1
|
Zhang Y, Umeda M, Kakimoto T. Pericycle cell division competence underlies various developmental programs. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:29-36. [PMID: 35800961 PMCID: PMC9200087 DOI: 10.5511/plantbiotechnology.21.1202a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/02/2021] [Indexed: 05/08/2023]
Abstract
Pericycle cells possess proliferative activity long after leaving the root apical meristem. Depending on the developmental stage and external stimuli, pericycle cell division leads to the production of lateral roots, vascular cambium and periderm, and callus. Therefore, pericycle cell division competence underlies root branching and secondary growth, as well as plant regeneration capacity. In this review, we first briefly present an overview of the molecular pathways of the four developmental programs originated, exclusively or partly, from pericycle cells. Then, we provide a review of up-to-date knowledge in the mechanisms determining pericycle cells' competence to undergo cell division. Furthermore, we discuss directions of future research to further our understanding of the pericycle's characteristics and functions.
Collapse
Affiliation(s)
- Ye Zhang
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
- E-mail: Tel: +81-743-72-5592 Fax: +81-743-72-5599
| | - Masaaki Umeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Tatsuo Kakimoto
- Department of Biology, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| |
Collapse
|
2
|
Xie X, Wang Y, Datla R, Ren M. Auxin and Target of Rapamycin Spatiotemporally Regulate Root Organogenesis. Int J Mol Sci 2021; 22:ijms222111357. [PMID: 34768785 PMCID: PMC8583787 DOI: 10.3390/ijms222111357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
The programs associated with embryonic roots (ERs), primary roots (PRs), lateral roots (LRs), and adventitious roots (ARs) play crucial roles in the growth and development of roots in plants. The root functions are involved in diverse processes such as water and nutrient absorption and their utilization, the storage of photosynthetic products, and stress tolerance. Hormones and signaling pathways play regulatory roles during root development. Among these, auxin is the most important hormone regulating root development. The target of rapamycin (TOR) signaling pathway has also been shown to play a key role in root developmental programs. In this article, the milestones and influential progress of studying crosstalk between auxin and TOR during the development of ERs, PRs, LRs and ARs, as well as their functional implications in root morphogenesis, development, and architecture, are systematically summarized and discussed.
Collapse
Affiliation(s)
- Xiulan Xie
- Labarotary of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; (X.X.); (Y.W.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Ying Wang
- Labarotary of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; (X.X.); (Y.W.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Raju Datla
- Global Institute for Food Security in Saskatoon, University of Saskatchewan, Saskatoon, SK S7N 0W9, Canada
- Correspondence: (R.D.); (M.R.)
| | - Maozhi Ren
- Labarotary of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; (X.X.); (Y.W.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Correspondence: (R.D.); (M.R.)
| |
Collapse
|
3
|
Meristematic Connectome: A Cellular Coordinator of Plant Responses to Environmental Signals? Cells 2021; 10:cells10102544. [PMID: 34685524 PMCID: PMC8533771 DOI: 10.3390/cells10102544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
Mechanical stress in tree roots induces the production of reaction wood (RW) and the formation of new branch roots, both functioning to avoid anchorage failure and limb damage. The vascular cambium (VC) is the factor responsible for the onset of these responses as shown by their occurrence when all primary tissues and the root tips are removed. The data presented confirm that the VC is able to evaluate both the direction and magnitude of the mechanical forces experienced before coordinating the most fitting responses along the root axis whenever and wherever these are necessary. The coordination of these responses requires intense crosstalk between meristematic cells of the VC which may be very distant from the place where the mechanical stress is first detected. Signaling could be facilitated through plasmodesmata between meristematic cells. The mechanism of RW production also seems to be well conserved in the stem and this fact suggests that the VC could behave as a single structure spread along the plant body axis as a means to control the relationship between the plant and its environment. The observation that there are numerous morphological and functional similarities between different meristems and that some important regulatory mechanisms of meristem activity, such as homeostasis, are common to several meristems, supports the hypothesis that not only the VC but all apical, primary and secondary meristems present in the plant body behave as a single interconnected structure. We propose to name this structure “meristematic connectome” given the possibility that the sequence of meristems from root apex to shoot apex could represent a pluricellular network that facilitates long-distance signaling in the plant body. The possibility that the “meristematic connectome” could act as a single structure active in adjusting the plant body to its surrounding environment throughout the life of a plant is now proposed.
Collapse
|
4
|
Zhang J, Zhou T, Zhang C, Zheng W, Li J, Jiang W, Xiao C, Wei D, Yang C, Xu R, Gong A, Bi Y. Gibberellin disturbs the balance of endogenesis hormones and inhibits adventitious root development of Pseudostellaria heterophylla through regulating gene expression related to hormone synthesis. Saudi J Biol Sci 2021; 28:135-147. [PMID: 33424290 PMCID: PMC7783660 DOI: 10.1016/j.sjbs.2020.09.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 11/30/2022] Open
Abstract
The adventitious roots of some plants will develop into tuberous roots which are widely used in many traditional Chinese medicines, including Pseudostellaria heterophylla. If adventitious root development is inhibited, the yield of Chinese medicinal materials will be reduced. Gibberellic acid is an important phytohormone that promotes plant growth and increases the resistance to drought, flood or disease. However, the effects of gibberellic acid on adventitious roots of Pseudostellaria heterophylla are not clear. Here, we reports GA3 suppressed adventitious root development of Pseudostellaria heterophylla by disturbing the balance of endogenesis hormones. By detecting the contents of various endogenous hormones, we found that the development of adventitious roots negatively correlated with the content of CA3 in tuberous roots. Exogenous GA3 treatment decreased the diameter of adventitious roots, but increased the length of adventitious roots of Pseudostellaria heterophylla. In contrast, blocking the biosynthesis of GA3 suppressed stem growth and promoted the xylem of tuberous roots development. Moreover, exogenous GA3 treatment resulted in imbalance of endogenesis hormones by regulating their synthesis-related genes expression in xylem of tuberous roots. These results suggest GA3 broke the established distribution of hormones by regulating synthesis, transport and biological activation of hormones to activate the apical meristem and suppress lateral meristem. Regulating GA3 signaling during adventitious roots development would be one of the possible ways to increase the yield of P. heterophylla.
Collapse
Affiliation(s)
- Jinqiang Zhang
- Guizhou University of Chinese Traditional Medicine, Guiyang 550025, China
| | - Tao Zhou
- Guizhou University of Chinese Traditional Medicine, Guiyang 550025, China
| | - Chen Zhang
- Guizhou University of Chinese Traditional Medicine, Guiyang 550025, China
| | - Wei Zheng
- Guizhou University of Chinese Traditional Medicine, Guiyang 550025, China.,Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Jun Li
- Guizhou University of Chinese Traditional Medicine, Guiyang 550025, China
| | - Weike Jiang
- Guizhou University of Chinese Traditional Medicine, Guiyang 550025, China
| | - Chenghong Xiao
- Guizhou University of Chinese Traditional Medicine, Guiyang 550025, China
| | - Dequn Wei
- Guizhou University of Chinese Traditional Medicine, Guiyang 550025, China
| | - Changgui Yang
- Guizhou University of Chinese Traditional Medicine, Guiyang 550025, China
| | - Rong Xu
- Guizhou University of Chinese Traditional Medicine, Guiyang 550025, China
| | - Anhui Gong
- Guizhou University of Chinese Traditional Medicine, Guiyang 550025, China
| | - Yan Bi
- Guizhou University of Chinese Traditional Medicine, Guiyang 550025, China
| |
Collapse
|
5
|
Nyam-Osor B, Byambadorj SO, Park BB, Terzaghi M, Scippa GS, Stanturf JA, Chiatante D, Montagnoli A. Root Biomass Distribution of Populus sibirica and Ulmus pumila Afforestation Stands Is Affected by Watering Regimes and Fertilization in the Mongolian Semi-arid Steppe. FRONTIERS IN PLANT SCIENCE 2021; 12:638828. [PMID: 33968099 PMCID: PMC8102691 DOI: 10.3389/fpls.2021.638828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/30/2021] [Indexed: 05/11/2023]
Abstract
Desertification of the semi-arid steppe of Mongolia is advancing very rapidly, motivating afforestation efforts. The "Green Belt" joint project (Government of Mongolia and Republic of Korea), which aims to mitigate soil degradation and develop agroforestry activities through the planting of a forest shelterbelt, is one such response. In these plantations, tree growth has been supported by different watering regimes (no watering, 2, 4, and 8 L h-1) and by two types of soil fertilization (NPK and Compost). The present paper analyses the effect of these techniques on soil chemistry and root biomass partitioning of Populus sibirica (Horth ex Tausch) and Ulmus pumila (L.) tree species. In July 2019, at the plantation site in Lun Soum, Tuv province (Mongolia), six trees were excavated by hand in each treatment, the root system was divided into taproot and five diameter classes (0-2; 2-5; 5-10; 10-20; > 20 mm), and the biomass was measured. Soil organic matter, macronutrients, and pH were also measured. The addition of fertilizers in the long-term did not enhance the soil chemical properties. The build-up of root biomass in both species correlated positively with increasing levels of the watering, while the application of fertilizers led to root growth suppression. For most of the root classes and both species, an irrigation level of 4 L h-1 was sufficient to yield the highest biomass and could be recommended for afforesting the semi-arid steppe of Mongolia. The root biomass of P. sibirica was more dependent on the watering regimes and of U. pumila was more negatively influenced by the application of fertilizers, indicating that U. pumila, due to the its lower water need, could be suitable for afforesting semi-arid environments. Our experiments suggest that afforestation practices in the semi-arid steppe of Mongolia should be supported by a prior analysis of plants' needs, soil type, dose, and type of fertilizers to be applied. Knowledge of the root response to the supporting techniques is necessary for choosing the best one for the plantation and, thus, to develop a sustainable and successful strategy to restore these degraded lands.
Collapse
Affiliation(s)
- Batkhuu Nyam-Osor
- Laboratory of Forest Genetics and Ecophysiology, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Ser-Oddamba Byambadorj
- Laboratory of Forest Genetics and Ecophysiology, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
- Laboratory of Silviculture, College of Agriculture and Life Science, Chungnam National University, Deajeon, South Korea
| | - Byung Bae Park
- Laboratory of Silviculture, College of Agriculture and Life Science, Chungnam National University, Deajeon, South Korea
| | - Mattia Terzaghi
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Salerno, Italy
| | - Gabriella Stefania Scippa
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Isernia, Italy
| | - John A. Stanturf
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Donato Chiatante
- Laboratory of Environmental and Applied Botany, Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Antonio Montagnoli
- Laboratory of Environmental and Applied Botany, Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
- *Correspondence: Antonio Montagnoli
| |
Collapse
|
6
|
Baesso B, Terzaghi M, Chiatante D, Scippa GS, Montagnoli A. WOX genes expression during the formation of new lateral roots from secondary structures in Populus nigra (L.) taproot. Sci Rep 2020; 10:18890. [PMID: 33144589 PMCID: PMC7641218 DOI: 10.1038/s41598-020-75150-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 10/08/2020] [Indexed: 11/28/2022] Open
Abstract
Despite the large amounts of data available on lateral root formation, little is known about their initiation from secondary structures. In the present work, we applied a bending treatment to Populus nigra (L.) woody taproots to induce the formation of new lateral roots. The development of lateral roots was monitored by stereomicroscopic examination of cross-sections. Tissues were sampled from the bending zone in the proximity of the vascular cambium before (time 0) and after the application of bending at three different time points (24, 48, and 72 h) and analyzed for the expression of P. nigra WOX homologs. The initiation of new lateral roots was observed to originate from the vascular cambium zone and was followed by primordium formation and root emergence. PnWOX4a, PnWOX4b, PnWOX5a, PnWOX5b, PnWOX11/12a, and PnWOX11/12b were shown to be expressed during the formation of new lateral roots at different developmental stages. The mechanical stress simulated by bending treatment was shown to activate the molecular mechanism leading to the expression of WOX genes, which are hypothesized to control SLR formation in the cambium zone of poplar taproot.
Collapse
Affiliation(s)
- Barbara Baesso
- Department of Biotechnology and Life Science, University of Insubria, Via Dunant, 3, 21100, Varese, VA, Italy
| | - Mattia Terzaghi
- Department of Chemistry and Biology 'A. Zambelli', University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Donato Chiatante
- Department of Biotechnology and Life Science, University of Insubria, Via Dunant, 3, 21100, Varese, VA, Italy
| | - Gabriella Stefania Scippa
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090, Pesche, IS, Italy
| | - Antonio Montagnoli
- Department of Biotechnology and Life Science, University of Insubria, Via Dunant, 3, 21100, Varese, VA, Italy.
| |
Collapse
|
7
|
Chaffey N, Volkmann D, Baluška F. The botanical multiverse of Peter Barlow. Commun Integr Biol 2019; 12:14-30. [PMID: 31156759 PMCID: PMC6529214 DOI: 10.1080/19420889.2019.1575788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/25/2019] [Indexed: 02/02/2023] Open
Abstract
Dr Peter Barlow, who died in 2017, was one of the most respected botanists and biologists of the latter half of the 20th Century. His interests covered a wide range of plant biological topics, e.g. root growth and development, plant cytoskeleton, effects of gravity, plant intelligence, pattern formation, and evolution of eukaryotic cells. Here we consider Peter's numerous contributions to the: elucidation of plant patterns; understanding of root biology; role of the plant cytoskeleton in growth and development; influence of the Moon on terrestrial vegetation; Cell Body concept; and plant neurobiology. In so doing we attempt not only to provide an overview of Peter's important work in many areas of plant biology, but also to place that work in the context of recent advances in plant and biological sciences.
Collapse
Affiliation(s)
- Nigel Chaffey
- College of Liberal Arts, Bath Spa University, Bath, UK
| | | | | |
Collapse
|
8
|
De Zio E, Trupiano D, Karady M, Antoniadi I, Montagnoli A, Terzaghi M, Chiatante D, Ljung K, Scippa GS. Tissue-specific hormone profiles from woody poplar roots under bending stress. PHYSIOLOGIA PLANTARUM 2019; 165:101-113. [PMID: 30187489 DOI: 10.1111/ppl.12830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/16/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Elena De Zio
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Dalila Trupiano
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Michal Karady
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Ioanna Antoniadi
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Antonio Montagnoli
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Mattia Terzaghi
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Donato Chiatante
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Gabriella S Scippa
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| |
Collapse
|
9
|
Auxin Controlled by Ethylene Steers Root Development. Int J Mol Sci 2018; 19:ijms19113656. [PMID: 30463285 PMCID: PMC6274790 DOI: 10.3390/ijms19113656] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/13/2018] [Accepted: 11/17/2018] [Indexed: 12/29/2022] Open
Abstract
Roots are important plant ground organs, which absorb water and nutrients to control plant growth and development. Phytohormones have been known to play a crucial role in the regulation of root growth, such as auxin and ethylene, which are central regulators of this process. Recent findings have revealed that root development and elongation regulated by ethylene are auxin dependent through alterations of auxin biosynthesis, transport and signaling. In this review, we focus on the recent advances in the study of auxin and auxin⁻ethylene crosstalk in plant root development, demonstrating that auxin and ethylene act synergistically to control primary root and root hair growth, but function antagonistically in lateral root formation. Moreover, ethylene modulates auxin biosynthesis, transport and signaling to fine-tune root growth and development. Thus, this review steps up the understanding of the regulation of auxin and ethylene in root growth.
Collapse
|