1
|
Nguyen TH, Kang BY, Kim HH. Chromosomal dynamics in Senna: comparative PLOP-FISH analysis of tandem repeats and flow cytometric nuclear genome size estimations. FRONTIERS IN PLANT SCIENCE 2023; 14:1288220. [PMID: 38173930 PMCID: PMC10762312 DOI: 10.3389/fpls.2023.1288220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024]
Abstract
Introduction Tandem repeats (TRs) occur abundantly in plant genomes. They play essential roles that affect genome organization and evolution by inducing or generating chromosomal rearrangements such as duplications, deletions, inversions, and translocations. These impact gene expression and chromosome structure and even contribute to the emergence of new species. Method We investigated the effects of TRs on speciation in Senna genus by performing a comparative analysis using fluorescence in situ hybridization (FISH) with S. tora-specific TR probes. We examined the chromosomal distribution of these TRs and compared the genome sizes of seven Senna species (estimated using flow cytometry) to better understand their evolutionary relationships. Results Two (StoTR03_159 and StoTR04_55) of the nine studied TRs were not detected in any of the seven Senna species, whereas the remaining seven were found in all or some species with patterns that were similar to or contrasted with those of S. tora. Of these studies species, only S. angulata showed significant genome rearrangements and dysploid karyotypes resembling those of S. tora. The genome sizes varied among these species and did not positively correlate with chromosome number. Notably, S. angulata had the fewest chromosomes (2n = 22) but a relatively large genome size. Discussion These findings reveal the dynamics of TRs and provide a cytogenetic depiction of chromosomal rearrangements during speciation in Senna. To further elucidate the dynamics of repeat sequences in Senna, future studies must include related species and extensive repeatomic studies, including those on transposable elements.
Collapse
Affiliation(s)
| | | | - Hyun Hee Kim
- Chromosome Research Institute, Department of Chemistry & Life Science, Sahmyook University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Vozárová R, Wang W, Lunerová J, Shao F, Pellicer J, Leitch IJ, Leitch AR, Kovařík A. Mega-sized pericentromeric blocks of simple telomeric repeats and their variants reveal patterns of chromosome evolution in ancient Cycadales genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:646-663. [PMID: 36065632 PMCID: PMC9827991 DOI: 10.1111/tpj.15969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Simple telomeric repeats composed of six to seven iterating nucleotide units are important sequences typically found at the ends of chromosomes. Here we analyzed their abundance and homogeneity in 42 gymnosperm (29 newly sequenced), 29 angiosperm (one newly sequenced), and eight bryophytes using bioinformatics, conventional cytogenetic and molecular biology approaches to explore their diversity across land plants. We found more than 10 000-fold variation in the amounts of telomeric repeats among the investigated taxa. Repeat abundance was positively correlated with increasing intragenomic sequence heterogeneity and occurrence at non-telomeric positions, but there was no correlation with genome size. The highest abundance/heterogeneity was found in the gymnosperm genus Cycas (Cycadaceae), in which megabase-sized blocks of telomeric repeats (i.e., billions of copies) were identified. Fluorescent in situ hybridization experiments using variant-specific probes revealed canonical Arabidopsis-type telomeric TTTAGGG repeats at chromosome ends, while pericentromeric blocks comprised at least four major telomeric variants with decreasing abundance: TTTAGGG>TTCAGGG >TTTAAGG>TTCAAGG. Such a diversity of repeats was not found in the sister cycad family Zamiaceae or in any other species analyzed. Using immunocytochemistry, we showed that the pericentromeric blocks of telomeric repeats overlapped with histone H3 serine 10 phosphorylation signals. We show that species of Cycas have amplified their telomeric repeats in centromeric and telomeric positions on telocentric chromosomes to extraordinary high levels. The ancestral chromosome number reconstruction suggests their occurrence is unlikely to be the product of ancient Robertsonian chromosome fusions. We speculate as to how the observed chromosome dynamics may be associated with the diversification of cycads.
Collapse
Affiliation(s)
- Radka Vozárová
- Department of Molecular EpigeneticsInstitute of Biophysics, Czech Academy of Sciencesv.v.i., Královopolská 135612 65BrnoCzech Republic
- Department of Experimental Biology, Faculty of ScienceMasaryk University611 37BrnoCzech Republic
| | - Wencai Wang
- Science and Technology Innovation CentreGuangzhou University of Chinese MedicineGuangzhou510405China
| | - Jana Lunerová
- Department of Molecular EpigeneticsInstitute of Biophysics, Czech Academy of Sciencesv.v.i., Královopolská 135612 65BrnoCzech Republic
| | - Fengqing Shao
- Science and Technology Innovation CentreGuangzhou University of Chinese MedicineGuangzhou510405China
| | - Jaume Pellicer
- Royal Botanic GardensKew, RichmondSurreyTW9 3ABUK
- Institut Botànic de Barcelona (IBB, CSIC‐Ajuntament de Barcelona)Passeig del Migdia sn08038BarcelonaSpain
| | | | - Andrew R. Leitch
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonE1 4NSUK
| | - Aleš Kovařík
- Department of Molecular EpigeneticsInstitute of Biophysics, Czech Academy of Sciencesv.v.i., Královopolská 135612 65BrnoCzech Republic
| |
Collapse
|
3
|
Maravilla AJ, Rosato M, Álvarez I, Nieto Feliner G, Rosselló JA. Interstitial Arabidopsis-Type Telomeric Repeats in Asteraceae. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122794. [PMID: 34961265 PMCID: PMC8705333 DOI: 10.3390/plants10122794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 05/13/2023]
Abstract
Tandem repeats of telomeric-like motifs at intra-chromosomal regions, known as interstitial telomeric repeats (ITR), have drawn attention as potential markers of structural changes, which might convey information about evolutionary relationships if preserved through time. Building on our previous work that reported outstanding ITR polymorphisms in the genus Anacyclus, we undertook a survey across 132 Asteraceae species, focusing on the six most speciose subfamilies and considering all the ITR data published to date. The goal was to assess whether the presence, site number, and chromosomal location of ITRs convey any phylogenetic signal. We conducted fluorescent in situ hybridization (FISH) using an Arabidopsis-type telomeric sequence as a probe on karyotypes obtained from mitotic chromosomes. FISH signals of ITR sites were detected in species of subfamilies Asteroideae, Carduoideae, Cichorioideae, Gymnarhenoideae, and Mutisioideae, but not in Barnadesioideae. Although six small subfamilies have not yet been sampled, altogether, our results suggest that the dynamics of ITR formation in Asteraceae cannot accurately trace the complex karyological evolution that occurred since the early diversification of this family. Thus, ITRs do not convey a reliable signal at deep or shallow phylogenetic levels and cannot help to delimitate taxonomic categories, a conclusion that might also hold for other important families such as Fabaceae.
Collapse
Affiliation(s)
- Alexis J. Maravilla
- Jardín Botánico, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, c/Quart 80, E-46008 Valencia, Spain; (A.J.M.); (M.R.)
| | - Marcela Rosato
- Jardín Botánico, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, c/Quart 80, E-46008 Valencia, Spain; (A.J.M.); (M.R.)
| | - Inés Álvarez
- Real Jardín Botánico (RJB), Consejo Superior de Investigaciones Científicas (CSIC), Plaza de Murillo 2, E-28014 Madrid, Spain; (I.Á.); (G.N.F.)
| | - Gonzalo Nieto Feliner
- Real Jardín Botánico (RJB), Consejo Superior de Investigaciones Científicas (CSIC), Plaza de Murillo 2, E-28014 Madrid, Spain; (I.Á.); (G.N.F.)
| | - Josep A. Rosselló
- Jardín Botánico, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, c/Quart 80, E-46008 Valencia, Spain; (A.J.M.); (M.R.)
- Correspondence: ; Tel.: +34-963-156-800
| |
Collapse
|
4
|
Maravilla AJ, Rosato M, Rosselló JA. Interstitial Telomeric-like Repeats (ITR) in Seed Plants as Assessed by Molecular Cytogenetic Techniques: A Review. PLANTS (BASEL, SWITZERLAND) 2021; 10:2541. [PMID: 34834904 PMCID: PMC8621592 DOI: 10.3390/plants10112541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 05/12/2023]
Abstract
The discovery of telomeric repeats in interstitial regions of plant chromosomes (ITRs) through molecular cytogenetic techniques was achieved several decades ago. However, the information is scattered and has not been critically evaluated from an evolutionary perspective. Based on the analysis of currently available data, it is shown that ITRs are widespread in major evolutionary lineages sampled. However, their presence has been detected in only 45.6% of the analysed families, 26.7% of the sampled genera, and in 23.8% of the studied species. The number of ITR sites greatly varies among congeneric species and higher taxonomic units, and range from one to 72 signals. ITR signals mostly occurs as homozygous loci in most species, however, odd numbers of ITR sites reflecting a hemizygous state have been reported in both gymnosperm and angiosperm groups. Overall, the presence of ITRs appears to be poor predictors of phylogenetic and taxonomic relatedness at most hierarchical levels. The presence of ITRs and the number of sites are not significantly associated to the number of chromosomes. The longitudinal distribution of ITR sites along the chromosome arms indicates that more than half of the ITR presences are between proximal and terminal locations (49.5%), followed by proximal (29.0%) and centromeric (21.5%) arm regions. Intraspecific variation concerning ITR site number, chromosomal locations, and the differential presence on homologous chromosome pairs has been reported in unrelated groups, even at the population level. This hypervariability and dynamism may have likely been overlooked in many lineages due to the very low sample sizes often used in cytogenetic studies.
Collapse
Affiliation(s)
| | | | - Josep A. Rosselló
- Jardín Botánico, ICBiBE, Universitat de València, c/Quart 80, E-46008 València, Spain; (A.J.M.); (M.R.)
| |
Collapse
|
5
|
Ta TD, Waminal NE, Nguyen TH, Pellerin RJ, Kim HH. Comparative FISH analysis of Senna tora tandem repeats revealed insights into the chromosome dynamics in Senna. Genes Genomics 2021; 43:237-249. [PMID: 33655486 PMCID: PMC7966213 DOI: 10.1007/s13258-021-01051-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND DNA tandem repeats (TRs) are often abundant and occupy discrete regions in eukaryotic genomes. These TRs often cause or generate chromosomal rearrangements, which, in turn, drive chromosome evolution and speciation. Tracing the chromosomal distribution of TRs could therefore provide insights into the chromosome dynamics and speciation among closely related taxa. The basic chromosome number in the genus Senna is 2n = 28, but dysploid species like Senna tora have also been observed. OBJECTIVE To understand the dynamics of these TRs and their impact on S. tora dysploidization. METHODS We performed a comparative fluorescence in situ hybridization (FISH) analysis among nine closely related Senna species and compared the chromosomal distribution of these repeats from a cytotaxonomic perspective by using the ITS1-5.8S-ITS2 sequence to infer phylogenetic relationships. RESULTS Of the nine S. tora TRs, two did not show any FISH signal whereas seven TRs showed similar and contrasting patterns to other Senna species. StoTR01_86, which was localized in the pericentromeric regions in all S. tora, but not at the nucleolar organizer region (NOR) site, was colocalized at the NOR site in all species except in S. siamea. StoTR02_7_tel was mostly localized at chromosome termini, but some species had an interstitial telomeric repeat in a few chromosomes. StoTR05_180 was distributed in the subtelomeric region in most species and was highly amplified in the pericentromeric region in some species. StoTR06_159 was either absent or colocalized in the NOR site in some species, and StoIGS_463, which was localized at the NOR site in S. tora, was either absent or localized at the subtelomeric or pericentromeric regions in other species. CONCLUSIONS These data suggest that TRs play important roles in S. tora dysploidy and suggest the involvement of 45S rDNA intergenic spacers in "carrying" repeats during genome reshuffling.
Collapse
Affiliation(s)
- Thanh Dat Ta
- Department of Chemistry and Life Science, Bioscience Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Nomar Espinosa Waminal
- Department of Chemistry and Life Science, Bioscience Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Thi Hong Nguyen
- Department of Chemistry and Life Science, Bioscience Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Remnyl Joyce Pellerin
- Department of Chemistry and Life Science, Bioscience Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Hyun Hee Kim
- Department of Chemistry and Life Science, Bioscience Institute, Sahmyook University, Seoul, 01795, Republic of Korea.
| |
Collapse
|
6
|
Waminal NE, Pellerin RJ, Kang SH, Kim HH. Chromosomal Mapping of Tandem Repeats Revealed Massive Chromosomal Rearrangements and Insights Into Senna tora Dysploidy. FRONTIERS IN PLANT SCIENCE 2021; 12:629898. [PMID: 33643358 PMCID: PMC7902697 DOI: 10.3389/fpls.2021.629898] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/21/2021] [Indexed: 05/16/2023]
Abstract
Tandem repeats can occupy a large portion of plant genomes and can either cause or result from chromosomal rearrangements, which are important drivers of dysploidy-mediated karyotype evolution and speciation. To understand the contribution of tandem repeats in shaping the extant Senna tora dysploid karyotype, we analyzed the composition and abundance of tandem repeats in the S. tora genome and compared the chromosomal distribution of these repeats between S. tora and a closely related euploid, Senna occidentalis. Using a read clustering algorithm, we identified the major S. tora tandem repeats and visualized their chromosomal distribution by fluorescence in situ hybridization. We identified eight independent repeats covering ~85 Mb or ~12% of the S. tora genome. The unit lengths and copy numbers had ranges of 7-5,833 bp and 325-2.89 × 106, respectively. Three short duplicated sequences were found in the 45S rDNA intergenic spacer, one of which was also detected at an extra-NOR locus. The canonical plant telomeric repeat (TTTAGGG)n was also detected as very intense signals in numerous pericentromeric and interstitial loci. StoTR05_180, which showed subtelomeric distribution in Senna occidentalis, was predominantly pericentromeric in S. tora. The unusual chromosomal distribution of tandem repeats in S. tora not only enabled easy identification of individual chromosomes but also revealed the massive chromosomal rearrangements that have likely played important roles in shaping its dysploid karyotype.
Collapse
Affiliation(s)
- Nomar Espinosa Waminal
- Department of Chemistry and Life Science, BioScience Institute, Sahmyook University, Seoul, South Korea
| | - Remnyl Joyce Pellerin
- Department of Chemistry and Life Science, BioScience Institute, Sahmyook University, Seoul, South Korea
| | - Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Hyun Hee Kim
- Department of Chemistry and Life Science, BioScience Institute, Sahmyook University, Seoul, South Korea
- *Correspondence: Hyun Hee Kim
| |
Collapse
|
7
|
Criado Ruiz D, Villa Machío I, Herrero Nieto A, Nieto Feliner G. Hybridization and cryptic speciation in the Iberian endemic plant genus Phalacrocarpum (Asteraceae-Anthemideae). Mol Phylogenet Evol 2020; 156:107024. [PMID: 33271372 DOI: 10.1016/j.ympev.2020.107024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 01/28/2023]
Abstract
Understanding the role and impact of reticulation in phylogenetic inquiry has improved with extended use of high throughput sequencing data. Yet, due to the dynamism of genomes over evolutionary time, disentangling old hybridization events remains a serious challenge. Phalacrocarpum (DC.) Willk. is one of the 27 Iberian endemic plant genera, currently considered monotypic but including three subspecies. Its uncertain phylogenetic relationships within tribe Anthemideae (Asteraceae) point to an Early Miocene divergence from its sister group, and its persistent taxonomic instability has been proposed to be due to hybridization. We aim at understanding the evolutionary history of this genus using SNPs called from a genotyping-by-sequencing (GBS) analysis, Sanger sequences-from three plastid DNA regions (psbJ-petA, petB-petD, trnH-psbA) and the nuclear ribosomal ITS regions (cloned)-as well as leaf morphometric multivariate analysis. SNP data and Sanger sequences strongly support the unforeseen existence of a cryptic species in the eastern populations of P. oppositifolium subsp. anomalum. Broad molecular and morphometric patterns of variation found in conflictive populations from the Sanabria Valley region convincingly identify a recent previously undocumented hybrid zone. By contrast, evidence is less conclusive on relationships between subspecies hoffmannseggii, oppositifolium and a second conflictive group distributed along the Galician-Portuguese border (Orense massifs). Although genetic clustering analysis of SNP data suggests that the former subspecies was the maternal progenitor in hybridization events that gave rise to the other two groups, we found considerable uniqueness of ITS ribotypes and plastid haplotypes in them. This result, in the context of Pleistocene climatically-driven range shifts in NW Iberian Peninsula, can be due to periods of isolation, genetic bottlenecks and drift superimposed on old hybridization events. Our study confirms the idea that unravelling old hybridization events may be compromised by the suite of evolutionary processes accumulated subsequently, particularly in areas with a history of climatic instability.
Collapse
Affiliation(s)
- David Criado Ruiz
- Real Jardín Botánico (RJB-CSIC), Plaza de Murillo 2, 28014 Madrid, Spain.
| | - Irene Villa Machío
- Real Jardín Botánico (RJB-CSIC), Plaza de Murillo 2, 28014 Madrid, Spain
| | | | | |
Collapse
|
8
|
Santagostino M, Piras FM, Cappelletti E, Del Giudice S, Semino O, Nergadze SG, Giulotto E. Insertion of Telomeric Repeats in the Human and Horse Genomes: An Evolutionary Perspective. Int J Mol Sci 2020; 21:E2838. [PMID: 32325780 PMCID: PMC7215372 DOI: 10.3390/ijms21082838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/06/2023] Open
Abstract
Interstitial telomeric sequences (ITSs) are short stretches of telomeric-like repeats (TTAGGG)n at nonterminal chromosomal sites. We previously demonstrated that, in the genomes of primates and rodents, ITSs were inserted during the repair of DNA double-strand breaks. These conclusions were derived from sequence comparisons of ITS-containing loci and ITS-less orthologous loci in different species. To our knowledge, insertion polymorphism of ITSs, i.e., the presence of an ITS-containing allele and an ITS-less allele in the same species, has not been described. In this work, we carried out a genome-wide analysis of 2504 human genomic sequences retrieved from the 1000 Genomes Project and a PCR-based analysis of 209 human DNA samples. In spite of the large number of individual genomes analyzed we did not find any evidence of insertion polymorphism in the human population. On the contrary, the analysis of ITS loci in the genome of a single horse individual, the reference genome, allowed us to identify five heterozygous ITS loci, suggesting that insertion polymorphism of ITSs is an important source of genetic variability in this species. Finally, following a comparative sequence analysis of horse ITSs and of their orthologous empty loci in other Perissodactyla, we propose models for the mechanism of ITS insertion during the evolution of this order.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elena Giulotto
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (M.S.); (F.M.P.); (E.C.); (S.D.G.); (O.S.); (S.G.N.)
| |
Collapse
|
9
|
Vitales D, Álvarez I, Garcia S, Hidalgo O, Nieto Feliner G, Pellicer J, Vallès J, Garnatje T. Genome size variation at constant chromosome number is not correlated with repetitive DNA dynamism in Anacyclus (Asteraceae). ANNALS OF BOTANY 2020; 125:611-623. [PMID: 31697800 PMCID: PMC7103019 DOI: 10.1093/aob/mcz183] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/06/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS Changes in the amount of repetitive DNA (dispersed and tandem repeats) are considered the main contributors to genome size variation across plant species in the absence of polyploidy. However, the study of repeatome dynamism in groups showing contrasting genomic features and complex evolutionary histories is needed to determine whether other processes underlying genome size variation may have been overlooked. The main aim here was to elucidate which mechanism best explains genome size evolution in Anacyclus (Asteraceae). METHODS Using data from Illumina sequencing, we analysed the repetitive DNA in all species of Anacyclus, a genus with a reticulate evolutionary history, which displays significant genome size and karyotype diversity albeit presenting a stable chromosome number. KEY RESULTS By reconstructing ancestral genome size values, we inferred independent episodes of genome size expansions and contractions during the evolution of the genus. However, analysis of the repeatome revealed a similar DNA repeat composition across species, both qualitative and quantitative. Using comparative methods to study repeatome dynamics in the genus, we found no evidence for repeat activity causing genome size variation among species. CONCLUSIONS Our results, combined with previous cytogenetic data, suggest that genome size differences in Anacyclus are probably related to chromosome rearrangements involving losses or gains of chromosome fragments, possibly associated with homoploid hybridization. These could represent balanced rearrangements that do not disrupt gene dosage in merged genomes, for example via chromosome segment exchanges.
Collapse
Affiliation(s)
- Daniel Vitales
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del Migdia sn, 08038 Barcelona, Catalonia, Spain
- For correspondence. Email
| | - Inés Álvarez
- Department of Biodiversity and Conservation, Real Jardín Botánico (CSIC), Plaza de Murillo 2, 28014 Madrid, Spain
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del Migdia sn, 08038 Barcelona, Catalonia, Spain
| | - Oriane Hidalgo
- Laboratori de Botànica – Unitat associada CSIC, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Catalonia, Spain
- Comparative Plant and Fungal Biology Department, Royal Botanic Gardens, Kew, Richmond, UK
| | - Gonzalo Nieto Feliner
- Department of Biodiversity and Conservation, Real Jardín Botánico (CSIC), Plaza de Murillo 2, 28014 Madrid, Spain
| | - Jaume Pellicer
- Comparative Plant and Fungal Biology Department, Royal Botanic Gardens, Kew, Richmond, UK
| | - Joan Vallès
- Laboratori de Botànica – Unitat associada CSIC, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Catalonia, Spain
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del Migdia sn, 08038 Barcelona, Catalonia, Spain
| |
Collapse
|
10
|
Aksenova AY, Mirkin SM. At the Beginning of the End and in the Middle of the Beginning: Structure and Maintenance of Telomeric DNA Repeats and Interstitial Telomeric Sequences. Genes (Basel) 2019; 10:genes10020118. [PMID: 30764567 PMCID: PMC6410037 DOI: 10.3390/genes10020118] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
Tandem DNA repeats derived from the ancestral (TTAGGG)n run were first detected at chromosome ends of the majority of living organisms, hence the name telomeric DNA repeats. Subsequently, it has become clear that telomeric motifs are also present within chromosomes, and they were suitably called interstitial telomeric sequences (ITSs). It is well known that telomeric DNA repeats play a key role in chromosome stability, preventing end-to-end fusions and precluding the recurrent DNA loss during replication. Recent data suggest that ITSs are also important genomic elements as they confer its karyotype plasticity. In fact, ITSs appeared to be among the most unstable microsatellite sequences as they are highly length polymorphic and can trigger chromosomal fragility and gross chromosomal rearrangements. Importantly, mechanisms responsible for their instability appear to be similar to the mechanisms that maintain the length of genuine telomeres. This review compares the mechanisms of maintenance and dynamic properties of telomeric repeats and ITSs and discusses the implications of these dynamics on genome stability.
Collapse
Affiliation(s)
- Anna Y Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia.
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02421, USA.
| |
Collapse
|
11
|
Mlinarec J, Skuhala A, Jurković A, Malenica N, McCann J, Weiss-Schneeweiss H, Bohanec B, Besendorfer V. The Repetitive DNA Composition in the Natural Pesticide Producer Tanacetum cinerariifolium: Interindividual Variation of Subtelomeric Tandem Repeats. FRONTIERS IN PLANT SCIENCE 2019; 10:613. [PMID: 31156676 PMCID: PMC6532368 DOI: 10.3389/fpls.2019.00613] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/25/2019] [Indexed: 05/02/2023]
Abstract
Dalmatian pyrethrum (Tanacetum cinerariifolium (Trevir.) Sch. Bip.), a plant species endemic to the east Adriatic coast, is used worldwide for production of the organic insecticide, pyrethrin. Most studies concerning Dalmatian pyrethrum have focused on its morphological and biochemical traits relevant for breeding. However, little is known about the chromosomal evolution and genome organization of this species. Our study aims are to identify, classify, and characterize repetitive DNA in the T. cinerariifolium genome using clustering analysis of a low coverage genomic dataset. Repetitive DNA represents about 71.63% of the genome. T. cinerariifolium exhibits linked 5S and 35S rDNA configuration (L-type). FISH reveals amplification of interstitial telomeric repeats (ITRs) in T. cinerariifolium. Of the three newly identified satellite DNA families, TcSAT1 and TcSAT2 are located subterminally on most of T. cinerariifolium chromosomes, while TcSAT3 family is located intercalary within the longer arm of two chromosome pairs. FISH reveals high levels of polymorphism of the TcSAT1 and TcSAT2 sites by comparative screening of 28 individuals. TcSAT2 is more variable than TcSAT1 regarding the number and position of FISH signals. Altogether, our data highlights the dynamic nature of DNA sequences associated with subtelomeres in T. cinerariifolium and suggests that subtelomeres represent one of the most dynamic and rapidly evolving regions in eukaryotic genomes.
Collapse
Affiliation(s)
- Jelena Mlinarec
- Division of Molecular Biology, Department of Biology, Faculty of Science, Zagreb, Croatia
- *Correspondence: Jelena Mlinarec, orcid.org/0000-0002-2627-5374 Hanna Weiss-Schneeweiss, orcid.org/0000-0002-9530-6808
| | - Ana Skuhala
- Division of Molecular Biology, Department of Biology, Faculty of Science, Zagreb, Croatia
| | - Adela Jurković
- Division of Molecular Biology, Department of Biology, Faculty of Science, Zagreb, Croatia
| | - Nenad Malenica
- Division of Molecular Biology, Department of Biology, Faculty of Science, Zagreb, Croatia
| | - Jamie McCann
- Institute of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Hanna Weiss-Schneeweiss
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
- *Correspondence: Jelena Mlinarec, orcid.org/0000-0002-2627-5374 Hanna Weiss-Schneeweiss, orcid.org/0000-0002-9530-6808
| | | | - Višnja Besendorfer
- Division of Molecular Biology, Department of Biology, Faculty of Science, Zagreb, Croatia
| |
Collapse
|