1
|
Bilska-Kos A, Pietrusińska A, Suski S, Niedziela A, Linkiewicz AM, Majtkowski W, Żurek G, Zebrowski J. Cell Wall Properties Determine Genotype-Specific Response to Cold in Miscanthus × giganteus Plants. Cells 2022; 11:547. [PMID: 35159356 PMCID: PMC8834381 DOI: 10.3390/cells11030547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 01/05/2023] Open
Abstract
The cell wall plays a crucial role in plant growth and development, including in response to environmental factors, mainly through significant biochemical and biomechanical plasticity. The involvement of the cell wall in C4 plants' response to cold is, however, still poorly understood. Miscanthus × giganteus, a perennial grass, is generally considered cold tolerant and, in contrast to other thermophilic species such as maize or sorgo, can maintain a relatively high level of photosynthesis efficiency at low ambient temperatures. This unusual response to chilling among C4 plants makes Miscanthus an interesting study object in cold acclimation mechanism research. Using the results obtained from employing a diverse range of techniques, including analysis of plasmodesmata ultrastructure by means of transmission electron microscopy (TEM), infrared spectroscopy (FTIR), and biomechanical tests coupled with photosynthetic parameters measurements, we present evidence for the implication of the cell wall in genotype-specific responses to cold in this species. The observed reduction in the assimilation rate and disturbance of chlorophyll fluorescence parameters in the susceptible M3 genotype under cold conditions were associated with changes in the ultrastructure of the plasmodesmata, i.e., a constriction of the cytoplasmic sleeve in the central region of the microchannel at the mesophyll-bundle sheath interface. Moreover, this cold susceptible genotype was characterized by enhanced tensile stiffness, strength of leaf wall material, and a less altered biochemical profile of the cell wall, revealed by FTIR spectroscopy, compared to cold tolerant genotypes. These changes indicate that a decline in photosynthetic activity may result from a decrease in leaf CO2 conductance due to the formation of more compact and thicker cell walls and that an enhanced tolerance to cold requires biochemical wall remodelling. Thus, the well-established trade-off between photosynthetic capacity and leaf biomechanics found across multiple species in ecological research may also be a relevant factor in Miscanthus' tolerance to cold. In this paper, we demonstrate that M. giganteus genotypes showing a high degree of genetic similarity may respond differently to cold stress if exposed at earlier growing seasons to various temperature regimes, which has implications for the cell wall modifications patterns.
Collapse
Affiliation(s)
- Anna Bilska-Kos
- Department of Biochemistry and Biotechnology, Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland;
| | - Aleksandra Pietrusińska
- National Centre for Plant Genetic Resources, Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland;
| | - Szymon Suski
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur, 02-093 Warsaw, Poland;
| | - Agnieszka Niedziela
- Department of Biochemistry and Biotechnology, Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland;
| | - Anna M. Linkiewicz
- Molecular Biology and Genetics Department, Institute of Biological Sciences, Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszyński University, Wóycickiego 1/3, 01-938 Warsaw, Poland;
- Genetically Modified Organisms Controlling Laboratory, Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Włodzimierz Majtkowski
- Botanical Garden, National Centre for Plant Genetic Resources, Plant Breeding and Acclimatization Institute—National Research Institute, Jeździecka 5, 85-867 Bydgoszcz, Poland;
| | - Grzegorz Żurek
- Department of Bioenergetics, Quality Analysis and Seed Science, Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland;
| | - Jacek Zebrowski
- Institute of Biology and Biotechnology, University of Rzeszów, Aleja Rejtana 16c, 35-959 Rzeszów, Poland;
| |
Collapse
|
2
|
De novo transcriptome assembly and comparative transcriptomic analysis provide molecular insights into low temperature stress response of Canarium album. Sci Rep 2021; 11:10561. [PMID: 34006894 PMCID: PMC8131642 DOI: 10.1038/s41598-021-90011-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 05/05/2021] [Indexed: 11/08/2022] Open
Abstract
A de novo transcriptome analysis was performed in C. album, a temperature sensitive fruit tree in China, after treatment with varied temperatures. A total number of 168,385 transcripts were assembled, comprising of 109,439 unigenes, of which 70,530 were successfully annotated. Compared with control check group (CK), which was treated under 25 °C, the chilling stress (4 °C) treated group (CT), showed about 2810 up-regulated and 2567 down-regulated genes. Whereas, group treated under freezing (- 3 °C) stress (FT) showed an up-regulation and a down-regulation of 1748 and 1459 genes, respectively. GO classification analysis revealed that DEGs related to metabolic processes, single-organism metabolic process, and catalytic activity are significantly enriched in both CT and FT conditions. KEGG pathway enrichment analysis for both CT and FT treatments showed an enrichment of genes encoding or related to glycine/serine and threonine metabolism, alpha-linolenic acid metabolism, carotenoid biosynthesis, photosynthesis-antenna proteins, and circadian rhythm. However, genes related to photosynthesis, carbon fixation in photosynthetic organisms, glutathione metabolism, pyruvate metabolism, nicotinate and nicotinamide metabolism were specifically enriched in CT condition. Nevertheless, FT treatment induced genes related to plant-pathogen interaction, linoleic acid metabolism, plant hormone signal transduction and pentose phosphate pathway. Many of the genes involved in plant hormone signal transduction showed significantly different expression in both FT and CT conditions. However, the change was more evident in FT. Here we present the first of the reports for a de novo transcriptomic analysis in C. album, suggesting that the plant shows differential responses in chilling and freezing temperatures, where the hormone signaling and transduction contribute greatly to FT responses. Our study thus paves way for future research regarding functions of these potentially identified genes.
Collapse
|
3
|
Zhao X, Kang L, Wang Q, Lin C, Liu W, Chen W, Sang T, Yan J. Water Use Efficiency and Stress Tolerance of the Potential Energy Crop Miscanthus lutarioriparius Grown on the Loess Plateau of China. PLANTS 2021; 10:plants10030544. [PMID: 33805780 PMCID: PMC8001145 DOI: 10.3390/plants10030544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022]
Abstract
As a potential energy crop with high biomass yield, Miscanthus lutarioriparius (M. lutarioriparius), endemic to the Long River Range in central China, needs to be investigated for its acclimation to stressful climatic and soil conditions often found on the marginal land. In this study, traits related to acclimation and yield, including survival rates, plant height (PH), stem diameter (SD), tiller number (TN), water use efficiency (WUE), and photosynthetic rates (A), were examined for 41 M. lutarioriparius populations that transplanted to the arid and cold Loess Plateau of China. The results showed that the average survival rate of M. lutarioriparius populations was only 4.16% over the first winter but the overwinter rate increased to 35.03% after the second winter, suggesting that plants having survived the first winter could have acclaimed to the low temperature. The strikingly high survival rates over the second winter were found to be 95.83% and 80.85%, respectively, for HG18 and HG39 populations. These populations might be especially valuable for the selection of energy crops for such an area. Those individuals surviving for the two consecutive winters showed significantly higher WUE than those measured after the first winter. The high WUE and low stomatal conductance (gs) observed in survived individuals could have been responsible for their acclimation to this new and harsh environment. A total of 61 individuals with productive growth traits and strong resistance to cold and drought were identified for further energy crop development. This study showed that the variation of M. lutarioriparius held great potential for developing energy crops following continuous field selection.
Collapse
Affiliation(s)
- Xuhong Zhao
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (X.Z.); (L.K.); (Q.W.); (C.L.); (W.L.); (T.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lifang Kang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (X.Z.); (L.K.); (Q.W.); (C.L.); (W.L.); (T.S.)
| | - Qian Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (X.Z.); (L.K.); (Q.W.); (C.L.); (W.L.); (T.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100094, China
| | - Cong Lin
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (X.Z.); (L.K.); (Q.W.); (C.L.); (W.L.); (T.S.)
| | - Wei Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (X.Z.); (L.K.); (Q.W.); (C.L.); (W.L.); (T.S.)
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
| | - Wenli Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
| | - Tao Sang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (X.Z.); (L.K.); (Q.W.); (C.L.); (W.L.); (T.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
| | - Juan Yan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Correspondence:
| |
Collapse
|
4
|
Slavov GT, Davey CL, Bosch M, Robson PRH, Donnison IS, Mackay IJ. Genomic index selection provides a pragmatic framework for setting and refining multi-objective breeding targets in Miscanthus. ANNALS OF BOTANY 2019; 124:521-530. [PMID: 30351424 PMCID: PMC6821339 DOI: 10.1093/aob/mcy187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/02/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Miscanthus has potential as a biomass crop but the development of varieties that are consistently superior to the natural hybrid M. × giganteus has been challenging, presumably because of strong G × E interactions and poor knowledge of the complex genetic architectures of traits underlying biomass productivity and climatic adaptation. While linkage and association mapping studies are starting to generate long lists of candidate regions and even individual genes, it seems unlikely that this information can be translated into effective marker-assisted selection for the needs of breeding programmes. Genomic selection has emerged as a viable alternative, and prediction accuracies are moderate across a range of phenological and morphometric traits in Miscanthus, though relatively low for biomass yield per se. METHODS We have previously proposed a combination of index selection and genomic prediction as a way of overcoming the limitations imposed by the inherent complexity of biomass yield. Here we extend this approach and illustrate its potential to achieve multiple breeding targets simultaneously, in the absence of a priori knowledge about their relative economic importance, while also monitoring correlated selection responses for non-target traits. We evaluate two hypothetical scenarios of increasing biomass yield by 20 % within a single round of selection. In the first scenario, this is achieved in combination with delaying flowering by 44 d (roughly 20 %), whereas, in the second, increased yield is targeted jointly with reduced lignin (-5 %) and increased cellulose (+5 %) content, relative to current average levels in the breeding population. KEY RESULTS In both scenarios, the objectives were achieved efficiently (selection intensities corresponding to keeping the best 20 and 4 % of genotypes, respectively). However, the outcomes were strikingly different in terms of correlated responses, and the relative economic values (i.e. value per unit of change in each trait compared with that for biomass yield) of secondary traits included in selection indices varied considerably. CONCLUSIONS Although these calculations rely on multiple assumptions, they highlight the need to evaluate breeding objectives and explicitly consider correlated responses in silico, prior to committing extensive resources. The proposed approach is broadly applicable for this purpose and can readily incorporate high-throughput phenotyping data as part of integrated breeding platforms.
Collapse
Affiliation(s)
- Gancho T Slavov
- Computational & Analytical Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Christopher L Davey
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Paul R H Robson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Iain S Donnison
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | | |
Collapse
|
5
|
Robson PRH, Donnison IS, Clifton‐Brown JC. Stem growth characteristics of high yielding Miscanthus correlate with yield, development and intraspecific competition within plots. GLOBAL CHANGE BIOLOGY. BIOENERGY 2019; 11:1075-1085. [PMID: 31583021 PMCID: PMC6767072 DOI: 10.1111/gcbb.12610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/18/2019] [Indexed: 06/07/2023]
Abstract
High yielding perennial grasses are utilized as biomass for the bioeconomy and to displace fossil fuels. Many such grasses, including Miscanthus, are largely undomesticated. The main Miscanthus crop is a naturally occurring hydrid M. × giganteus (Mxg). All above ground biomass from Miscanthus is harvested. Stem traits correlate strongly with yield and therefore understanding the seasonal progression of stem growth should identify routes for improved yield. If such studies utilized high yielding commercial genotypes growing in plots the conclusions are likely to be more commercially relevant. Stem elongation was measured from five high yielding genotypes, 10 plants per plot from 20 plots in a replicated field trial over 4 years. Richards growth function produced an accurate fit to stem elongation. Differentials, double differentials and integrals of the parameterized function produced six growth characteristics, describing growth rate, timing and duration of the logarithmic growth phase and area under the growth curve. Maximum growth rate was correlated with yield and compensatory interactions were identified, for example plants with higher maximal growth rates had shorter durations of logarithmic growth. Plant position within plots of lower yielding genotypes did not affect growth characteristics but had a significant effect on late season growth characteristics in higher yielding genotypes. Two high yielding genotypes were compared over 3 years and growth parameterized using four different factors. The inverse correlation between maximum growth rate and duration of logarithmic growth was consistent across years and factors in both genotypes except when parameterized using temperature and only in Mxg. This suggested that different limitations to growth were exerted on the two genotypes which may help explain the exceptional performance of the Mxg genotype. We discuss the implications of the identified complex interactions in growth characteristics for approaches to maximize seasonal yield in perennial biomass crops.
Collapse
Affiliation(s)
- Paul R. H. Robson
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityGogerddan, AberystwythWalesUnited Kingdom
| | - Iain S. Donnison
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityGogerddan, AberystwythWalesUnited Kingdom
| | - John C. Clifton‐Brown
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityGogerddan, AberystwythWalesUnited Kingdom
| |
Collapse
|
6
|
Rusinowski S, Krzyżak J, Clifton-Brown J, Jensen E, Mos M, Webster R, Sitko K, Pogrzeba M. New Miscanthus hybrids cultivated at a Polish metal-contaminated site demonstrate high stomatal regulation and reduced shoot Pb and Cd concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1377-1387. [PMID: 31254895 DOI: 10.1016/j.envpol.2019.06.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
The increased bioeconomy targets for the biomass share of renewable energy production across Europe should be met using land unsuitable for food production. Miscanthus breeding programs targeted the production of plants with a diverse range of traits allowing a wider utilization of land resources for biofuel production without competing with arable crops. These traits include increasing tolerances to drought, chilling, and to metal(loid)s excess. Two novel Miscanthus hybrids, GNT41 and GNT34, were compared against Miscanthus x giganteus (Mxg) on metal-contaminated arable land in Poland. This study aimed at evaluating their yield, biomass quality and quantifying seasonal differences in photosynthetic and transpiration parameters. A secondary objective was to identify key physiological mechanisms underlying differences in metal accumulation between the investigated plants. The new hybrids produced a similar yield to Mxg (13-15 t ha-1 yr-1), had shorter shoots, higher Leaf Area Index and stem number. Based on gas exchange measurements, GNT34 exhibited isohydric (water-conserving) behavior. The stomatal response to light of the new hybrids was at least twice as fast as that of Mxg, a trait that is often associated with increased seasonal water use efficiency. This contributed to the almost 40% reduction in shoot Pb and Cd concentrations for the new hybrids as compared to Mxg. This suggested that promoting stomatal regulation in conjunction with improved water conservation may be a target for improving plants for wider use on metals contaminated land.
Collapse
Affiliation(s)
- Szymon Rusinowski
- Institute for Ecology of Industrial Areas, 6 Kossutha Street, 40-844 Katowice, Poland
| | - Jacek Krzyżak
- Institute for Ecology of Industrial Areas, 6 Kossutha Street, 40-844 Katowice, Poland
| | - John Clifton-Brown
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, SY23 3EB, United Kingdom
| | - Elaine Jensen
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, SY23 3EB, United Kingdom
| | - Michal Mos
- Energene sp. z o.o., Plac Solny 15, Wrocław, 50-062, Poland
| | - Richard Webster
- School of Natural Sciences and Psychology, Liverpool John Moores University, Byrom Street Liverpool, L3 3AF, United Kingdom
| | - Krzysztof Sitko
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellońska Street, 40-032 Katowice, Poland
| | - Marta Pogrzeba
- Institute for Ecology of Industrial Areas, 6 Kossutha Street, 40-844 Katowice, Poland.
| |
Collapse
|
7
|
Kenchanmane Raju SK, Barnes AC, Schnable JC, Roston RL. Low-temperature tolerance in land plants: Are transcript and membrane responses conserved? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:73-86. [PMID: 30348330 DOI: 10.1016/j.plantsci.2018.08.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 05/20/2023]
Abstract
Plants' tolerance of low temperatures is an economically and ecologically important limitation on geographic distributions and growing seasons. Tolerance for low temperatures varies significantly across different plant species, and different mechanisms likely act in different species. In order to survive low-temperature stress, plant membranes must maintain their fluidity in increasingly cold and oxidative cellular environments. The responses of different species to low-temperature stress include changes to the types and desaturation levels of membrane lipids, though the precise lipids affected tend to vary by species. Regulation of membrane dynamics and other low-temperature tolerance factors are controlled by both transcriptional and post-transcriptional mechanisms. Here, we review low-temperature induced changes in both membrane lipid composition and gene transcription across multiple related plant species with differing degrees of low-temperature tolerance. We attempt to define a core set of changes for transcripts and lipids across species and treatment variations. Some responses appear to be consistent across all species for which data are available, while many others appear likely to be species or family-specific. Potential rationales are presented, including variance in testing, reporting and the importance of considering the level of stress perceived by the plant.
Collapse
Affiliation(s)
- Sunil Kumar Kenchanmane Raju
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA; Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Allison C Barnes
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - James C Schnable
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA; Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Rebecca L Roston
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA.
| |
Collapse
|