knowledge of recruitment of PRC2 epigenetic machinery is considered in this review. The third breakthrough referred to in this update involves stored mRNA. The role of the population of this mRNA in germination is far from known. Its relations to seed aging, processing bodies (P bodies), and RNA binding proteins (RBPs), and how the stored mRNA is targeted to monosomes, are aspects considered here. Perhaps this third trait is the one that will require greater experimental dedication in the future. In order to make progress, herein are included some questions that are needed to be answered.
Collapse
Affiliation(s)
- Angel J Matilla
- Departamento de Biología Funcional (Área Fisiología Vegetal), Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
15
|
Gustafsson ALS, Gussarova G, Borgen L, Ikeda H, Antonelli A, Marie-Orleach L, Rieseberg LH, Brochmann C. Rapid evolution of post-zygotic reproductive isolation is widespread in Arctic plant lineages. ANNALS OF BOTANY 2022; 129:171-184. [PMID: 34643673 PMCID: PMC8796670 DOI: 10.1093/aob/mcab128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/05/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS The Arctic tundra, with its extreme temperatures and short growing season, is evolutionarily young and harbours one of the most species-poor floras on Earth. Arctic species often show little phenotypic and genetic divergence across circumpolar ranges. However, strong intraspecific post-zygotic reproductive isolation (RI) in terms of hybrid sterility has frequently evolved within selfing Arctic species of the genus Draba. Here we assess whether incipient biological species are common in the Arctic flora. METHODS We conducted an extensive crossing experiment including six species representing four phylogenetically distant families collected across the circumpolar Arctic. We crossed conspecific parental populations representing different spatial scales, raised 740 F1 hybrids to maturity and measured fertility under laboratory conditions. We examined genetic divergence between populations for two of these species (Cardamine bellidifolia and Ranunculus pygmaeus). KEY RESULTS In five of the six species, we find extensive reduction in pollen fertility and seed set in F1 hybrids; 219 (46 %) of the 477 F1 hybrids generated between parents separated by ≥427 km had <20 % pollen fertility. Isolation with migration (IM) and *BEAST analyses of sequences of eight nuclear genes in C. bellidifolia suggests that reproductively isolated populations of this species diverged during, or even after, the last glaciation. Likewise, Arctic populations of R. pygmaeus were genetically very similar despite exhibiting strongly reduced fertility in crosses, suggesting that RI evolved recently also in this species. CONCLUSION We show that post-zygotic RI has developed multiple times within taxonomically recognized Arctic species belonging to several distantly related lineages, and that RI may have developed over just a few millennia. Rapid and widespread evolution of incipient biological species in the Arctic flora might be associated with frequent bottlenecks due to glacial cycles, and/or selfing mating systems, which are common in the harsh Arctic environment where pollinators are scarce.
Collapse
Affiliation(s)
| | - Galina Gussarova
- Natural History Museum, University of Oslo, Oslo, Norway
- Botany Department, Faculty of Biology and Soil Science, St Petersburg, Russia
- Tromsø University Museum, University of Tromsø, Tromsø, Norway
| | - Liv Borgen
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Hajime Ikeda
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, Richmond, UK
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Sweden
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Lucas Marie-Orleach
- Natural History Museum, University of Oslo, Oslo, Norway
- ECOBIO—Écosystèmes, Biodiversité, Évolution, Rennes, France
| | - Loren H Rieseberg
- Botany Department, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
16
|
Morgan EJ, Čertner M, Lučanová M, Deniz U, Kubíková K, Venon A, Kovářík O, Lafon Placette C, Kolář F. Disentangling the components of triploid block and its fitness consequences in natural diploid-tetraploid contact zones of Arabidopsis arenosa. THE NEW PHYTOLOGIST 2021; 232:1449-1462. [PMID: 33768528 DOI: 10.1111/nph.17357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Hybrid seed inviability (HSI) is an important mechanism of reproductive isolation and speciation. HSI varies in strength among populations of diploid species but it remains to be tested whether similar processes affect natural variation in HSI within ploidy-variable species (triploid block). Here we used extensive endosperm, seed and F1 -hybrid phenotyping to explore HSI variation within a diploid-autotetraploid species. By leveraging 12 population pairs from three ploidy contact zones, we tested for the effect of interploidy crossing direction (parent of origin), ploidy divergence and spatial arrangement in shaping reproductive barriers in a naturally relevant context. We detected strong parent-of-origin effects on endosperm development, F1 germination and survival, which was also reflected in the rates of triploid formation in the field. Endosperm cellularization failure was least severe and F1 -hybrid performance was slightly better in the primary contact zone, with genetically closest diploid and tetraploid lineages. We demonstrated overall strong parent-of-origin effects on HSI in a ploidy variable species, which translate to fitness effects and contribute to interploidy reproductive isolation in a natural context. Subtle intraspecific variation in these traits suggests the fitness consequences of HSI are predominantly a constitutive property of the species regardless of the evolutionary background of its populations.
Collapse
Affiliation(s)
- Emma J Morgan
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-128 01, Czech Republic
| | - Martin Čertner
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-128 01, Czech Republic
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-252 43, Czech Republic
| | - Magdalena Lučanová
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-128 01, Czech Republic
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-252 43, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, CZ-370 05, Czech Republic
| | - Utku Deniz
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-128 01, Czech Republic
| | - Kateřina Kubíková
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-128 01, Czech Republic
| | - Anthony Venon
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-128 01, Czech Republic
| | - Oleg Kovářík
- Datamole Inc., Vítězné Náměstí 2, Prague, CZ-160 00, Czech Republic
| | - Clément Lafon Placette
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-128 01, Czech Republic
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-128 01, Czech Republic
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-252 43, Czech Republic
| |
Collapse
|
17
|
Kinser TJ, Smith RD, Lawrence AH, Cooley AM, Vallejo-Marín M, Conradi Smith GD, Puzey JR. Endosperm-based incompatibilities in hybrid monkeyflowers. THE PLANT CELL 2021; 33:2235-2257. [PMID: 33895820 PMCID: PMC8364248 DOI: 10.1093/plcell/koab117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/15/2021] [Indexed: 05/31/2023]
Abstract
Endosperm is an angiosperm innovation central to their reproduction whose development, and thus seed viability, is controlled by genomic imprinting, where expression from certain genes is parent-specific. Unsuccessful imprinting has been linked to failed inter-specific and inter-ploidy hybridization. Despite their importance in plant speciation, the underlying mechanisms behind these endosperm-based barriers remain poorly understood. Here, we describe one such barrier between diploid Mimulus guttatus and tetraploid Mimulus luteus. The two parents differ in endosperm DNA methylation, expression dynamics, and imprinted genes. Hybrid seeds suffer from underdeveloped endosperm, reducing viability, or arrested endosperm and seed abortion when M. guttatus or M. luteus is seed parent, respectively, and transgressive methylation and expression patterns emerge. The two inherited M. luteus subgenomes, genetically distinct but epigenetically similar, are expressionally dominant over the M. guttatus genome in hybrid embryos and especially their endosperm, where paternal imprints are perturbed. In aborted seeds, de novo methylation is inhibited, potentially owing to incompatible paternal instructions of imbalanced dosage from M. guttatus imprints. We suggest that diverged epigenetic/regulatory landscapes between parental genomes induce epigenetic repatterning and global shifts in expression, which, in endosperm, may uniquely facilitate incompatible interactions between divergent imprinting schemes, potentially driving rapid barriers.
Collapse
Affiliation(s)
- Taliesin J. Kinser
- Biology Department, College of William and Mary, Williamsburg, Virginia 23185
| | - Ronald D. Smith
- Department of Applied Science, College of William and Mary, Williamsburg, Virginia 23185
| | - Amelia H. Lawrence
- Biology Department, College of William and Mary, Williamsburg, Virginia 23185
| | | | - Mario Vallejo-Marín
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland FK9 4LA, UK
| | | | - Joshua R. Puzey
- Biology Department, College of William and Mary, Williamsburg, Virginia 23185
| |
Collapse
|
18
|
Städler T, Florez-Rueda AM, Roth M. A revival of effective ploidy: the asymmetry of parental roles in endosperm-based hybridization barriers. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102015. [PMID: 33639340 DOI: 10.1016/j.pbi.2021.102015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 05/15/2023]
Abstract
Interest in understanding hybrid seed failure (HSF) has mushroomed, both in terms of identifying underlying molecular processes and their evolutionary drivers. We review phenotypic and molecular advances with a focus on the 'effective ploidy' concept, witnessing a recent revival after long obscurity. Endosperm misdevelopment has now been shown to underlie HSF in many inter-specific, homoploid crosses. The consistent asymmetries in seed size and developmental trajectories likely reflect parental divergence in key, dosage-sensitive processes. Transcriptomic and epigenomic studies reveal genome-wide, polarized expression perturbations and shifts in parental expression proportions, consistent with small-RNA imbalances between parental roles. Among-species differences in levels of parental conflict over resource allocation enjoy strong support in explaining why differences in effective ploidy may evolve.
Collapse
Affiliation(s)
- Thomas Städler
- Institute of Integrative Biology, ETH Zurich & Zurich-Basel Plant Science Center, Universitätstrasse 16, 8092 Zurich, Switzerland.
| | - Ana M Florez-Rueda
- Department of Plant and Microbial Biology, University of Zurich and Zurich-Basel Plant Science Center, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Morgane Roth
- GAFL INRAE, Allée des Chênes 67, 84140 Montfavet, France
| |
Collapse
|
19
|
Florez-Rueda AM, Fiscalini F, Roth M, Grossniklaus U, Städler T. Endosperm and Seed Transcriptomes Reveal Possible Roles for Small RNA Pathways in Wild Tomato Hybrid Seed Failure. Genome Biol Evol 2021; 13:6278300. [PMID: 34009298 PMCID: PMC8358227 DOI: 10.1093/gbe/evab107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 01/10/2023] Open
Abstract
Crosses between the wild tomato species Solanum peruvianum and Solanum chilense result in hybrid seed failure (HSF), characterized by endosperm misdevelopment and embryo arrest. We previously showed that genomic imprinting, the parent-of-origin–dependent expression of alleles, is perturbed in the hybrid endosperm, with many of the normally paternally expressed genes losing their imprinted status. Here, we report transcriptome-based analyses of gene and small RNA (sRNA) expression levels. We identified 2,295 genes and 387 sRNA clusters as differentially expressed when comparing reciprocal hybrid seed to seeds and endosperms from the two within-species crosses. Our analyses uncovered a pattern of overdominance in endosperm gene expression in both hybrid cross directions, in marked contrast to the patterns of sRNA expression in whole seeds. Intriguingly, patterns of increased gene expression resemble the previously reported increased maternal expression proportions in hybrid endosperms. We identified physical clusters of sRNAs; differentially expressed sRNAs exhibit reduced transcript abundance in hybrid seeds of both cross directions. Moreover, sRNAs map to genes coding for key proteins involved in epigenetic regulation of gene expression, suggesting a regulatory feedback mechanism. We describe examples of genes that appear to be targets of sRNA-mediated gene silencing; in these cases, reduced sRNA abundance is concomitant with increased gene expression in hybrid seeds. Our analyses also show that S. peruvianum dominance impacts gene and sRNA expression in hybrid seeds. Overall, our study indicates roles for sRNA-mediated epigenetic regulation in HSF between closely related wild tomato species.
Collapse
Affiliation(s)
- Ana Marcela Florez-Rueda
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland.,Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092 Zurich, Switzerland
| | - Flurin Fiscalini
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Morgane Roth
- Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092 Zurich, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Thomas Städler
- Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
20
|
İltaş Ö, Svitok M, Cornille A, Schmickl R, Lafon Placette C. Early evolution of reproductive isolation: A case of weak inbreeder/strong outbreeder leads to an intraspecific hybridization barrier in Arabidopsis lyrata. Evolution 2021; 75:1466-1476. [PMID: 33900634 DOI: 10.1111/evo.14240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/08/2021] [Accepted: 04/10/2021] [Indexed: 12/18/2022]
Abstract
Reproductive strategies play a major role in plant speciation. Notably, transitions from outcrossing to selfing may lead to relaxed sexual selection and parental conflict. Shifts in mating systems can affect maternal and paternal interests, and thus parent-specific influence on endosperm development, leading to reproductive isolation: if selfing and outcrossing species hybridize, the resulting seeds may not be viable due to endosperm failure. Nevertheless, it remains unclear how the switch in mating systems can impact reproductive isolation between recently diverged lineages, that is, during the process of speciation. We investigated this question using Arabidopsis lyrata, which recently transitioned to selfing (10,000 years ago) in certain North American populations, where European populations remain outcrossing. We performed reciprocal crosses between selfers and outcrossers, and measured seed viability and endosperm development. We show that parental genomes in the hybrid seed negatively interact, as predicted by parental conflict. This leads to extensive hybrid seed lethality associated with endosperm cellularization disturbance. Our results suggest that this is primarily driven by divergent evolution of the paternal genome between selfers and outcrossers. In addition, we observed other hybrid seed defects, suggesting that sex-specific interests are not the only processes contributing to postzygotic reproductive isolation.
Collapse
Affiliation(s)
- Ömer İltaş
- Department of Botany, Faculty of Science, Charles University, Prague, CZ-128 01, Czech Republic
| | - Marek Svitok
- Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, Zvolen, SK-960 01, Slovakia.,Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, CZ-370 05, Czech Republic
| | - Amandine Cornille
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette, 91190, France
| | - Roswitha Schmickl
- Department of Botany, Faculty of Science, Charles University, Prague, CZ-128 01, Czech Republic.,Institute of Botany, The Czech Academy of Sciences, Průhonice, CZ-252 43, Czech Republic
| | - Clément Lafon Placette
- Department of Botany, Faculty of Science, Charles University, Prague, CZ-128 01, Czech Republic
| |
Collapse
|
21
|
Köhler C, Dziasek K, Del Toro-De León G. Postzygotic reproductive isolation established in the endosperm: mechanisms, drivers and relevance. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200118. [PMID: 33866810 DOI: 10.1098/rstb.2020.0118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The endosperm is a developmental innovation of angiosperms that supports embryo growth and germination. Aside from this essential reproductive function, the endosperm fuels angiosperm evolution by rapidly establishing reproductive barriers between incipient species. Specifically, the endosperm prevents hybridization of newly formed polyploids with their non-polyploid progenitors, a phenomenon termed the triploid block. Furthermore, recently diverged diploid species are frequently reproductively isolated by endosperm-based hybridization barriers. Current genetic approaches have revealed a prominent role for epigenetic processes establishing these barriers. In particular, imprinted genes, which are expressed in a parent-of-origin-specific manner, underpin the interploidy barrier in the model species Arabidopsis. We will discuss the mechanisms establishing hybridization barriers in the endosperm, the driving forces for these barriers and their impact for angiosperm evolution. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Claudia Köhler
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Katarzyna Dziasek
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Gerardo Del Toro-De León
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| |
Collapse
|
22
|
Raduski AR, Igić B. Biosystematic studies on the status of Solanum chilense. AMERICAN JOURNAL OF BOTANY 2021; 108:520-537. [PMID: 33783814 DOI: 10.1002/ajb2.1621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Common taxonomic practices, which condition species' descriptions on diagnostic morphological traits, may systematically lump outcrossing species and unduly split selfing species. Specifically, higher effective population sizes and genetic diversity of obligate outcrossers are expected to result less reliable phenotypic diagnoses. Wild tomatoes, members of Solanum sect. Lycopersicum, are commonly used as a source of exotic germplasm for improvement of the cultivated tomato, and are increasingly employed in basic research. Although the section experienced significant early work, which continues presently, the taxonomic status of many wild species has undergone a number of significant revisions and remains uncertain. Species in this section vary in their breeding systems, notably the expression of self-incompatibility, which determines individual propensity for outcrossing METHODS: Here, we examine the taxonomic status of obligately outcrossing Chilean wild tomato (Solanum chilense) using reduced-representation sequencing (RAD-seq), a range of phylogenetic and population genetic analyses, as well as analyses of crossing and morphological data. RESULTS Overall, each of our analyses provides a considerable weight of evidence that the Pacific coastal populations and Andean inland populations of the currently described Solanum chilense represent separately evolving populations, and conceal at least one undescribed cryptic species. CONCLUSIONS Despite its vast economic importance, Solanum sect. Lycopersicon still exhibits considerable taxonomic instability. A pattern of under-recognition of outcrossing species may be common, not only in tomatoes, but across flowering plants. We discuss the possible causes and implications of this observation, with a focus on macroevolutionary inference.
Collapse
Affiliation(s)
- Andrew R Raduski
- Dept. of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, 60607, U.S.A
- Dept. of Plant & Microbial Biology, University of Minnesota - Twin Cities, St. Paul, Minnesota, 55108, U.S.A
| | - Boris Igić
- Dept. of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, 60607, U.S.A
| |
Collapse
|
23
|
Sandstedt GD, Wu CA, Sweigart AL. Evolution of multiple postzygotic barriers between species of the Mimulus tilingii complex. Evolution 2021; 75:600-613. [PMID: 33044006 PMCID: PMC7987689 DOI: 10.1111/evo.14105] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/04/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022]
Abstract
Species are often defined by their ability to interbreed (i.e., Biological Species Concept), but determining how and why reproductive isolation arises between new species can be challenging. In the Mimulus tilingii species complex, three species (M. caespitosa, M. minor, and M. tilingii) are largely allopatric and grow exclusively at high elevations (>2000 m). The extent to which geographic separation has shaped patterns of divergence among the species is not well understood. In this study, we determined that the three species are morphologically and genetically distinct, yet recently diverged. Additionally, we performed reciprocal crosses within and between the species and identified several strong postzygotic reproductive barriers, including hybrid seed inviability, F1 hybrid necrosis, and F1 hybrid male and female sterility. In this study, such postzygotic barriers are so strong that a cross between any species pair in the M. tilingii complex would cause nearly complete reproductive isolation. We consider how geographical and topographical patterns may have facilitated the evolution of several postzygotic barriers and contributed to speciation of closely related members within the M. tilingii species complex.
Collapse
Affiliation(s)
| | - Carrie A. Wu
- Department of Biology, University of Richmond, Richmond, Virginia 23173
| | | |
Collapse
|
24
|
Florez-Rueda AM, Scharmann M, Roth M, Städler T. Population Genomics of the "Arcanum" Species Group in Wild Tomatoes: Evidence for Separate Origins of Two Self-Compatible Lineages. FRONTIERS IN PLANT SCIENCE 2021; 12:624442. [PMID: 33815438 PMCID: PMC8018279 DOI: 10.3389/fpls.2021.624442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/24/2021] [Indexed: 05/07/2023]
Abstract
Given their diverse mating systems and recent divergence, wild tomatoes (Solanum section Lycopersicon) have become an attractive model system to study ecological divergence, the build-up of reproductive barriers, and the causes and consequences of the breakdown of self-incompatibility. Here we report on a lesser-studied group of species known as the "Arcanum" group, comprising the nominal species Solanum arcanum, Solanum chmielewskii, and Solanum neorickii. The latter two taxa are self-compatible but are thought to self-fertilize at different rates, given their distinct manifestations of the morphological "selfing syndrome." Based on experimental crossings and transcriptome sequencing of a total of 39 different genotypes from as many accessions representing each species' geographic range, we provide compelling evidence for deep genealogical divisions within S. arcanum; only the self-incompatible lineage known as "var. marañón" has close genealogical ties to the two self-compatible species. Moreover, there is evidence under multiple inference schemes for different geographic subsets of S. arcanum var. marañón being closest to S. chmielewskii and S. neorickii, respectively. To broadly characterize the population-genomic consequences of these recent mating-system transitions and their associated speciation events, we fit demographic models indicating strong reductions in effective population size, congruent with reduced nucleotide and S-locus diversity in the two independently derived self-compatible species.
Collapse
|
25
|
He H, Yokoi S, Tezuka T. A high maternal genome excess causes severe seed abortion leading to ovary abscission in Nicotiana interploidy-interspecific crosses. PLANT DIRECT 2020; 4:e00257. [PMID: 32821875 PMCID: PMC7430375 DOI: 10.1002/pld3.257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 05/05/2023]
Abstract
Seed abortion and ovary abscission, two types of postzygotic reproductive barriers, are often observed in interspecific and/or interploidy crosses in plants. However, the mechanisms underlying these reproductive barriers remain unclear. Here, we show that the distinct types of seed developmental abnormalities (type I and type II seed abortion) occur in a phased manner as maternal to paternal genome dosage increases and that type II seed abortion is followed by ovary abscission. We revealed that these two types of seed developmental abnormalities are observed during seed development in the interploidy-interspecific crosses of Nicotiana suaveolens and N. tabacum. Moreover, in the cross showing type II seed abortion, several events, such as changes in abscission-related gene expression and lignin deposition, occurred in the ovary abscission zone, eventually leading to ovary abscission. Notably, successive increases in maternal ploidy using ploidy manipulated lines resulted in successive type I and type II seed abortions, and the latter was accompanied by ovary abscission. Conversely, both types of seed abortion and ovary abscission could be overcome with a ploidy manipulation technique that balances parental ploidy levels. We thus concluded that a high maternal genome excess cross may cause severe seed developmental defects and ovary abscission. Based on our findings, we propose a model explaining the abortion phenomena, where an interaction between the promotive and inhibitive effects of the parental genomes determines the developmental destiny of seeds. SIGNIFICANCE STATEMENT We demonstrate that a stepwise increase in maternal ploidy results in a stepwise increase in seed abortion severity, leading to ovary abscission in plants. We propose a model explaining the abortion phenomena, where an interaction between the promotive and inhibitive effects of the parental genomes determines the developmental destiny of seeds.
Collapse
Affiliation(s)
- Hai He
- Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiJapan
| | - Shuji Yokoi
- Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiJapan
- Education and Research FieldCollege of Life, Environment, and Advanced SciencesOsaka Prefecture UniversitySakaiJapan
- Bioeconomy Research InstituteResearch Center for the 21st CenturyOsaka Prefecture UniversitySakaiJapan
| | - Takahiro Tezuka
- Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiJapan
- Education and Research FieldCollege of Life, Environment, and Advanced SciencesOsaka Prefecture UniversitySakaiJapan
| |
Collapse
|
26
|
Chaban IA, Kononenko NV, Gulevich AA, Bogoutdinova LR, Khaliluev MR, Baranova EN. Morphological Features of the Anther Development in Tomato Plants with Non-Specific Male Sterility. BIOLOGY 2020; 9:biology9020032. [PMID: 32079211 PMCID: PMC7168212 DOI: 10.3390/biology9020032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 12/04/2022]
Abstract
The study was devoted to morphological and cytoembryological analysis of disorders in the anther and pollen development of transgenic tomato plants with a normal and abnormal phenotype, which is characterized by the impaired development of generative organs. Various abnormalities in the structural organization of anthers and microspores were revealed. Such abnormalities in microspores lead to the blocking of asymmetric cell division and, accordingly, the male gametophyte formation. Some of the non-degenerated microspores accumulate a large number of storage inclusions, forming sterile mononuclear pseudo-pollen, which is similar in size and appearance to fertile pollen grain (looks like pollen grain). It was discussed that the growth of tapetal cells in abnormal anthers by increasing the size and ploidy level of nuclei contributes to this process. It has been shown that in transgenic plants with a normal phenotype, individual disturbances are also observed in the development of both male and female gametophytes. The reason for the developmental arrest of some ovules was the death of endosperm at different stages of the globular embryo. At the same time, noticeable hypertrophy of endothelial cells performing a secretory function was observed. In the ovules of transgenic plants with abnormalities, the endothelium forms a pseudo-embryo instead of the embryo sac, stimulating the development of parthenocarpic fruits. The data obtained in this study can be useful for a better understanding of the genetic and molecular mechanisms of cytoplasmic male sterility and parthenocarpic fruit development in tomatoes.
Collapse
Affiliation(s)
- Inna A. Chaban
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (I.A.C.); (N.V.K.); (A.A.G.); (L.R.B.)
| | - Neonila V. Kononenko
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (I.A.C.); (N.V.K.); (A.A.G.); (L.R.B.)
| | - Alexander A. Gulevich
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (I.A.C.); (N.V.K.); (A.A.G.); (L.R.B.)
| | - Liliya R. Bogoutdinova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (I.A.C.); (N.V.K.); (A.A.G.); (L.R.B.)
| | - Marat R. Khaliluev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (I.A.C.); (N.V.K.); (A.A.G.); (L.R.B.)
- Moscow Timiryazev Agricultural Academy, Agronomy and Biotechnology Faculty, Russian State Agrarian University, Timiryazevskaya 49, 127550 Moscow, Russia
- Correspondence: (M.R.K.); (E.N.B.)
| | - Ekaterina N. Baranova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (I.A.C.); (N.V.K.); (A.A.G.); (L.R.B.)
- Correspondence: (M.R.K.); (E.N.B.)
| |
Collapse
|
27
|
Coughlan JM, Wilson Brown M, Willis JH. Patterns of Hybrid Seed Inviability in the Mimulus guttatus sp. Complex Reveal a Potential Role of Parental Conflict in Reproductive Isolation. Curr Biol 2020; 30:83-93.e5. [PMID: 31883810 PMCID: PMC7017923 DOI: 10.1016/j.cub.2019.11.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/01/2019] [Accepted: 11/06/2019] [Indexed: 11/19/2022]
Abstract
Genomic conflicts may play a central role in the evolution of reproductive barriers. Theory predicts that early-onset hybrid inviability may stem from conflict between parents for resource allocation to offspring. Here, we describe M. decorus: a group of cryptic species within the M. guttatus species complex that are largely reproductively isolated by hybrid seed inviability (HSI). HSI between M. guttatus and M. decorus is common and strong, but populations of M. decorus vary in the magnitude and directionality of HSI with M. guttatus. Patterns of HSI between M. guttatus and M. decorus, as well as within M. decorus, conform to the predictions of parental conflict: first, reciprocal F1s exhibit size differences and parent-of-origin-specific endosperm defects; second, the extent of asymmetry between reciprocal F1 seed size is correlated with asymmetry in HSI; and third, inferred differences in the extent of conflict predict the extent of HSI between populations. We also find that HSI is rapidly evolving, as populations that exhibit the most HSI are each others' closest relative. Lastly, although all populations appear largely outcrossing, we find that the differences in the inferred strength of conflict scale positively with π, suggesting that demographic or life history factors other than transitions to self-fertilization may influence the rate of parental-conflict-driven evolution. Overall, these patterns suggest the rapid evolution of parent-of-origin-specific resource allocation alleles coincident with HSI within and between M. guttatus and M. decorus. Parental conflict may therefore be an important evolutionary driver of reproductive isolation.
Collapse
Affiliation(s)
- Jenn M Coughlan
- Biological Sciences, Duke University, 25 Science Drive, Durham, NC 27708, USA; Biology Department, University of North Carolina, Chapel Hill, 120 South Road, Chapel Hill, NC 27599, USA.
| | - Maya Wilson Brown
- Biological Sciences, Duke University, 25 Science Drive, Durham, NC 27708, USA
| | - John H Willis
- Biological Sciences, Duke University, 25 Science Drive, Durham, NC 27708, USA
| |
Collapse
|
28
|
Differences in Effective Ploidy Drive Genome-Wide Endosperm Expression Polarization and Seed Failure in Wild Tomato Hybrids. Genetics 2019; 212:141-152. [PMID: 30902809 DOI: 10.1534/genetics.119.302056] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/18/2019] [Indexed: 01/24/2023] Open
Abstract
Parental imbalances in the endosperm leading to impaired development and eventual hybrid seed failure are common causes of postzygotic isolation in flowering plants. Endosperm sensitivity to parental dosage is reflected by canonical phenotypes of "parental excess" in reciprocal interploid crosses. Moreover, parental-excess traits are also evident in many homoploid interspecific crosses, potentially reflecting among-lineage variation in "effective ploidy" driven by endosperm properties. However, the genetic basis of effective ploidy is unknown and genome-wide expression perturbations in parental-excess endosperms from homoploid crosses have yet to be reported. The tomato clade (Solanum section Lycopersicon), encompassing closely related diploids with partial-to-complete hybrid seed failure, provides outstanding opportunities to study these issues. Here, we compared replicated endosperm transcriptomes from six crosses within and among three wild tomato lineages. Strikingly, strongly inviable hybrid crosses displayed conspicuous, asymmetric expression perturbations that mirror previously characterized parental-excess phenotypes. Solanum peruvianum, the species inferred to have evolved higher effective ploidy than the other two, drove expression landscape polarization between maternal and paternal roles. This global expression divergence was mirrored in functionally important gene families such as MADS-box transcription factors and E3 ubiquitin ligases, and revealed differences in cell cycle tuning that match phenotypic differences in developing endosperm and mature seed size between reciprocal crosses. Our work starts to uncover the complex interactions between expression divergence, parental conflict, and hybrid seed failure that likely contributed to plant diversity.
Collapse
|
29
|
Roth M, Florez-Rueda AM, Paris M, Städler T. Wild tomato endosperm transcriptomes reveal common roles of genomic imprinting in both nuclear and cellular endosperm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:1084-1101. [PMID: 29953688 DOI: 10.1111/tpj.14012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/01/2018] [Accepted: 06/20/2018] [Indexed: 05/06/2023]
Abstract
Genomic imprinting is a conspicuous feature of the endosperm, a triploid tissue nurturing the embryo and synchronizing angiosperm seed development. An unknown subset of imprinted genes (IGs) is critical for successful seed development and should have highly conserved functions. Recent genome-wide studies have found limited conservation of IGs among distantly related species, but there is a paucity of data from closely related lineages. Moreover, most studies focused on model plants with nuclear endosperm development, and comparisons with properties of IGs in cellular-type endosperm development are lacking. Using laser-assisted microdissection, we characterized parent-specific expression in the cellular endosperm of three wild tomato lineages (Solanum section Lycopersicon). We identified 1025 candidate IGs and 167 with putative homologs previously identified as imprinted in distantly related taxa with nuclear-type endosperm. Forty-two maternally expressed genes (MEGs) and 17 paternally expressed genes (PEGs) exhibited conserved imprinting status across all three lineages, but differences in power to assess imprinted expression imply that the actual degree of conservation might be higher than that directly estimated (20.7% for PEGs and 10.4% for MEGs). Regardless, the level of shared imprinting status was higher for PEGs than for MEGs, indicating dissimilar evolutionary trajectories. Expression-level data suggest distinct epigenetic modulation of MEGs and PEGs, and gene ontology analyses revealed MEGs and PEGs to be enriched for different functions. Importantly, our data provide evidence that MEGs and PEGs interact in modulating both gene expression and the endosperm cell cycle, and uncovered conserved cellular functions of IGs uniting taxa with cellular- and nuclear-type endosperm.
Collapse
Affiliation(s)
- Morgane Roth
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Ana M Florez-Rueda
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Margot Paris
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Thomas Städler
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| |
Collapse
|